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MATTER AND ELECTROMAGNETIC FIELDS:
REMARKS ON THE DUALISTIC

AND UNITARIAN STANDPOINTS

Vieri Benci — Donato Fortunato

Abstract. The study of the relation of matter and the electromagnetic

field is a classical, intriguing problem both from physical and mathematical

point of view. This relation can be interpreted from two different stand-
points which, following [5], are called unitarian standpoint and dualistic

standpoint.

In this paper we briefly describe two models which are related to the
unitarian and the dualistic standpoint respectively. For each model it is

possible to prove the existence of solitary waves which can be interpreted

as matter particles.

1. Electromagnetic fields and matter

First we recall some basic facts on Maxwell equations. The Maxwell equa-
tions for an electromagnetic field E = E(t, x), H = H(t, x) (t ∈ R, x ∈ R3 are
the time and space variables, respectively) are

∇×H− ∂E
∂t

= J,(1.1)

∇ ·E = ρ,(1.2)
∂H
∂t

+∇×E = 0,(1.3)

∇ ·H = 0.(1.4)
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ρ = ρ(t, x) and J = J(t, x) are, respectively, a scalar and a vector valued function
which represent the charge and the current density of an external source.

In the empty space

ρ = 0, J = 0.

The first three equations (1.1)–(1.3) are respectively the Ampère, Gauss and
Faraday laws.

Observe that from (1.1) we get

∂∇ ·E
∂t

+∇ · J = 0

then, using (1.2), we get that ρ and J are related by the continuity equation

∂ρ

∂t
+∇ · J = 0.

Now let A, ϕ be the gauge potentials related to E and H by

(1.5) H = ∇×A E = −∂A
∂t

−∇ϕ.

The first two Maxwell equations (1.1) and (1.2) can be written as follows

∂

∂t

(
∂A
∂t

+∇ϕ
)

+∇× (∇×A) = J,(1.6)

∇ ·
(
∂A
∂t

+∇ϕ
)

= −ρ.(1.7)

And the other two equations (1.3) and (1.4) are obviously satisfied.
Let χ = χ(t, x) be a scalar function, then it is easily verified that the elec-

tromagnetic field E, H and equations (1.6), (1.7) do not change under the gauge
transformation

A → A +∇χ, ϕ→ ϕ− ∂χ

∂t
.

The equations (1.6), (1.7) have a variational structure, namely they are the Euler
equations of the functional

(1.8) Sm(ϕ,A) =
∫
Lm dx dt

where Lm is the Lagrangian

Lm =
1
2

(∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 − |∇ ×A|2

)
+ (J|A)− ρ · ϕ(1.9)

=
1
2
(|E|2 − |H|2) + (J|A)− ρ · ϕ.
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The energy of the electromagnetic field is given by (see [8])

(1.10) E =
∫ (

∂Lm

∂(∂A/∂t)
· ∂A
∂t

− Lm

)
dx

=
∫ ((

∂A
∂t

+∇ϕ
∣∣∣∣∂A∂t

)
− 1

2

∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 +

1
2
|∇ ×A|2

)
dx

+
∫

(−(J|A) + ρϕ) dx.

The problem of energy divergence. Now consider the electrostatic case,
i.e. assume A = 0, J = 0, ϕ = ϕ(x). Then

(1.11) E =
∫ (

− 1
2
|∇ϕ|2 + ρϕ

)
dx.

We can give a simpler expression to E exploiting the fact that ϕ solves the
equation (see (1.7))

−∆ϕ = ρ.

Infact, multiplying both sides of the above equation by ϕ and integrating, we
have

(1.12)
∫
|∇ϕ|2 dx =

∫
ρϕ dx.

Inserting (1.12) in (1.11) we get

E =
1
2

∫
|∇ϕ|2 dx =

1
2

∫
|E|2 dx

which is the usual expression for the electrostatic energy.
Now suppose that we want to model matter particles as dimensionless points.

In this model, the density ρ of a particle located at 0 is the Dirac measure. Then
ϕ = 1/|x| and the energy E diverges. As a consequence, the inertial mass of
the particle diverges. The difficulties presented by this problem touch one of
the most fundamental aspects of physics, the nature of an elementary particle.
Although partial solutions, workable within limited areas can be given, the basic
problems remain unsolved ([9, Section 17.1, p. 579], see also [10], [12]).

The divergence of the energy could be avoided if particles are supposed to
have a space extension, namely, if matter is modelled as a field. Particles are
usually stable; then they need to be described by solutions of field equations
whose energy travels as a localized packet and which preserve this localization
property under perturbations. These kind of solutions are usually called solitary
waves (or solitons).

In order to build a field equation which presents the existence of solitary
waves, there are two possible choices:

• (Dualistic standpoint) The matter is described as a field ψ which is the
source of the electromagnetic field (E,H) and it is itself influenced by
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(E,H). However it is not part of the electromagnetic field. In Section 2
we consider the case in which ψ is a complex field related to the nonlinear
Klein–Gordon equation. In this case we get an Abelian gauge theory
(cf. e.g. Section 1.4 in [14]).

• (Unitarian standpoint) There is only one physical entity, the electro-
magnetic field: the matter and the electromagnetic field have the same
nature and the particles are solitary waves of the field. In Section 3 we
present a unitarian field theory based on a nonlinear perturbation of the
usual Maxwell equations in the spirit of the ideas of Born and Infeld [5].

The models we introduce in the next two sections are based only on two very
general principles:

(IP) the Invariance with respect to the Poincaré group,
(NL) the presence of NonLinear terms which make the existence of solitary

waves possible.

Here, the principles of Quantum Mechanics are not involved. Our analysis
is purely mathematical and it aims to understand the consequences of (IP) and
(NL). Thus, the function ψ does not need to be interpreted as the Ψ-function of
quantum mechanics, even if the relation with quantum mechanics comes as an
interesting and intriguing problem.

2. A model for the dualistic standpoint

In this section, following [2], we analyse a model for the dualistic standpoint.
The linear second order equation for a scalar field which satisfies (IP) (see [3])
is the Klein–Gordon equation

�ψ + Ω2ψ = 0, � =
∂2

∂t2
−∆

where ψ = ψ(t, x) is a complex function.
The simplest nonlinear term which can be added to the Klein–Gordon equa-

tion is a homogeneous term |ψ|p−2ψ. Then we get:

(2.1) �ψ + Ω2ψ − |ψ|p−2ψ = 0.

It is well known that, when p ∈ (2, 6) and |ω| < |Ω|, the above equation
admits standing wave solutions of frequency ω (see [11], [4]), namely solutions
of the type

ψ(t, x) = u(x)e−iωt, where u, ω real.

The Lagrangian for (2.1) is

(2.2) L0 =
1
2

[∣∣∣∣∂ψ∂t
∣∣∣∣2 − |∇ψ|2 − Ω2|ψ|2

]
+

1
p
|ψ|p.



Matter and Electromagnetic Fields 27

Now we want to couple the complex field ψ with an electromagnetic field
represented by the gauge potentials (A, ϕ). This interaction is described by
replacing the derivatives ∂/∂t, ∂/∂xj (j = 1, 2, 3) with respect to the time and
space variables by the so called (Weyl) covariant derivatives

Dt =
∂

∂t
+ iqϕ, Dj =

∂

∂xj
− iqAj

where Aj (j = 1, 2, 3) are the component of A, i is the imaginary unit and q is
a coupling constant. Also we will use the notation

D = ∇− iqA.

Then the Lagrangian (2.2) becomes

L1 =
1
2
(|Dtψ|2 − |Dψ|2 − Ω2|ψ|2) +

1
p
|ψ|p(2.3)

=
1
2

(∣∣∣∣∂ψ∂t + iqϕψ

∣∣∣∣2 − |∇ψ − iqAψ|2 − Ω2|ψ|2
)

+
1
p
|ψ|p.

Now we set
ψ(t, x) = u(t, x) eiS(t,x), for u, S ∈ R.

Then (2.3) becomes

(2.4) L1 =
1
2
[u2

t − |∇u|2] +
1
2
[|∇S − qA|2 − (St + qϕ)2 + Ω2]u2 +

1
p
|u|p

and the new action functional is

A1 = A1(u, S,A, ϕ) =
∫∫

L1 dx dt.

Now by (2.4) it is clear that L1 is invariant under the combined gauge transfor-
mation

(2.5) A → A +∇χ, ϕ→ ϕ− ∂χ

∂t
, S → S + qχ

where χ = χ(x, t) is any smooth real map on the space-time.
Now observe that the use of the Weyl covariant derivatives (i.e. the interac-

tion with an electromagnetic field) permits to get a “better” invariance of the
new lagrangian L1. In fact in the original lagrangian L0 (2.2) we are allowed
to change the phase only by a constant θ (ψ → eiθψ). The new lagrangian
L1 presents a stronger invariance property since we are allowed to change the
phase S (see (2.5)) by a function qχ(t, x) (ψ → eiqχ(t,x)ψ) of the point (t, x) in
the space-time.

If the electromagnetic field is given, then we know (up to a gauge) the po-
tentials A, ϕ and the only unknowns of our problem are u and S (i.e. ψ). The
equations for u, S

δA1,u,S = 0
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can be obtained by taking the variations of A1 with respect to u, S. These
equations are

�u+ [|∇S − qA|2 − (St + qϕ)2 + Ω2]u− |u|p−2u = 0,(2.6)
∂

∂t
[(St + qϕ)u2]−∇ · [(∇S − qA)u2] = 0.(2.7)

The first equation (2.6) describes the dynamics of the field

ψ(t, x) = u(t, x)eiS(t,x).

The second equation is a continuity equation for the charge and current densities
ρ and J

ρ = q(St + qϕ)u2 = q Im (ψDtψ),(2.8)

J = −q(∇S − qA)u2 = −q Im (ψDψ).(2.9)

Observe that ρ and J depend not only on the field ψ but also on the gauge
potentials A, ϕ.

Now assume that A, ϕ are not given but they are also unknowns of the prob-
lem. We obtain other two equations by coupling (2.6), (2.7) with the Maxwell
equations.

To do this we cosider the lagrangian of the electromagnetic field E, H

L2 =
1
2
(|E|2 − |H|2) =

1
2
|At +∇ϕ|2 − 1

2
|∇ ×A|2.

Then the total action is

A =
∫∫

L1 + L2.

The variations of A with respect to ϕ and A give

∇ · (At +∇ϕ) = q(St + qϕ)u2,(2.10)

∇× (∇×A) +
∂

∂t
(At +∇ϕ) = q(∇S − qA)u2.(2.11)

These two equations are just the Maxwell equations in presence of a source ρ, J
given by (2.8) and (2.9).

Concluding we get a system of 4 equations (2.6), (2.7), (2.10), (2.11) whose
unknown are u, S, A, ϕ.

2.1. Existence of standing waves. Now we consider the electrostatic case,
namely we look for solutions of (2.6)–(2.11) of the following type

u = u(x), S = ωt, A = 0, ϕ = ϕ(x).
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These solutions consist of a standing wave ψ(t, x) = u(x)e−iωt which interacts
with an electrostatic field described by ϕ(x). With this ansatz, (2.7), (2.11) are
satisfied and (2.6), (2.10) become (in the sequel we take for simplicity q = 1)

−∆u+ [Ω2 − (ω + ϕ)2]u− |u|p−2u = 0,(2.12)

∆ϕ = (ω + ϕ)u2.(2.13)

The following theorem can be proved [2]:

Theorem 2.1. Assume that 4 < p < 6 and |ω| < |Ω|. Then there exist
infinitely many solutions (u, ϕ) of (2.12)–(2.13) such that

u ∈ H1(R3),
∫

R3
|∇ϕ|2 dx <∞.

In [7] existence results for (2.12)–(2.13) have been obtained for 2 < p < 6.
In [6] the critical case p = 6 has been examined.

In the following we shall indicate the main steps of the proof of Theorem 2.1
Step 1. Let D denote the completion of C∞

0 with respect to the norm

‖ϕ‖ =

√∫
|∇ϕ|2 dx.

We look for critical points (u, ϕ) ∈ H1(R3)×D of

F (u, ϕ) =
1
2

∫
[|∇u|2 − |∇ϕ|2] dx+

1
2

∫
[Ω2 − (ω + ϕ)2]u2 − 1

p

∫
|u|p dx.

Observe that F is strongly indefinite, i.e. it is unbounded both from below
and from above on infinite dimensional subspaces. Moreover, it is not even to
avoid these difficulties we perform a reduction method.

Consider the partial derivatives F ′
ϕ(u, ϕ) and F ′

u(u, ϕ) of F in (u, ϕ), de-
fined by

〈F ′
ϕ(u, ϕ), ζ〉 =

〈
F ′(u, ϕ),

[
0
ζ

]〉
, ζ ∈ D,

〈F ′
u(u, ϕ), ξ〉 =

〈
F ′(u, ϕ),

[
ξ

0

]〉
, ξ ∈ H1(R3).

Now we fix u ∈ H1(R3) and take the partial derivative F ′
ϕ of F (u, ϕ) with

respect to ϕ. It can be shown that there exists only one ϕ ∈ D such that

(2.14) F ′
ϕ(u, ϕ) = 0.

More explicitly such ϕ solves the equation

(2.15) ∆ϕ = (ω + ϕ)u2.
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Consider the map Φ:H1(R3) → D such that Φ(u) = ϕ solves (2.15). Now
consider the functional

J(u) = F (u,Φ(u)), u ∈ H1(R3).

Let u be a critical point of J . We shall show that (u,Φ(u)) is a critical point
of F . In fact for all ζ ∈ H1(R3), using (2.14), we get

0 = 〈J ′(u), ζ〉 = 〈F ′
u(u,Φ(u)), ζ〉+ 〈F ′

ϕ(u,Φ(u)),Φ′(u)ζ〉(2.16)

= 〈F ′
u(u,Φ(u)), ζ〉

then, using (2.16) and (2.14), for all
[

ζ

ξ

]
∈ H1(R3)×D, we have〈

F ′(u,Φ(u)),
[
ζ

ξ

]〉
=

〈
F ′(u,Φ(u)),

[
ζ

0

]〉
+

〈
F ′(u,Φ(u)),

[
0
ξ

]〉
= 〈F ′

u(u,Φ(u)), ζ〉+ 〈F ′
ϕ(u,Φ(u)), ξ〉 = 0.

So (u,Φ(u)) is a critical point of F . Clearly the viceversa holds, i.e. if (u, ϕ) is
a critical point of F, then ϕ solves (2.15).

Step 2. So we are reduced to find critical points of J(u) = F (u,Φ(u)). Easy
calculations show that

J(u) =
1
2

∫
(|∇u|2 + |∇Φ(u)|2 + u2Φ(u)2 + (Ω2 − ω2)u2) dx− 1

p

∫
|u|p dx.

Observe that the fuctional J is even.
J is invariant with respect to the space translations, namely under the group

action u(x) → u(x+a) (a ∈ R3).This causes a lack of compactness. To overcome
this difficulty we restrict ourselves to radial functions u = u(r), r = |x|. More
precisely we shall consider the functional J on the subspace

H1
r = {u ∈ H1(R3) : u = u(r), r = |x|}.

H1
r is a natural constraint for J, namely any critical point u ∈ H1

r of J |H1
r

is also
a critical point of J . Then we are reduced to look for critical points of J |H1

r
.

We recall (see [11], [4]) that, for 6 > p > 2, H1
r is compactly embedded into

Lp(R3). As a consequence, it can be shown that J |H1
r

satisfies the Palais–Smale
compactness condition.

Finally the conclusion follows by using a well known equivariant version of
the mountain pass theorem for even functionals.

2.2. Travelling solitary waves. Set

v = (v, 0, 0), γ =
1√

1− v2
.

By the Lorentz invariance of
L = L1 + L2
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given any solution (ψ(t, x),A(t, x), ϕ(t, x)) of (2.6)–(2.7), (2.10)–(2.11) (with
ψ(t, x) = u(t, x)eiS(t,x)), we can get a family of solutions (ψv(t, x),Av(t, x),
ϕv(t, x)) just making a Lorentz transformation:

(2.17) ψv(t, x) = ψ(t′, x′), ϕv(t, x) = ϕ′(t′, x′), Av(t, x) = A′(t′, x′)

where

t′ = γ(t− vx1), x′ =

 γ(x1 − vt)
x2

x3


and

ϕ′ = γ(ϕ+ vA1), A′ = (γ(A1 + vt), A2, A3).

In particular, given the standing wave solution (whose existence is guaranteed
by Theorem 2.1)

(ψ(t, x), ϕ(t, x),A(t, x)) = (u(x)e−iωt, ϕ(x),0)

we obtain a travelling solitary wave

ψv(t, x1, x2, x3) = u(x′) exp[−iγω(t− vx1)],(2.18)

ϕv(t, x) =
ϕ(x)√
1− v2

,(2.19)

Av(t, x) =

 vϕ(x′)/
√

1− v2

0
0

 .(2.20)

In particular, equation (2.18) can be written as follows

(2.21) ψv(t, x1, x2, x3) = u

(
x1 − vt√
1− v2

, x2, x3

)
ei(kv·x−ωvt),

with

(2.22) ωv = γω, kv = γωv, x = (x1, x2, x3).

This solution represents a solitary wave which travels with velocity v = (v, 0, 0)
in the x1 direction.

It is well known that the expression
[

γ

γv

]
is a 4-vector in the Minkowsky

space (called 4-velocity); then also

(2.23)
[
ωv

kv

]
= ω

[
γ

γv

]
is a 4-vector. On the other hand, also the energy-momentum (Ev,Pv) of the
solution (ψv, ϕv,Av) is a four vector. This vector, for v = 0, has the form

[
E0

0

]
,
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thus in the moving frame it takes the form

(2.24)
[
Ev

Pv

]
=

[
γE0

γvE0

]
.

Comparing (2.23) and (2.24), we get

Ev =
E0

ω
ωv, Pv =

E0

ω
kv.

If we set ~ = E0/ω we get the expressions

Ev = ~ωv,(2.25)

Pv = ~kv,(2.26)

which formally are nothing else but the De Broglie relations. It is interesting
to note that (2.25) and (2.26) are consequences of (IP) and (NL) and, in this
context, they do not depend on the axioms of Quantum Mechanics.

3. A model for the unitarian standpoint

In [5] Born and Infeld introduce a new formulation of the Maxwell equations;
they replace the usual Lagrangian density of the electromagnetic fields E, H

(3.1) L =
1
2
(E2 −H2) =

1
2

(∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 − |∇ ×A|2

)
with a modified Lagrangian

(3.2) L = 1−
√

1− (E2 −H2) =
1
2
(E2 −H2) + o(E2 −H2).

Clearly the above Lagrangian defines a nonlinear theory of electromagnetism
and the Maxwell theory is recovered for E,H → 0. In this framework pointwise
particles have finite energy (see [5] and Section 12.1 in [14]). However it can
be shown [13] that, in the electrostatic case, the only finite energy solution of
the Euler–Lagrange equation relative to (3.2) is the trivial one. This means
that there is no self-induced electrostatic field. Then Born–Infeld theory is not
unitarian.

Here we report some results contained in [1] where a unitarian field theory,
based on a semilinear perturbation of (3.1), has been introduced.

We modify the usual Maxwell action in the empty space

Sm(ϕA) =
1
2

∫∫ [∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 − |∇ ×A|2

]
dx dt

in the following way:

(3.3) S =
1
2

∫∫ [∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 − |∇ ×A|2 +W (|A|2 − ϕ2)

]
dx dt

where W : R → R.
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The argument of W is |A|2 − |ϕ|2 in order to make this expression invariant
for the Poincaré group and the equations consistent with special relativity.

Making the variation of S with respect to δA, δϕ respectively, we get the
equations

∂

∂t

(
∂A
∂t

+∇ϕ
)

+∇× (∇×A) = W ′(|A|2 − ϕ2)A,(3.4)

−∇ ·
(
∂A
∂t

+∇ϕ
)

= W ′(|A|2 − ϕ2)ϕ.(3.5)

If we set

H = ∇×A,(3.6)

E = −∂A
∂t

−∇ϕ,(3.7)

ρ = W ′(|A|2 − ϕ2)ϕ,(3.8)

J = W ′(|A|2 − ϕ2)A,(3.9)

we get the equations:

∇×H− ∂E
∂t

= J(A, ϕ),(3.10)

∇ ·E = ρ(A, ϕ),(3.11)

∇×E +
∂H
∂t

= 0,(3.12)

∇ ·H = 0,(3.13)

which, formally, are the Maxwell equations in the presence of matter if we in-
terpret ρ(A, ϕ) as the charge density and J(A, ϕ) as the current density. Notice
that ρ and J are functions of the gauge potentials, so that we are in the presence
of a unitarian theory. Hereafter the system (3.4)–(3.5) (or (3.10)–(3.13)) will be
called SME.

We now make the following assumption on W :

(W1) there exists two positive constants ε1, ε2 � 1 such that

|W ′(s)| ≤ ε1|s| for |s| ≤ 1,(3.14)

|W ′(s)| ≥ 1 for |s| ≥ 1 + ε2.(3.15)

We set
Ωt(A, ϕ) = {x ∈ R3 : ||A(t, x)|2 − ϕ(t, x)2| ≥ 1}.

Ωt represents the portion of space filled with matter at time t. Assumption
(3.14) implies that ρ and J become negligible outside Ωt and the above equations
can be interpreted as the Maxwell equations in the empty space. Assumption
(3.15) implies that ρ and J become strong inside Ωt, at least in the region where
||A(t, x)|2 − ϕ(t, x)2| ≥ 1 + ε2.
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3.1. Invariants of motion. In this section, we will assume that SME have
sufficiently smooth solutions and we will analyze some of their properties. Also
we will assume that these solutions are sufficiently small at infinity in such a
way that we can perform integrations by part with null “boundary” terms. The
main invariants of the motion of SME, namely the energy and the momentum
can be calculated by using Noether’s theorem. A direct calculation shows that
they have the following expressions:

• (Energy)

(3.16) E(A, ϕ) =
1
2

∫ (∣∣∣∣∂A∂t
∣∣∣∣2 − |∇ϕ|2 + |∇ ×A|2 −W (|A|2 − ϕ2)

)
dx.

• (Momentum)

(3.17) P(A, ϕ) =
∫ 3∑

i=1

(
∂Ai

∂t
+
∂ϕ

∂xi

)
∇Ai dx.

Another invariant is the

• (Charge)

(3.18) C(A, ϕ) =
∫
ρ(A, ϕ) dx =

∫
W ′(|A|2 − ϕ2)ϕdx.

In fact, if we take the divergence in (3.10) and the derivative with respect to t
in (3.11), we easily get the continuity equation

∂ρ

∂t
+∇ · J = 0.

We can express the energy by a more meaningful expression which will be
useful later:

Proposition 3.1. The energy of the solutions of SME is

E(A, ϕ) =
∫ (

1
2
|E|2 +

1
2
|H|2 −W ′(σ)ϕ2 − 1

2
W (σ)

)
dx

=
1
2

∫
(|E|2 + |H|2) dx−

∫ (
ρϕ+

1
2
W (σ)

)
dx

where σ = |A|2 − ϕ2.

Proof. If we multiply equation (3.11) by ϕ and integrate in x we get∫ (
∂A
∂t

· ∇ϕ+ |∇ϕ|2
)
dx−

∫
W ′(σ)ϕ2 dx = 0.
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We add this expression to E(A, ϕ). Then

E(A, ϕ) =
∫ (

1
2

∣∣∣∣∂A∂t
∣∣∣∣2 +

1
2
|∇ϕ|2 +∇ϕ · ∂A

∂t

+
1
2
|∇ ×A|2 −W ′(σ)ϕ2 − 1

2
W (σ)

)
dx

=
∫ (

1
2

∣∣∣∣∂A∂t +∇ϕ
∣∣∣∣2 +

1
2
|∇ ×A|2 −W ′(σ)ϕ2 − 1

2
W (σ)

)
dx

=
∫ (

1
2
|E|2 +

1
2
|H|2 −W ′(σ)ϕ2 − 1

2
W (σ)

)
dx.

The second expression for the energy is obtained just using (3.8). �

The term
1
2

∫
R3

(|E|2 + |H|2) dx

represents the energy of the electromagnetic field, while

(3.19) −
∫

R3

(
1
2
W (σ) +W ′(σ)ϕ2

)
dx = −

∫
R3

(
ρϕ+

1
2
W (σ)

)
dx

represents the energy of the matter (short range field such as the nuclear fields).
It can be interpreted as bond energy and it is “concentrated” essentially in Ωt.

3.2. Existence of static solutions. In this section we are interested in the
static solutions of (3.4)–(3.5), namely in the solutions A, ϕ, depending only on
the space variable x, of the following equations:

∇× (∇×A) = W ′(|A|2 − ϕ2)A,(3.20)

−∆ϕ = W ′(|A|2 − ϕ2).(3.21)

The static solutions are critical points of the energy functional:

(3.22) E(A, ϕ) =
1
2

∫
(|∇ ×A|2 − |∇ϕ|2 −W (|A|2 − ϕ2)) dx.

Proposition 3.2. If (A, ϕ) is a finite energy, static solution of SME, then

E(A, ϕ) =
1
3

∫
(|∇ ×A|2 − |∇ϕ|2) dx =

∫
W (|A|2 − ϕ2) dx.

Proof. Let λ > 0 and set

ϕλ(x) = ϕ(λ−1x), Aλ(x) = A(λ−1x);
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then, setting y = λ−1x, we have

E(Aλ, ϕλ)

=
1
2

∫
(|∇x ×Aλ(x)|2 − |∇xϕλ(x)|2) dx− 1

2

∫
W (|Aλ(x)|2 − ϕλ(x)2) dx

=
λ

2

∫
(|∇y ×A(y)|2 − |∇yϕ(y)|2) dy − λ3

2

∫
W (|A(y)|2 − ϕ(y)2) dy.

Since u is a critical point of E(Aλ, ϕλ),

(3.23)
d

dλ
E(Aλ, ϕλ)

∣∣∣∣
λ=1

= 0.

Let us compute this expression explicitly:

d

dλ
E(Aλ, ϕλ) =

1
2

∫
|∇y×A(y)|2−|∇yϕ(y)|2 dy− 3

2
λ2

∫
W (|A(y)|2−ϕ(y)2) dy.

For λ = 1, using (3.23), we get

(3.24)
1
3

∫
(|∇ ×A|2 − |∇ϕ|2) dx =

∫
W (|A|2 − ϕ2) dx.

Then

E(A, ϕ) =
1
2

∫
(|∇ ×A|2 − |∇ϕ|2) dx− 1

2

∫
W (|A|2 − ϕ2) dx

=
1
3

∫
(|∇ ×A|2 − |∇ϕ|2) dx.

And, by (3.24), we have also

E(A, ϕ) =
∫
W (|A|2 − ϕ2) dx. �

In order to get the simplest static solutions, we make the following ansatz:

• ϕ 6= 0, A = 0,
• ϕ = 0, A 6= 0.

With these ansatz, we obtain the following equations:

• Electrostatic equation:

(3.25) −∆ϕ = W ′(−ϕ2)ϕ.

• Magnetostatic equation:

(3.26) ∇× (∇×A) = W ′(|A|2)A.
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They correspond to the critical points respectively of the functionals

(3.27)
E(ϕ) = −1

2

∫
(|∇ϕ|2 +W (−ϕ2)) dx,

E(A) =
1
2

∫
(|∇ ×A|2 −W (|A|2)) dx.

In order to get solutions we need the following technical assumptions:

(W2) there exist positive constants c2, c3 > 0 such that

|W ′(s)| ≤ c2|s|p/2−1, p < 6 for |s| ≥ 1,

|W ′(s)| ≤ c3|s|q/2−1, q > 6 for |s| ≤ 1.

We have the following result:

Theorem 3.3. Assume that W satisfies (W2). Then (3.25) possesses a finite
energy, nontrivial solution if and only if there exists s0 such that

(3.28) W (s0) < 0.

Proof. Since W satisfies (W2) and (3.28), the if part follows from Theo-
rem 4 in [4]. The only if part follows from the Pohozaev identity (see Proposi-
tion 1 in [4]). �

Unfortunately, by Proposition 3.2, the energy (rest mass) of the solutions of
(3.25)

E(ϕ) = −1
3

∫
|∇ϕ|2 dx =

∫
W (−ϕ2) dx

is negative; they are not physically acceptable for our program.
Thus, if we want to avoid negative energy solutions, we are forced to assume

(W+) W (s) ≥ 0.

More exactly we have the following

Proposition. Assume that W satisfies (W+) and let (A, ϕ) be a finite en-
ergy, non trivial solution of the system (3.20)–(3.21) then:

(a) A(x) 6= 0,
(b) the total energy E(A, ϕ), in (3.22) is positive,
(c) the bond energy (3.19) is negative.

Proof. A(x) 6= 0 is a consequence of Theorem 3.3. In fact, arguing by
contradiction, assume that A = 0. Then ϕ solves (3.25). So, since W satisfies
(W+), by Theorem 3.3 we get that also ϕ = 0. This contradicts the assumption
that (A, ϕ) is nontrivial.
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Since W (s) ≥ 0, by Proposition 3.2 we deduce that the total energy E(A, ϕ)
is positive. Consider now the bond energy

−
∫ (

ρ(σ)ϕ+
1
2
W (σ)

)
dx, σ = |A|2 − ϕ2, ρ(σ) = W ′(σ)ϕ.

Now,
∫
W (σ) dx is positive by (W+); moreover by (3.21) we easily derive∫

ρ(σ)ϕdx =
∫
W ′(σ)ϕ2 dx =

∫
|∇ϕ|2 dx ≥ 0. �

Remark 3.5. The property (a) of the above proposition implies that any
static solution carries a magnetic moment, even when ϕ = 0. Thus any “particle”
is sensitive to external magnetic field even if it has no charge. This can be
interpreted as the classical analogous of the spin. In the following we shall prove
the existence of static solutions when W ≥ 0.

In order to get solutions we need to make some other technical assumptions:

(W3) There are constants M1 and M2 such that

W (s) ≥M1|s|p/2, 2 < p < 6 for |s| ≥ 1,

W (s) ≥M2|s|q/2, q > 6 for |s| ≤ 1.

(W4) W ∈ C2 and W ′′(s) > 0 for s 6= 0.

Clearly (W3) imply (W+). Moreover, given ε1, ε2 > 0, it is possible to choose
suitable constants in (W3) and (W2) such that (W1) holds.

We have the following result

Theorem. If (W2)–(W4) hold, then equation (3.26) has a nontrivial, finite
energy solution. This solutions has radial symmetry, namely

A(x) = g−1A(gx) for all g ∈ O(3)

where O(3) is the orthogonal group in R3.

The proof of above theorem is quite involved and it can be found in ([1]).
Here we give an heuristic argument of the proof. Any possible critical point of
(3.27) has infinite Morse index; namely, the second variation

E ′′(A)[v]2 =
∫

(|∇ × v|2 −W ′(|A|2)|v|2 − 2W ′′(|A|2)(A · v)2) dx

is negative definite on the infinite dimensional subspace

{v = ∇ϕ : ϕ ∈ C∞
0 },

so the usual tools of critical point theory cannot be used. On the other hand,
it is not possible to work in the Coulomb gauge (∇ ·A = 0) since the nonlinear
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term of the functional is not gauge invariant. To avoid this difficulty, we split
any vector field A: R3 → R3 as follows

(3.29) A = u+ v = u+∇w

where u: R3 → R3 is a divergence free vector field (∇ · u = 0) and v: R3 → R3 is
a potential vector field v = ∇w (w scalar field). Since W is strictly convex, for
every u with ∇ · u = 0, we can find w0 which minimizes the functional

w 7→
∫
W (|u+∇w|2) dx

and set w0 = Φ(u). Replacing (3.29) in (3.27) with w = Φ(u), we get a new
functional

J(u) := E(u,Φ(u)) =
1
2

∫
(|∇u|2 −W (|u+∇Φ(u)|2)) dx

which depends only on u. This functional has the Mountain Pass geometry.
Then, we expect the existence of a nontrivial critical point u0. Now, if J and
the map u→ Φ(u) were sufficiently smooth in suitable function spaces, the field

A = u0 +∇[Φ(u0)]

would solve equation (3.25). However the lack of smoothness does not allow to
carry out a rigorous simple proof directly

Remark 3.7. It is still an open question to prove the existence of solutions
of (3.20)–(3.21) with ϕ 6= 0 under the assumption W ≥ 0.
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