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SHARP SOBOLEV INEQUALITY
INVOLVING A CRITICAL NONLINEARITY ON A BOUNDARY

Jan Chabrowski — Jianfu Yang

Abstract. We consider the solvability of the Neumann problem for the
equation

−∆u + λu = 0,
∂u

∂ν
= Q(x)|u|q−2u

on ∂Ω, where Q is a positive and continuous coefficient on ∂Ω, λ is a pa-
rameter and q = 2(N − 1)/(N − 2) is a critical Sobolev exponent for the

trace embedding of H1(Ω) into Lq(∂Ω). We investigate the joint effect of
the mean curvature of ∂Ω and the shape of the graph of Q on the existence

of solutions. As a by product we establish a sharp Sobolev inequality for

the trace embedding. In Section 6 we establish the existence of solutions
when a parameter λ interferes with the spectrum of −∆ with the Neu-

mann boundary conditions. We apply a min-max principle based on the

topological linking.

1. Introduction

In recent years, a number of sharp Sobolev inequalities have been established
by applying the blow-up technique to nonlinear Neumann problems. The main
purpose of this work is to prove a sharp Sobolev inequality involving the critical
Sobolev exponent on a boundary of a bounded domain.
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Let Ω ⊂ RN , N ≥ 3, be a bounded domain with the smooth boundary ∂Ω.
We are mainly concerned with the nonlinear Neumann problem

(1.1)

{ −∆u+ λu = 0 in Ω,
∂

∂ν
u(x) = Q(x)|u|q−2u on ∂Ω,

where Ω ⊂ RN is a bounded domain with a smooth boundary ∂Ω, ν is the
outer normal on ∂Ω and the coefficient Q is continuous and positive on ∂Ω.
q = 2(N − 1)/(N − 2), N ≥ 3, denotes the critical Sobolev exponent for the
trace embedding of the space H1(Ω) into Lq(∂Ω). The embedding of H1(Ω) into
Lq(∂Ω) is continuous, but not compact.

In Section 2 we establish a condition for the solvability of problem (1.1)
which involves the best Sobolev constant S1 for the trace embedding of the space
H1(RN

+ ) into Lq(RN−1), where RN
+ = {x : x ∈ RN , xN > 0}. The constant S1

is defined by (see [12])

S1 = inf
{ ∫

RN
+

|∇u|2 dx; u ∈ C∞(RN
+ ),

∫
∂RN

+

|u(x′, 0)|q dx′ = 1
}
.

For a point x we use a notation x = (x′, xN ), x′ ∈ RN−1. The constant S1 is
attained by the function

W (x) =
cN

[|x′|2 + (xN + (N − 2))2](N−2)/2
,

where cN > 0 is a positive constant depending on N . The function W satisfies∫
RN

+

|∇W |2 dx =
∫

RN−1
W (x′, 0)q dx′ = SN−1

1

and moreover W is a positive solution of the Neumann problem in the half-space

(1.2)


−∆u = 0 in RN

+ ,

∂u(x′, 0)
∂xN

= |u(x′, 0)|q−1 on RN−1.

If Q ≡ 1 on Ω, it is known that problem (1.1) has a solution for every λ > 0.
This solution is obtained as a minimizer of the variational problem

sλ = inf
u∈H1(Ω)−{0}

∫
Ω
(|∇u|2 + λu2) dx

(
∫

∂Ω
|u|q dSx)2/q

.

If u is a minimizer for sλ, then a multiple of u given by s
1/(q−2)
λ u is a solution

of the problem (1.1). Minimizers for sλ are called least energy solutions of (1.1).
It is not difficult to show that if

(1.3) sλ < S1 for some λ > 0,

then problem (1.1) has a least energy solution, that is, there exists a minimizer
for sλ. The condition (1.3) can be verified by testing sλ with the instanton W
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centered at a point on the boundary of Ω with a positive mean curvature. We
set

Wε,y(x) = ε−(N−2)/2W

(
x− y

ε

)
,

where y ∈ ∂Ω and the mean curvature H(y) is positive. In the paper [28] it was
noted that

(1.4)

∫
Ω
|∇Wε,y|2 dx

(
∫

∂Ω
W q

ε,y dSx)2/q
= S1 −

N − 2
2

ANH(y)β(ε) + o(1)β(ε),

where AN > 0 is a constant and

β(t) =

{
t log(1/t) for N = 3,

t for N ≥ 4.

Thus for ε > 0 sufficiently small the right hand side of (1.4) is strictly less than
S1 and the condition (1.3) holds. The fact that problem (1.1) has a least energy
solution for every λ > 0 implies that we cannot expect the following inequality

(1.5) S1

( ∫
∂Ω

|u|q dSx

)1/q

≤
∫

Ω

(|∇u|2 + C(Ω)u2) dx

to hold for all u ∈ H1(Ω) and some constant C(Ω) > 0. In this paper we
show that the situation changes if we consider problem (1.1) with a nonconstant
weight function Q on ∂Ω. It is not difficult to show that problem (1.1) has a least
energy solution for every λ > 0 if QM = maxx∈∂ΩQ(x) is attained at a point
with positive mean curvature. However, if QM is achieved only at points with
negative mean curvature (or on a flat part of the boundary, if such part exists),
then the least energy solution exists only for λ in an interval (0,Λ), 0 < Λ <∞
and there are no least energy solutions for λ > Λ. This obviously gives rise to
the sharp Sobolev inequality of type (1.5) with a nonconstant weight function
(see Remark 5.5 in Section 5).

The paper is organized as follows. In Section 2 we establish a criterion for
the existence of least energy solutions of problem (1.1). Section 3 is devoted to
the study of the asymptotic behaviour of least energy solutions of (1.1), when
λ→∞. In Section 4 we give the energy estimates of instantons centered either
on a flat part of the boundary or at a boundary point with negative curvature.
The results of Sections 3 and 4 are used in Section 5 to establish the main theorem
(Theorem 5.3) of this paper. In particular, Theorem 5.3 leads to a sharp Sobolev
inequality (see Remark 1.5). Finally, in Section 6 we allow the parameter λ to
interfere with the spectrum of the operator “−∆” with the Neumann boundary
conditions. To obtain the existence of a solution of problem (1.1) we apply the
min-max principle argument based on the topological linking.

The Neumann problem involving a critical Soboev exponent in the equation
and with zero boundary conditions has an extensive literature and we refer to
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papers [2]–[7], [13], [14], [17], [18], [20]–[26]. Our approach to problem (1.1) has
been motivated by these papers.

Throughout this paper we denote strong convergence by ” → ” and weak
convergence by “⇀”. The norms in the Lebesgue spaces Lq(Ω) are denoted by
‖ · ‖q. By H1(Ω) we denote a standard Sobolev space on Ω equipped with norm

‖u‖2 =
∫

Ω

(|∇u|2 + u2) dx.

2. Existence of least energy solutions

The least energy solutions of problem (1.1) with Q 6≡ constant are the mini-
mizers of the following problem

sλ,Q = inf
u∈H1(Ω)−{0}

∫
Ω
(|∇u|2 + λu2) dx

(
∫

∂Ω
Q(x)|u|q dSx)2/q

.

If Q ≡ 1 on Ω we write sλ,1 = sλ. It follows from the Sobolev trace embedding
that 0 < sλ,Q <∞ for every λ > 0. It is easy to check that sλ,Q is continuous and
nondecreasing for λ > 0. To show the existence of a minimizer for sλ,Q, we use
the P. L. Lions concentration-compactness principle [16]. Let {um} ⊂ H1(Ω) be
such that um ⇀ u in H1(Ω) and um ⇀ u in Lq(∂Ω). Then there exist constants
νj > 0, µj > 0, j ∈ J , and {xj} ⊂ ∂Ω such that

|∇um|2
∗
⇀dµ ≥ |∇u|2 +

∑
j∈J

µjδxj
,(2.1)

|um|q
∗
⇀dν = |u|q +

∑
j∈J

νjδxj
,(2.2)

in the space of measures and moreover,

(2.3) S1(νj)2/q ≤ µj for j ∈ J.

The set J of indices is at most countable.

Proposition 2.1. If

(2.4) sλ,Q <
S1

Q
(N−2)/(N−1)
M

for some λ > 0, then problem (1.1) admits a solution.

Proof. We follow the argument from the paper [10]. Let {um} be a mini-
mizing sequence for sλ,Q such that∫

∂Ω

Q(x)|um|q dSx = 1
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for every m. Since {um} is bounded in H1(Ω) we may assume that um ⇀ u in
H1(Ω) and in Lq(∂Ω) and, moreover (2.1)–(2.3) hold. Thus

1 =
∫

∂Ω

Q(x)|u|q dSx +
∑
j∈J

Q(xj)νj

and

sλ,Q =
∫

Ω

(|∇u|2 + λu2) dx+
∑
j∈J

µj

≥ sλ,Q

( ∫
∂Ω

Q(x)|u|q dSx

)2/q

+
∑
j∈J

S1
(νjQ(xj))2/q

Q(xj)2/q

≥ sλ,Q

( ∫
∂Ω

Q(x)|u|q dSx

)2/q

+
∑
j∈J

S1
(νjQ(xj))2/q

Q
2/q
M

.

Since sλ,Q < S1/Q
2/q
M , we see that νj = 0 for every j ∈ J and the result follows.�

Proposition 2.1 combined with the asymptotic estimate (1.4) leads to the
following result.

Theorem 2.2. Suppose that Q(y) = QM for some y ∈ ∂Ω with H(y) > 0
and, moreover

(2.5) |Q(x)−Q(y)| = o(|x− y|)

for x ∈ ∂Ω near y. Then problem (1.1) has a least energy solution for every
λ > 0.

Proposition 2.3. We always have sλ,Q ≤ S1/Q
(N−2)/(N−1)
M for every λ > 0

and, moreover limλ→∞ sλ,Q = S1/Q
(N−2)/(N−1)
M .

The second assertion of this Proposition follows from the concentration-
compactness principle.

From Proposition 2.3 we derive a weak form of the inequality (1.5).

Lemma 2.4. For every δ > 0 small there exists a constant C(δ) > 0 such
that( ∫

∂Ω

Q(x)|u|q dSx

)2/q

≤
(

S1

Q
(N−2)/(N−1)
M

− δ

)−1 ∫
Ω

|∇u|2 dx+ C(δ)
∫

Ω

u2 dx.

3. Behaviour of solutions when λ → ∞

We commence by showing that for large λ > 0, least energy solutions of (1.1),
up to a translation and dilation, are close to the instanton W .
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Proposition 3.1. Suppose that for every λ > 0 the inequality (2.4) is sat-
isfied. Let {uλ}, λ > 0, be the corresponding least energy solutions of (1.1).
Then there exist sequences λk → ∞, εk → 0 and {yk} ⊂ ∂Ω, with yk → x0 and
QM = Q(x0) such that

(3.1) lim
k→∞

∫
Ω

∣∣∣∣∇[
uλk

( · )− ε
−(N−2)/2
k W

(
S1Q

−1/(N−1)
M

· − yk

εk

)]∣∣∣∣2 dx = 0.

Proof. We use some ideas from the papers [5] and [10]. Let

(3.2) sλ,Q =
∫

Ω

(|∇uλ|2 + λu2
λ) dx

and
∫

∂Ω
Q(x)|uλ|q dSx = 1 for every λ > 0. It is known (see [11]) that uλ are

continuous up to the boundary and we set

uλ(xλ) = max
x∈Ω̄

uλ(x), xλ ∈ ∂Ω.

It follows from (3.2) that limλ→∞
∫
Ω
u2

λ dx = 0. By Lemma 2.4 we have

S1

Q
(N−2)/(N−1)
M

− δ ≤ lim
λ→∞

∫
Ω

|∇uλ|2 dx ≤
S1

Q
(N−2)/(N−1)
M

.

Since δ > 0 is arbitrary we have limλ→∞
∫
Ω
|∇uλ|2 dx = S1/Q

(N−2)/(N−1)
M and

necessarily limλ→∞ λ
∫
Ω
u2

λ dx = 0. We set Mλ = uλ(xλ) and ελ = M
(2−N)/2
λ .

We now rescale solutions uλ by setting

vλ(x) = ε
(N−2)/2
λ uλ(ελx+ xλ) for Ωλ =

Ω− xλ

ελ
.

Thus, since 0 ≤ vλ(x) ≤ 1, we have

(3.3) λ

∫
Ω

u2
λ dx = λε2λ

∫
Ωλ

v2
λ dx ≥ λε2λ

∫
Ωλ

v2∗

λ dx ≥ C1λε
2
λ

for some C1 > 0 as
∫
Ωλ
v2∗

λ dx is bounded away from 0. Indeed, if
∫
Ωλ
v2∗

λ dx→ 0,
then also

∫
Ω
u2∗

λ dx→ 0. It then follows from [1] that for every δ > 0 there exists
a constant C(δ) > 0 such that( ∫

∂Ω

|uλ|q dSx

)2/q

≤ δ

∫
Ω

|∇uλ|2 dx+ C(δ)
( ∫

Ω

|uλ|2
∗
dx

)2/2∗

.

Letting λ →∞, since δ > 0 is arbitrary, we get that limλ→∞
∫

∂Ω
|uλ|q dSx = 0,

which is impossible. Therefore limλ→∞ ελ = 0. The rescaled solution vλ satisfies
−∆vλ + ε2λλvλ = 0 in Ωλ,

∂vλ

∂ν
= sλ,QQ(ελx+ xλ)vq−1

λ on ∂Ωλ,

0 ≤ vλ(x) ≤ 1 on Ωλ and vλ(0) = 1.
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By the Schauder estimates, there exists a sequence λk →∞ such that vλk
→ w

in C2
loc(RN

+ ). We may also assume that xλk
→ x0 ∈ ∂Ω. The limit function w is

a solution of the problem{ −∆w = 0 in Ω∞,
∂w

∂ν
= S̃Q(x0)wq−1 for 0 ≤ w ≤ 1, w(0) = 1,

where S̃ = S1/Q
(N−2)/(N−1)
M . Since Ω∞ is a half-space, we may assume that

Ω∞= RN
+ . By the uniqueness result from [15] we know that w(x)=W (S̃Q(x0)x).

We now observe that by the Fatou lemma we have

SN−1
1 (S̃Q(x0))2

(S̃Q(x0))N
=

∫
RN

+

|∇w(x)|2 dx ≤ lim
λk→∞

∫
Ωλk

|∇vλk
|2 dx

= lim
λk→∞

∫
Ω

|∇uλk
|2 dx =

S1

Q
(N−2)/(N−1)
M

.

From this we deduce that Q(x0) = QM and the result follows. �

4. Estimates of the energy of Wε,y

We let

Jλ(u) =

∫
Ω
(|∇u|2 + λu2) dx

(
∫

∂Ω
|u|q dSx)2/q

for u ∈ H1(Ω). First we consider the case where the boundary ∂Ω has a flat
part. We let D(0, δ) = B(0, δ) ∩ (xN = 0), where B(0, δ) is the open ball in RN

centered at 0 and of the radius δ.

Lemma 4.1. Suppose that D(0, δ) ⊂ ∂Ω for some δ > 0 and let y ∈ D(0, δ).
Then there exist constants C1 > 0 and ε0 > 0 such that

(4.1) Jλ(Wε,y) ≥ S1 + λC1ε
2

for λ > 0 and 0 < ε ≤ ε0.

Proof. For simplicity we assume that y = 0 and set Wε,0 = Wε. We have∫
Ω

|∇Wε|2 dx =
∫

Ω∩B(0,δ)

|∇Wε|2 dx+
∫

Ω−B(0,δ)

|∇Wε|2 dx

=
∫

RN
+

|∇Wε|2 dx−
∫

RN
+−(Ω∩B(0,δ))

|∇Wε|2 dx+O(εN−2)

=K1 +O(εN−2),
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whereK1 =
∫

RN
+
|∇W (x)|2 dx. We now estimate the surface integral

∫
∂Ω
W q

ε dSx.
We have∫

∂Ω

W q
ε dSx =

∫
D(0,δ)

W q
ε dSx +

∫
∂Ω−D(0,δ)

W q
ε dSx

=
∫

RN−1
Wε(x′, 0)q dx′ −

∫
|x′|>δ

Wε(x′, 0)q dx′ +O(εN−1)

=K2 +O(εN−1),

where K2 =
∫

RN−1 W (x′, 0)q dx′. Since S1 = K1/(K2)(N−2)/(N−1), the result
follows. �

We now establish an analogue of (4.1) in the case where y ∈ ∂Ω has a negative
curvature.

Lemma 4.2. If H(y) < 0 for some y ∈ ∂Ω, then there exist constants α > 0,
ε0 > 0 and C > 0 such that, for 0 < ε ≤ ε0,

Jλ(Wε,y) ≥ S1 − αH(y)ε+ λCε2 +O(ε2).

Proof. We follow some ideas from the paper [20]. Without loss of generality
we may assume that y = 0 and that near 0 the boundary is represented, changing
the coordinates if needed, by

xN = h(x′) =
1
2

N−1∑
i=1

αix
2
i +O(|x′|3)

for x′ ∈ D(0, a) for some a > 0, where D(0, a) = B(0, a) ∩ ∂Ω and ai, i =
1, . . . , N − 1, are principal curvatures of ∂Ω at 0. Then the mean curvature at 0
is given by H(0) = (1/(N − 1))

∑N−1
i=1 αi. Let g(x′) = (1/2)

∑N−1
i=1 αix

2
i . Then∫

Ω

|∇Wε|2 dx =
∫

RN
+

|∇Wε|2 dx−
∫

D(0,a)∩g(x′)>0

dx′
∫ g(x′)

0

|∇Wε|2 dxN

+
∫

D(0,a)∩g(x′)<0

dx′
∫ 0

g(x′)

|∇Wε|2 dxN

+
∫

D(0,a)

dx′
∫ h(x′)

g(x′)

|∇Wε|2 dxN +O(εN−2).

We now estimate the last integral on the right side of this relation. We can
assume that O(|y′|3) is nonnegative and we obtain∫

D(0,a)

dx′
∫ h(x′)

g(x′)

|∇Wε|2 dxN

≤C(N)
∫

D(0,a/ε)

dy′
∫ εg(y′)+ε2O(|y′|3)

εg(y′)

dyN

(|y′|2 + (yN + (N − 2))2)N−1
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≤C(N)
∫

RN−1
dy′

∫ εg(y′)+ε2O(|y′|3)

εg(y′)

dyN

(|y′|2 + (yN + (N − 2))2)N−1

=C(N)
∫
|y′|≤ρ

dy′
∫ εg(y′)+ε20(|y′|3)

εg(y′)

dyN

(|y′|2 + (yN + (N − 2))2)N−1

+ C(N)
∫
|y′|≥ρ

dy′
∫ εg(y′)+ε2O(|y′|3)

εg(y′)

dyN

(|y′|2 + (yN + (N − 2))2)N−1

= J1 + J2.

To estimate J1 we choose ρ > 0 so that

−N − 2
2

≤ εg(y′) + ε2O(|y′|3), εg(y′) ≤ N − 2
2

for every 0 < ε ≤ 1 and |y| ≤ ρ. Thus

(4.2) J1 ≤ Cε2

for 0 < ε ≤ 1. Let ρ > 0 be chosen so that (4.2) holds. Then

(4.3) |J2| ≤ cN

∫
|y′|≥ρ

dy′
∫ εg(y′)+ε2O(|y′|3)

εg(y′)

dyN

|y′|2(N−1)
= Cε2.

We set

I−(ε) =
∫

D(0,a)∩g(x′)<0

dx′
∫ 0

g(x′)

|∇Wε|2 dxN

and

I+(ε) =
∫

D(0,a)∩g(x′)>0

dx′
∫ g(x′)

0

|∇Wε|2 dxN .

We now observe that

lim
ε→0

ε−1(I−(ε)− I+(ε))

= −
∫

RN−1∩g(x′)<0

g(x′)|∇W (x′, 0)|2 dx′ −
∫

RN−1∩g(x′)>0

g(x′)|∇W (x′, 0)|2 dx′

= −
∫

RN−1
g(x′)|∇W (x′, 0)|2 dx′ = −αNH(0)

for some constant αN > 0. Therefore we can write

(4.4)
∫

Ω

|∇Wε|2 dx ≥ K1 − C1H(0)ε+O(ε2)
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for 0 < ε ≤ ε∗. We now estimate the surface integral

(4.5)
∫

∂Ω

W q
ε dSx =

∫
∂Ω∩B(0,a)

W q
ε dSx +O(εN−1)

=
∫

D(0,a)

Wε(x′, h(x′))q
√

1 + |∇h(x′)|2 dx′ +O(εN−1)

=
∫

RN−1
Wε(x′, 0)q dx′ −

∫
D(0,a)

Wε(x′, 0)q dx′

+
∫

D(0,a)

Wε(x′, h(x′))q
√

1 + |∇h(x′)|2 dx′ +O(εN−1)

≤K2 −
∫

D(0,a)

Wε(x′, 0)q dx′

+
∫

D(0,a)

W (x′, h(x′))q(1 + |∇h(x′)|2) dx′ +O(εN−1)

≤K2 +
∫

D(0,a)

W (x′, h(x′))q|∇h(x′)|2 dx′ = K2 +O(ε2).

Combining (4.4) and (4.5) the result follows. �

5. Existence results and sharp Sobolev inequalities

By rescaling we may assume that QM = 1. We define the following set

M = {CWε,y : C ∈ R, y ∈ ∂Ω, ε > 0}

and set for a function φ ∈ H1(Ω)

d(φ,M) = inf{‖∇φ−∇ψ‖22 : ψ ∈M}.

Lemma 5.1. Let δ > 0 and {zm} ⊂ H1(Ω) be such that zm ⇀ 0 in H1(Ω)
and d(zm,M)2 ≤ ‖∇zm‖2−2δ. Then there exists m0 ≥ 1 such that for m ≥ m0,
d(zm,M) is achieved by some function CmWεm,ym

∈ M. Moreover, if wm is
defined by

zm = CmWεm,ym + wm

then up to a subsequence

(a) limm→∞ εm = 0,
(b) if limm→∞ d(zm,M) = 0, then limm→∞ Cm = C0 6= 0,
(c) we also have ∫

∂Ω

wmW
q−1
ε,ym

dSx = β(εm)‖wm‖.
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For the proof we refer to the paper [5] (see also [28]). Also, using the Sobolev
embedding theorem one can verify that for N ≥ 7 we have (see a similar formula
(2.32) in [5])

(5.1)
∫

Ω

Wε,ymwm dx = O(ε2‖wm‖).

Let um = uλm be a sequence of solutions from Proposition 3.1. Since we assume
that QM = 1, after rescaling vm = S

1/(q−2)
λm,Q um, we can rewrite the assertion of

Proposition 3.1 in the form∫
Ω

|∇(vm −Wεm,ym
)|2 dx→ 0

as m → ∞. It now follows from Lemma 5.1 that there exist sequences {δm} ⊂
(0,∞) and {ym} ⊂ ∂Ω, with δ → 0, such that

(5.2) vm = CmWδm,ym
+ wm.

As in Lemma 2.2 in [28] we check that Cm → 1 and εm/δm → 1. Therefore we
may assume that (5.2) holds with δm = εm and ym = xm. Lemma 5.2 below can
be proved in the same way as Lemma 7.3 in [5] (see also Lemma 2.3 in [28]).

Lemma 5.2. There exists a constant α > 0 such that∫
Ω

(|∇wm|2+λmw
2
m) dx ≥ (q−1+α)

∫
∂Ω

Q(x)W q−2
εm,ym

w2
m dx+O(β(εm)2‖wm‖2).

We are now in a position to establish our main result. We set

Jλ,Q(u) =

∫
Ω
(|∇u|2 + λu2) dx

(
∫

∂Ω
|u|q dSx)2/q

for u ∈ H1(Ω)− {0}.

Theorem 5.3. Let N ≥ 7.

(a) Suppose that D(0, a) ⊂ ∂Ω for some a > 0 and that {x; Q(x) = QM} ⊂
D(0, a) and

(5.3) |Q(x)−Q(y)| = o(|x− y|2)

for some y ∈ ∂Ω with Q(y) = QM and x near y. Then there exists
a Λ1 > 0 such that problem (1.1) admits a least energy solution for
every λ ∈ (0,Λ1) and no least energy solution for λ > Λ1.

(b) Suppose that H(y) < 0 for some y ∈ ∂Ω and that {x : Q(x) = QM} ⊂
{y : H(y) < 0}. Moreover, we assume that

(5.4) |Q(x)−Q(y)| = o(|x− y|)
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for some y ∈ {x : Q(x) = QM} and x near y. Then there existsa
Λ2 > 0 such that problem (1.1) admits a least energy solution for every
λ ∈ (0,Λ2) and no least energy solution for λ > Λ2.

Proof. (a) Arguing by contradiction, assume that problem (1.1) has a least
energy solution uλ for every λ > 0. Then for a sequence λm → ∞, we have
decomposition (5.2). Then

Jλm,Q(vm) =
1

(
∫

∂Ω
Q|vm|q dSx)2/q

·
{
C2

m

( ∫
Ω

|∇Wεm,ym |2 dx+ λm

∫
Ω

W 2
εm,ym

dx

)
+ ‖∇wm‖22 + λm‖wm‖22 + 2λmCm

∫
Ω

Wεm,ym
wm dx

}
and using (c) of Lemma 5.1 we obtain( ∫

∂Ω

Q|vm|q dSx

)−2/q

= C2
m

( ∫
∂Ω

QW q
εm,ym

dSx

)−2/q

·
[
1 +

q(q − 1)
∫

∂Ω
QW q−2

εm,ym
w2

m dSx

2C2
m

∫
∂Ω
QW q

εm,ym dSx
+O(β(εm)‖wm‖) + ‖wm‖r

]−2/q

=C−2
m

( ∫
∂Ω

QW q
εm,ym

dSx

)−2/q

·
{

1− (q − 1)
C2

m

∫
∂Ω
QW q−2

εm,ym
w2

m dSx∫
∂Ω
QW q

εm,ym dSx
+O(β(εm)‖wm‖) + ‖wm‖r

}
for some 2 < r < q. Combining the last two relations we get

Jλm,Q(vm)

=
{
Jλm,Q(Wεm,ym

) +
‖∇wm‖22 + λm‖wm‖22 + 2Cmλm

∫
Ω
Wεm,ym

wm dx

C2
m(

∫
∂Ω
QW q

εm,ym dSx)2/q

}
×

{
1−

(q − 1)
∫

∂Ω
QW q−2

εm,ym
w2

m dSx

C2
m

∫
∂Ω
QW q

εm,ym dSx
+O(β(εm)‖wm‖+ ‖wm‖r)

}
.

Using (5.1) we derive from this

Jλm,Q(vm) =Jλm,Q(Wεm,ym
)

− (q − 1)
C2

m

∫
∂Ω
QW q−2

εm,ym
w2

m dSx∫
∂Ω
QW q

εm,ym dSx
Jλm,Q(Wεm,ym

)

+
‖∇wm‖22 + λm‖wm‖22 +O(λmε

2
m‖wm‖)

C2
m(

∫
∂Ω
QW q

εm,ym dSx)2/q

+O(‖wm‖2 + β(εm)‖wm‖+ ‖wm‖r)

× (‖∇wm‖22 + λm‖wm‖22 +O(λmεm‖wm‖))
+O(β(εm)‖wm‖+ ‖wm‖r).
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According to Lemma 5.2 we can find 0 < ρ < 1 and δ > 0 such that

(1−ρ)
∫

Ω

(|∇wm|2+λmw
2
m) dx ≥ (q−1+δ)

∫
∂Ω

QW q−2
εm,ym

w2
m dSx+O(ε2m‖wm‖2).

Thus,

(1− ρ)
∫
Ω
(|∇wm|2 + λmw

2
m) dx

C2
m(

∫
∂Ω
QW q

εm,ym dSx)2/q
− q − 1

C2
m

Jλm,Q(Wεm,ym
)

∫
∂Ω
QW q−2

εm,ym
w2

m dSx∫
∂Ω
QW q

εm,ym dSx

≥
∫

∂Ω

QW q−2
εm,ym

w2
m dSx

[
q − 1 + δ

C2
m(

∫
∂Ω
QW q

εm,ym dSx)2/q
− (q − 1)Jλm,Q(Wεm,ym)

C2
m

∫
∂Ω
QW q

εm,ym dSx

]
+O(ε2m‖wm‖2) = Dm +O(ε2m‖wm‖2),

where Dm ≥ 0 for large m (see also [28, p. 41–42]). Assuming that (5.3) holds
and using Lemma 4.1 we see that

Jλm,Q(vm) ≥ S1 + λmC1ε
2
m +Dm +

ρ
∫
Ω
(|∇wm|2 + λmw

2
m) dx

C2
m(

∫
∂Ω
QW q

εm,ym dSx)2/q
+O(εm‖wm‖).

Applying the Hölder inequality and taking m sufficiently large we derive from
this that

Jλm,Q(vm) ≥ S1

which is impossible. The proof of part (b) is the same. �

Remark 5.4. Theorem 5.3 remains true for N = 5 and 6. In this case
one can use the following modification of Lemma 5.10 in [23]. For every q ∈
(N/(N − 2), 2)∩ (2N/(N + 2), 2) there exist constants C(q) > 0 and a = a(q) ∈
[0, 1) with

a(q) =
Nq − 2N + 2q

2q
,

such that for every γ > 1∣∣∣∣ ∫
Ω

Wε,yw dx

∣∣∣∣ ≤ (
1− a

2

)
C(q)γ2/(2−a)ε2‖w‖2(1−a)/(2−a)

2∗ +
a

2
1

γ2/a
‖w‖22

for every w ∈ H1(Ω). Here 2/a = ∞ if a = 0. This inequality replaces (5.1).

Remark 5.5. Theorem 1.2 yields that in both cases

sλ,Q =
S1

Q
(N−2)/(N−1)
M

for λ ≥ Λ1 (or λ ≥ Λ2). This gives the rise to the sharp Sobolev inequality:

• under assumptions (a) or (b) of Theorem 5.3 there exists a constant
C > 0 such that, for every u ∈ H1(Ω),( ∫

∂Ω

Q(x)|u|q dSx

)2/q

≤
Q

(N−2)/(N−1)
M

S1

∫
Ω

|∇u|2 dx+ C

∫
Ω

u2 dx.
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6. Application of the topological linking

We now consider problem (1.1) with parameter interfering with the spectrum
of −∆. It is convenient to rewrite problem (1.1) as

(6.1)

{ −∆u− λu = 0 in Ω,
∂u

∂ν
= Q(x)|u|q−2u in ∂Ω,

where λ > 0. By {λk} we denote the sequence of eigenvalues for −∆ with the
Neumann boundary conditions{ −∆u = µu in Ω,

∂u

∂ν
= 0 on ∂Ω.

It is known that 0 = λ1 < λ2 ≤ . . . and the eigenfunctions corresponding to λ1

are constant functions. We assume that

(6.2) λk−1 ≤ λ < λk for some k.

Let Iλ be a variational functional for (6.1) given by

Iλ(u) =
1
2

∫
Ω

(|∇u|2 − λu2) dx− 1
q

∫
∂Ω

Q(x)|u|q dSx.

Lemma 6.1. Let {un} ⊂ H1(Ω) be a sequence satisfying

(6.3) Iλ(un) → c <
SN−1

1

2(N − 1)QN−2
M

and

(6.4) I ′λ(un) → 0 in H−1(Ω).

Then {un} is relatively compact in H1(Ω).

Proof. We commence by showing that {un} is bounded in H1(Ω). The
relations (6.3) and (6.4) imply that

(6.5)
∫

∂Ω

Q(x)|un|q dSx,

∣∣∣∣ ∫
Ω

(|∇un|2 − λu2
n) dx

∣∣∣∣ ≤ C + o(‖un‖)

for some constant C > 0 and every n. Arguing by contradiction assume that
‖un‖ → ∞. We set vn = un/‖un‖. We may assume that vn ⇀ v in H1(Ω).
Thus for every φ ∈ H1(Ω) we have

(6.6)
∫

Ω

(∇vn∇φ− λvnφ) dx = ‖un‖−1

∫
∂Ω

Q|un|q−2unφdSx.

Since∣∣∣∣ ∫
∂Ω

Q|un|q−2unφdSx

∣∣∣∣ ≤ QM

( ∫
∂Ω

|un|q dSx

)(q−1)/q( ∫
∂Ω

|φ|q dSx

)1/q

,
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letting n→∞, we derive from (6.5) and (6.6) that∫
Ω

(∇v∇φ− λvφ) dx = 0

for every φ ∈ H1(Ω). Since λ is not an eigenvalue we see that v ≡ 0 on Ω.
Furthermore, we may assume that vn → 0 in L2(Ω). This allows us to deduce
from (6.3) and (6.4) that

1
2

∫
Ω

|∇vn|2 dx =
‖un‖q−2

q

∫
∂Ω

Q|vn|q dSx + o(1)

and ∫
Ω

|∇vn|2 dx = ‖un‖q−2

∫
∂Ω

Q|vn|q dSx + o(1).

These two relations imply that ∇vn → 0 in L2(Ω), which is impossible. Conse-
quently {un} is bounded in H1(Ω) and we may assume that un ⇀ u in H1(Ω).
By the concentration-compactness principle we have

|∇un|2
∗
⇀dν ≥ |∇u|2 +

∑
j∈J

µjδxj

and
|un|q

∗
⇀|u|q +

∑
j∈J

νjδxj

in the space of measures for some positive constants µj and νj with xj ∈ ∂Ω.
Let xj be fixed. Testing (6.4) by family of C1-functions concentrating at xj we
get

µj = Q(xj)νj .

We always have the inequality S1ν
2/q
j ≤ µj . If νj > 0 for some j ∈ J , then

SN−1
1

Q(xj)N−1
≤ νj .

On the other hand we have

Iλ(un)− 1
2
〈I ′λ(un), un〉 =

(
1
2
− 1
q

) ∫
∂Ω

Q|un|q dSx.

Letting n→∞ we obtain

c =
1

2(N − 1)

∫
∂Ω

Q|u|q dSx +
1

2(N − 1)

∑
j∈J

Q(xj)νj

≥ SN−1
1 Q(xj)

2(N − 1)Q(xj)N−1
≥ SN−1

1

2(N − 1)QN−2
M

and we have arrived at a contradiction. Hence νj = 0 for every j ∈ J . This
yields un → u in Lq(∂Ω). By the Sobolev embedding theorems we also have
that un → u in L2(Ω). Combining these two facts with (6.4), we see that {un}
is relatively compact in H1(Ω). �
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We now establish the existence result using the min-max principle based on a
topological linking [27]. Let E− = span {e1, . . . , el}, where e1, . . . , el are eigen-
functions corresponding to eigenvalues λ1, . . . , λk−1. We have the orthogonal
decomposition H1(Ω) = E− ⊕ E+. Let w ∈ E+ − {0} and define a set

M = {u ∈ H1(Ω) : u = v + sw, v ∈ E−, s ≥ 0, ‖u‖ ≤ R}.

Lemma 6.2. There exist constants α > 0, ρ > 0 and R > ρ (depending
on w) such that

Iλ(u) ≥ α for all u ∈ E+ ∩ ∂B(0, ρ)

and
Iλ(u) ≤ 0 for all u ∈ ∂M.

The proof is standard and is omitted.
We now define

Zε = E− ⊕ RWε,y = E− ⊕ RW+
ε,y,

where W+
ε,y denotes the projection of Wε,y onto E+. From now on we use W+

ε,y

in the definition of M .

Theorem 6.3. Suppose that the parameter λ satisfies (6.2) and that Q
achieves its maximum at y ∈ ∂Ω with H(y) > 0 and moreover,

|Q(y)−Q(x)| = o(|x− y|)

for x near y. If λk−1 < λ < λk, then problem (6.1) has a solution for N ≥ 3
and if λ = λk−1 a solution exits for N ≥ 5.

Proof. First we observe that

max
0≤t<∞

Iλ(tu) =
(
∫
Ω
(|∇u|2 − λu2) dx)N−1

2(N − 1)(
∫

∂Ω
Q|u|q dSx)N−2

for u ∈ H1(Ω) with u 6= 0 on ∂Ω. Therefore if

(6.7) mε = sup
u∈ZεR

∂Ω Q|u|q dSx=1

∫
Ω

(|∇u|2 − λu2) dx <
S1

Q
(N−2)/(N−1)
M

,

then

sup
u∈M

Iλ(u) <
SN−1

1

2(N − 1)QN−2
M

.

Hence it is sufficient to show that (6.7) holds. In what follows, we assume for
simplicity that y = 0 and let Wε = Wε,0. Since∫

Ω

(|∇W−
ε |2 − λ(W−

ε )2) dx ≤ 0,
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we see that ∫
Ω

|∇W−
ε |2 dx ≤ λ

∫
Ω

(W−
ε )2 dx ≤ λ

∫
Ω

W 2
ε dx→ 0

as ε→ 0. Therefore∫
∂Ω

(W−
ε )q dSx ≤ C

( ∫
Ω

(|∇W−
ε |2 + (W−

ε )2) dx
)q/2

→ 0

as ε → 0. Suppose that
∫

∂Ω
Q|u|q dSx = 1. We write u = u− + sWε = (u− +

sW−
ε ) + sW+

ε . It follows from the above argument that ‖u−‖q,∂Ω ≤ C3 and
0 < s ≤ C3 for some constant C3 > 0. We now deduce from the convexity of∫

∂Ω
Q|u|q dSx that

1 =
∫

∂Ω

Q|u|q dSx ≥‖sWε‖q
∂Ω,Q,q + q

∫
∂Ω

Qu−(sWε)q−1 dSx

≥‖sWε‖q
∂Ω,Q,q − C4‖Wε‖q−1

q−1,∂Ω‖u
−‖q,∂Ω.

Since ‖Wε‖q−1
q−1,∂Ω = O(ε(N−2)/2), we deduce from the above inequality that

(6.8) ‖sWε‖q
∂Ω,Q,q ≤ 1 + C4ε

(N−2)/2

for some constant C4 > 0. Since all norms on E− are equivalent we get the
following estimate

(6.9)
∫

Ω

(∇Wε∇u− − λWεu
−) dx

≤ (‖∇Wε‖1 + λ‖Wε‖1)‖u−‖2 = O(ε(N−2)/2)‖u−‖2.

We now estimate the surface integral. It follows from the assumption Q that

(6.10)
∫

∂Ω

Q(x)Wε(x)q dSx = QM

∫
∂Ω

W q
ε dSx + o(ε).

Using (6.9) we can write∫
Ω

(|∇u|2 − λu2) dx ≤ (λk−1 − λ)
∫

Ω

(u−)2 dx+O(ε(N−2)/2)‖u−‖2

+ s2
∫

Ω

(|∇Wε|2 − λW 2
ε ) dx

= − (λ− λk−1)‖u−‖22 +O(ε(N−2)/2)‖u−‖2

+

∫
Ω
(|∇Wε|2 − λW 2

ε ) dx
(
∫

∂Ω
Q(x)W q

ε dSx)2/q

(
sq

∫
∂Ω

Q(x)W q
ε dSx

)2/q

.

Since
∫
Ω
W 2

ε dx = O(ε2), we deduce from (1.4), (6.8) and (6.10) that mε <

S1/Q
(N−2)/(N−1)
M for ε > 0 sufficiently small and this completes the proof. �
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