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DEGREE COMPUTATIONS
FOR POSITIVELY HOMOGENEOUS

DIFFERENTIAL EQUATIONS

Christian Fabry — Patrick Habets

Abstract. We study 2π-periodic solutions of

u′′ + f(t, u) = 0

using positively homogeneous asymptotic approximations of this equation

near zero and infinity. Our main results concern the degree of I−P , where

P is the Poincaré map associated to these approximations. We indicate
classes of problems, some with degree 1 and others with degree different

from 1. Considering results based on first order approximations, we work

out examples of equations for which the degree is the negative of any integer.

1. Introduction

The idea to study a boundary value problem associated to the scalar equation

(1.1) u′′ + f(t, u) = 0

assuming the nonlinearity to be asymptotically positively homogeneous goes back
at least to J. Leray in 1933. As it is noted in [19], J. Leray has considered (see [15,
I-7]) an integral equation which, in a particular case, is equivalent to the periodic
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problem associated with (1.1). His main assumption can be reinterpreted as

lim
u→±∞

f(t, u)
u

= p,

where p ∈ R does not belong to the spectrum of the linear problem

u′′ + λu = 0, u(0) = 0, u(π) = 0.

More explicitly, the periodic problem was considered in 1967 by W. S. Loud
(see [16]). Since then, a large variety of results of this type has been worked
out (see e.g. [13], [18]). An interesting generalization is due to J. Mawhin and
J. Ward in [20], (see also [17]). Working such a periodic problem, these authors
consider an asymptotic condition

q(t) ≤ lim inf
u→±∞

f(t, u)
u

≤ lim sup
u→±∞

f(t, u)
u

≤ Q(t),

where q(t) and Q(t) are so that the quotient f(t, u)/u “avoids” the spectrum of
the eigenvalue problem

u′′ + λu = 0, u(0) = u(2π), u′(0) = u′(2π).

A major breakthrough in this direction is due to E. N. Dancer ([3]) in 1977
for Dirichlet problem and to S. Fučik ([8]) in 1980 for other problems. These
authors assume the nonlinearity to have different asymptotic behaviour at plus
and minus infinity

lim
u→−∞

f(t, u)
u

= ν, lim
u→+∞

f(t, u)
u

= µ.

Here the existence of a solution depends upon the position of the pair (µ, ν)
with respect to a set of points which are since then called the Fučik spectrum.
Extensions of this approach can be found among other works in [2], [10], [7].

A proof of the above results can be based on the computation of a degree
associated with a corresponding asymptotic equation. Consider for example the
periodic problem

(1.2) u′′ + f(t, u) = 0, u(0) = u(2π), u′(0) = u′(2π),

and assume

(1.3) p−(t) = lim
u→−∞

f(t, u)
u

, p+(t) = lim
u→+∞

f(t, u)
u

.

A possible approach considers the asymptotic equation

(1.4) u′′ + p+(t)u+ − p−(t)u− = 0,
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where u+ = max{u, 0}, u− = max{−u, 0}. Let u(t;u0, u1) be the solution of the
Cauchy problem

u′′ + p+(t)u+ − p−(t)u− = 0 u(0) = u0, u′(0) = u1.

and
P : R2 → R2, (u0, u1) 7→ (u(2π;u0, u1), u′(2π;u0, u1))

the corresponding Poincaré operator. The main problem is then to compute the
Brouwer degree dB(I − P,BR) of I − P with respect to the disk BR of center
0 and radius R. This can be done using the area preserving property of the
Poincaré operator. Notice also that this degree is the same with respect to any
disk centered at 0 since equation (1.4) is positively homogeneous. Using the
invariance property with respect to an homotopy, and if R > 0 is large enough,
it is also the degree of the Poincaré operator for the nonlinear problem. Hence,
if this degree is non-zero, it implies existence of a solution of (1.2).

A further class of existence results supposes different asymptotic behaviours
at infinity and near zero. This idea was used in 1964 by M. A. Krasnosel’skĭı
considering compressed cones (see [12, p. 138 and Theorem 7.5, p. 246]). In
such cases, the Poincaré operator is different at infinity and near zero. If the
corresponding degrees are different, it is easy to find 0 < r < R so that for
the nonlinear problem the degree of the Poincaré operator with respect to a set
BR \Br is non-zero. Existence of a solution of (1.2) follows. Several results have
been obtained along this direction (see e.g. [5], [11]). In Section 5, we present
such a theorem.

This last section is based on degree computations. To this end, we introduce
in Section 2 a function Θ which associates to the angular coordinate θ of a
point x = (u0, u1) in the phase plane the angular coordinate Θ(θ) of Px. We
relate then the degree dB(I − P,B1) to the number of zeros of the function
∆(θ) = Θ(θ)− θ mod 2π. In Section 4, we recall on one hand conditions on p+,
p− in (1.4), due to Dong [4], under which the degree is equal to 1. On the other
hand, we elaborate alternative conditions ensuring that this degree is different
from 1. This is the main result of the paper and the key to prove results as in
Section 5.

As shown in Section 2, the degree dB(I − P,B1), when it is defined, is less
or equal to 1. For the problem with constant and positive coefficients

(1.5) u′′ + αu+ − βu− = 0, u(0) = u(2π), u′(0) = u′(2π),

this degree can only be equal to 1. It is −1 if α and β are negative, and 0 if the
product αβ is negative. For linear problems with variable coefficients the degree
can take the values ±1. This is the case for the problem

u′′ + (δ + cos t)u = 0, u(0) = u(2π), u′(0) = u′(2π),
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where δ ∈ R is a small parameter. Degrees different from 0 or ±1 appear in [6]
for the problem

u′′ + αu+ − βu− = p(t), u(0) = u(2π), u′(0) = u′(2π),

where p ∈ L1(0, 2π). By the type of argument used in the present paper, it
is shown there that, provided that it is defined, the degree dB(I − P,BR), with
respect to balls BR of sufficiently large radius R, is also less or equal to 1 and can
take arbitrary large negative values. In Section 3, we give examples of equations
(1.4) with positive coefficients for which the degree is the negative of any integer.

2. The Poincaré map in polar coordinates

The computation of the degree will rely on a description of the map P in polar
coordinates. For that purpose, let us introduce polar coordinates u = r cos θ,
u′ = r sin θ. This transforms (1.4) into

(2.1)
r′ = r sin θ [cos θ − p+(t)(cos θ)+ + p−(t)(cos θ)−],

θ′ = − sin2 θ − cos θ [p+(t)(cos θ)+ − p−(t)(cos θ)−].

The equations (1.4) and (2.1) are equivalent if one excludes the trivial solution.
We denote by (r(t; θ0), θ(t; θ0)) the unique solution of (2.1) satisfying the initial
conditions r(0; θ0) = 1, θ(0; θ0) = θ0 and consider the functions

(2.2)
R: R → R+ \ {0}, θ0 7→ r(2π; θ0),

Θ: R → R, θ0 7→ θ(2π; θ0).

Taking into account the property of positive homogeneity of (1.4), the action
of the Poincaré map P, for the period 2π, associated to that equation, can be
described by

P (r cos θ0, r sin θ0) = rR(θ0)(cos Θ(θ0), sinΘ(θ0)).

Lemma 2.1. Let p+, p− ∈ L1(0, 2π). Then the functions R and Θ defined
by (2.2) are of class C1.

Proof. This lemma follows repeating the argument used to prove Lem-
ma 2.2 in [14]. �

The following property follows from simple arguments which can also be
found in [4] and [9].

Lemma 2.2. Let p+, p− ∈ L1(0, 2π) and define R, Θ by (2.2). Then for any
θ0 ∈ R we have

(2.3) R2(θ0)Θ′(θ0) = 1.
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Proof. The proof is an immediate consequence of the property of area con-
servation for the map P (see for example Theorem 2 in Section 16 of [1]). Using
polar coordinates, this conservation of area implies that

R(θ0)J(r, θ0) = 1,

where J(r, θ0) is the Jacobian of the function

(r, θ0) 7→ (rR(θ0),Θ(θ0)),

representing the change of variables P in polar coordinates. Computing the
Jacobian leads to (2.3). �

Let us assume that P has no fixed point on the circle ∂B1. The Brouwer
degree dB(I−P,B1) of I−P with respect to the unit disk B1 can then be defined
as the number of turns made by the nonzero vector x − Px, or equivalently
Px − x, around the origin as x ∈ R2 makes one turn along the circle ∂B1. By
convention, the number of turns is counted positively if x and x − Px turn in
the same direction, so that dB(I,B1) = 1.

To compute this degree, let us consider the closed curve Γ parametrized by
Px(s)−x(s), where x(s) = (cos s, sin s) and s ∈ [0, 2π]. If the degree makes sense,
this curve does not go through the origin and, using Lemma 2.1, we can define
the argument ϕ(s) of Px(s) − x(s) as a continuous function which is periodic
modulo 2π, i.e. ϕ(2π) = ϕ(0)+2kπ. The number k is the number of turns made
by Γ around the origin, i.e. the degree we want to compute.

Consider now s such that ϕ(s) = s mod 2π. In this case, Θ(s) = ϕ(s) = s

mod 2π and R(s) > 1. We deduce then from (2.3) that

Θ′(s)− 1 < 0.

On the other hand, we compute from

tan(ϕ(s)− s) =
R(s) sin(Θ(s)− s)

R(s) cos(Θ(s)− s)− 1

that, in case Θ(s) = ϕ(s) = s mod 2π,

ϕ′(s)− 1 =
R(s)

R(s)− 1
(Θ′(s)− 1) < 0.

This means that the graph of ϕ intersects downwards the lines y = s + 2nπ,
where n ∈ Z. From this remark, it is easy to see that the degree of I − P with
respect to B1 is

dB(I − P,B1) = 1− z−,

where z− is the number of crossing of the graph of ϕ with the set of lines
y = s + 2nπ, n ∈ Z, in the interval [0, 2π).
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The number z− can be computed from the zeros of ∆(s) = Θ(s)−s mod 2π.
Such zeros correspond either to the zeros of ϕ(s)− s mod 2π or to the zeros of
ϕ(s) + π− s mod 2π. In the first case, R(s) > 1 and we deduce from (2.3) that
Θ′(s) < 1. In the second case, R(s) < 1 and Θ′(s) > 1. It follows that z− is
exactly the number of crossing, for s ∈ [0, 2π), of the graph of ∆(s) = Θ(s)− s

with the levels 2nπ, n ∈ Z, so that ∆ has a negative derivative.
Moreover, as the equation (2.1) is periodic in θ, we can write θ(t; s + 2π) =

θ(t; s) + 2π, which implies that ∆(s) is 2π-periodic. Hence, the number z+ of
points s ∈ [0, 2π) such that the function ∆(s), crosses a value 2nπ, n ∈ Z, with
a positive slope equals the number of points such that the function ∆(s), crosses
a value 2nπ, n ∈ Z, with a negative slope. Hence, we also have dB(I − P,B1) =
1− z+.

We can still observe, using Lemma 2.2, that Px 6= x for any x ∈ ∂B1 if
and only if the function ∆ does not cross a level 2nπ, n ∈ Z, with a vanishing
derivative.

We have thus proved the following proposition.

Proposition 2.3. Let p+, p− ∈ L1(0, 2π) and define P to be the Poincaré
map associated to equation (1.4). Let Θ be defined by (2.2) and assume that the
function ∆(s) = Θ(s) − s does not cross levels 2nπ, n ∈ Z, with a vanishing
derivative. Then, the Brouwer degree of I − P with respect to the disk B1 is
defined and

dB(I − P,B1) = 1− z− = 1− z+,

where z− (resp. z+) is the number of crossings of the graph of ∆ with the levels
2nπ, n ∈ Z, in the interval [0, 2π), with negative (resp. positive) derivatives.

Remark. Let 0 ≤ s1 < s2 < 2π. It follows then from uniqueness of solutions
of the Cauchy problem that, for all t ∈ [0, 2π], θ(t; s1) < θ(t; s2) < θ(t; s1)+2π =
θ(t; s1 + 2π). This implies

−2π < ∆(s2)−∆(s1) = θ(2π; s2)− θ(2π; s1) + s1 − s2 < 2π.

Hence, the function ∆ can cross only one of the levels 2nπ with n ∈ Z.

3. Computing z+, z− from a first order approximation

Using a first order approximation, the degree dB(I−P,B1) can be explicitly
computed for equations which are perturbations of linear equations. Consider
for instance the equation

(3.1) u′′ + u + q+(t)u+ − q−(t)u− = 0,

together with 2π-periodic boundary conditions. Based on a restriction of the
L1-norm of q+, q− the following result holds, the L1-norm used being ‖q‖L1 =∫ 2π

0
|q(t)| dt.
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Theorem 3.1. Let q+, q− ∈ L1(0, 2π). Define

F0: θ0 7→
∫ 2π

0

cos(θ0 − t)[q+(t)(cos(θ0 − t))+ − q−(t)(cos(θ0 − t))−] dt,

where q+ and q− are extended to R by 2π-periodicity, and assume this function
has 2z zeros in [0, 2π), with z 6= 0, all zeros being simple. Then, provided that

(3.2) 3(‖q+‖L1 + ‖q−‖L1)2 < |F0(θ0)|+ |F ′0(θ0)|,

for all θ0 ∈ [0, 2π), we have dB(I −P,B1) = 1− z, where P is the Poincaré map
for the period 2π associated to (3.1).

Proof. We use Proposition 2.3 with p+ = 1 + q+, p− = 1 + q−, and will
compute the number of crossings of the graph of ∆: θ0 7→ Θ(θ0) − θ0 with the
level −2π using (2.1), Θ being defined as before by (2.2). Equation (2.1) gives

θ′ = −1− cos θ[q+(t)(cos θ)+ − q−(t)(cos θ)−].

We will use a homotopy and consider the equation

θ′ = −1− λ cos θ[q+(t)(cos θ)+ − q−(t)(cos θ)−],

with λ ∈ [0, 1]. Its solution, for the initial condition θ(0) = θ0 will be denoted
by θλ(t; θ0). It is immediate that

(3.3) |θλ(t; θ0)− (θ0 − t)| ≤ λ(‖q+‖L1 + ‖q−‖L1), for t ∈ [0, 2π].

By analogy to the definition of ∆, we introduce the function

∆λ(θ0) = θλ(2π; θ0)− θ0

and compute

(3.4) ∆λ(θ0) + 2π = −λ

∫ 2π

0

cos θλ[q+(t)(cos θλ)+ − q−(t)(cos θλ)−] dt,

where θλ stands for θλ(t; θ0). On the other hand, the derivative ∂θλ(t; θ0)/∂θ0

is a solution of the variational equation

η′ = 2λ sin θλ[q+(t)(cos θλ)+ − q−(t)(cos θλ)−]η.

Consequently,

(3.5) ∆′
λ(θ0) =

∂θλ(2π; θ0)
∂θ0

− 1

= exp
{

2λ

∫ 2π

0

sin θλ[q+(t)(cos θλ)+ − q−(t)(cos θλ)−] dt

}
− 1.

It is clear from (3.3) that limλ→0 θλ(t; θ0) = θ0 − t, uniformly for t ∈ [0, 2π],
θ0 ∈ [0, 2π].
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It follows now from (3.4), (3.5) that

lim
λ→0

∆λ(θ0) + 2π

λ
= −F0(θ0), lim

λ→0

∆′
λ(θ0)
λ

= −F ′0(θ0).

Consequently, for λ sufficiently small, ∆λ( · ) + 2π has the same number of zeros
in [0, 2π) than F0.

Letting λ vary from 0 to 1, the number of zeros of ∆λ( · ) + 2π will remain
unchanged, unless ∆λ( · ) + 2π has a multiple zero. But, looking at (3.5), we see
that this occurs if and only if, for some θ0, we have ∆λ(θ0) + 2π = 0 and

Gλ(θ0) = 2λ

∫ 2π

0

sin θλ[q+(t)(cos θλ)+ − q−(t)(cos θλ)−] dt = 0.

However, using (3.3), we deduce from (3.4), (3.5) that

|∆λ(θ0) + 2π + λF0(θ0)| ≤λ2(‖q+‖L1 + ‖q−‖L1)2,

|Gλ(θ0) + λF ′0(θ0)| ≤ 2λ2(‖q+‖L1 + ‖q−‖L1)2.

It then results from condition (3.2) that ∆λ( · ) + 2π and Gλ cannot vanish
simultaneously for λ ∈ (0, 1]. The result then follows, taking into account the
observation made in the preceding section that the graph of ∆ can cross only
one of the levels 2nπ (n ∈ Z). �

Example. Take q+(t) = ε cos kt, with k ∈ N, ε 6= 0, q−(t) = 0. One
computes that

F (θ0) = − 4ε

k3 − 4k
cos(kθ0) sin

(
kπ

2

)
.

If k is odd, F0 has 2k zeros in [0, 2π). On the other hand, condition (3.2) is
fulfilled if

|ε| < 1
16|k3 − 4k|

.

In that case, Theorem 3.1 applies and, for k odd, dB(I−P,B1) = 1−k. When k

is even, the first order approximation used here does not allow the computation
of the degree for the above choice of q+, q−. However, with more complicated
coefficients, any odd value of the degree can be obtained. Take for instance

q+(t) = ε[(k + 4) cos(k + 2)t + (k − 2) cos kt] + ε2, q−(t) = ε2 .

The evaluation of F0 gives

F0(θ0) =
4ε sin(kπ/2)

k(k + 2)
[cos(k + 2)θ0 − cos kθ0] + πε2

= −8ε sin(kπ/2)
k(k + 2)

sin θ0 sin((k + 1)θ0) + πε2.

It can then be seen that, for |ε| small enough, ε 6= 0, F0 has 2k − 2 zeros in
[0, 2π). In that case, dB(I − P,B1) = 2− k, an odd number.
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4. A computation of z+, z− based on comparisons

In this section, we again deduce the degree dB(I−P,B1) from computations
of z+ and z−. These values are obtained by comparison arguments, for instance
by comparing equation (1.4) to equations with piecewise constant coefficients.
The first result is a particular case of a result given in [4].

Theorem 4.1. Let p+, p− ∈ L∞(0, 2π). Assume that, for some n ∈ N,
there exist

0 = t0 < t1 < . . . < tn = 2π, 0 = s0 < s1 < . . . < sn+1 = 2π

and positive numbers λ+
i , λ−i for i = 1, . . . , n and γ+

j , γ−j for j = 1, . . . , n + 1,
such that

(4.1)

 1√
λ+

i

+
1√
λ−i

 1
ti − ti−1

<
1
π

<

 1√
γ+

j

+
1√
γ−j

 1
sj − sj−1

holds for i = 1, . . . , n and j = 1, . . . , n + 1. Assume further

(4.2) p+(t) ≥ λ+
i , p−(t) ≥ λ−i for a.e. t ∈ (ti−1, ti) and i = 1, . . . , n

and

p+(t) ≤ γ+
j , p−(t) ≤ γ−j for a.e. t ∈ (sj−1, sj) and j = 1, . . . , n + 1.

Then,

dB(I − P,B1) = 1,

where P is the Poincaré map associated to (1.4) and B1 the unit disk with center
at the origin.

Since the argument of the proof will be used in the sequel, we reproduce it
here.

Proof. The proof consists in showing that, for all θ0 ∈ [0, 2π], the inequal-
ities

(4.3) 2nπ < θ0 −Θ(θ0) < 2(n + 1)π

hold. We then clearly have z+ = z− = 0 and, by Proposition 2.3, it follows that
dB(I − P,B1) = 1.

Let θ(t) be the solution of (2.1) with initial condition θ(0) = θ0 and consider
the first inequality in (4.3). Using (4.2), it follows from (2.1) that

−θ′(t) ≥ sin2 θ(t) + λ+
i ((cos θ(t))+)2 + λ−i ((cos θ(t))−)2
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for t ∈ (ti−1, ti), i = 1, . . . , n and hence, for any θ0 ∈ R,

−
∫ θ(ti)

θ(ti−1)

dθ

sin2 θ + λ+
i ((cos θ)+)2 + λ−i ((cos θ)−)2

≥ ti − ti−1.

Since, for any α ∈ R,∫ α+2π

α

dθ

sin2 θ + λ+
i ((cos θ)+)2 + λ−i ((cos θ)−)2

=
π√
λ+

i

+
π√
λ−i

,

it follows from (4.1) that

θ(ti−1)− θ(ti) > 2π for i = 1, . . . , n.

Summing these inequalities, we see that

θ0 −Θ(θ0) = θ(0)− θ(2π) > 2nπ.

The second inequality in (4.3) is proved using the same argument. �

Using the same idea, it is possible to give conditions under which the degree
of I − P is different from 1.

Theorem 4.2. Let p+, p− ∈ L1(0, 2π). Assume that for some n ∈ N, n ≥ 2,
there exist 0 = t0 < t1 < . . . < tn = 2π, 0 = s0 < s1 < . . . < sn = 2π, positive
numbers λ+

i , λ−i for i = 1, . . . , n, γ+
j , γ−j for j = 1, . . . , n and some indices

i∗, j∗ ∈ 1, . . . , n− 1 such that

(4.4)

√
λ+

i∗(ti∗ − ti∗−1) ≥ π,
√

λ−i∗+1(ti∗+1 − ti∗) ≥ π,√
γ−j∗(sj∗ − sj∗−1) ≤ π,

√
γ+

j∗+1 (sj∗+1 − sj∗) ≤ π,

and  1√
λ+

i

+
1√
λ−i

 1
ti − ti−1

<
1
π

<

 1√
γ+

j

+
1√
γ−j

 1
sj − sj−1

holds for i = 1, . . . , n, i 6= i∗, i 6= i∗ + 1 and j = 1, . . . , n, j 6= j∗, j 6= j∗ + 1.
Assume further

p+(t) ≥ λ+
i for a.e. t ∈ (ti−1, ti) and i = 1, . . . , n, i 6= i∗ + 1,

p−(t) ≥ λ−i for a.e. t ∈ (ti−1, ti) and i = 1, . . . , n, i 6= i∗,

p+(t) ≤ γ+
j for a.e. t ∈ (sj−1, sj) and j = 1, . . . , n, j 6= j∗,

p−(t) ≤ γ−j for a.e. t ∈ (sj−1, sj) and j = 1, . . . , n, j 6= j∗ + 1.

Then, provided that equation (1.4) does not have a nontrivial 2π-periodic solu-
tion, we have

dB(I − P,B1) ≤ 0,
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where P is the Poincaré map associated to (1.4) and B1 the unit disk with center
at the origin.

Proof. Notice first that, if (1.4) does not have a nontrivial 2π-periodic
solution, the degree dB(I −P,B1) is well-defined. According to Proposition 2.3,
it will be different from 1 if we can prove that z+ = z− 6= 0.

Let θ(t) be any solution of (2.1). Using the arguments of Theorem 4.1, we
have

θ(ti−1)− θ(ti) ≥ 2π for i = 1, . . . , n, i 6= i∗, i 6= i∗ + 1

and
θ(sj−1)− θ(sj) ≤ 2π for j = 1, . . . , n, j 6= j∗, j 6= j∗ + 1.

This means that for all θ0 ∈ [0, 2π],

2(n− 2)π < θ0 −Θ(θ0)− (θ(ti∗−1)− θ(ti∗+1))

and
θ0 −Θ(θ0)− (θ(si∗−1)− θ(si∗+1)) < 2(n− 2)π.

We will show that it is possible to find two distinct solutions of (2.1), one being
such that

(4.5) θ(ti∗−1)− θ(ti∗+1) ≥ 2π,

the other one such that

θ(si∗−1)− θ(si∗+1) ≤ 2π.

This means that the function ∆ takes the value 2(n− 1)π and since (1.4) has no
2π-periodic solution it does not have a zero derivative at such a point. Hence,
we have z+ = z− 6= 0.

To find the first solution, consider the initial condition θ(ti∗) = π/2. Arguing
as in Theorem 4.1 and using (4.4), we have

−
∫ π/2

θ(ti∗−1)

dθ

sin2 θ + λ+
i∗((cos θ)+)2

≥ ti∗ − ti∗−1 ≥
π√
λ+

i∗

.

As

−
∫ π/2

θ(ti∗−1)

dθ

sin2 θ + λ+
i∗(cos θ)+)2

=
θ(ti∗−1)− π/2√

λ+
i∗

,

it follows from (4.4) that θ(ti∗−1)− π/2 ≥ π. Similarly, considering the interval
[ti∗ , ti∗+1], we obtain π/2− θ(ti∗+1) ≥ π and (4.5) follows.

To find the second solution we proceed analogously choosing θ(sj∗−1) =
3π/2. �

In the case n = 2, the conditions simplify considerably. In this case, we must
have i∗ = j∗ = 1 and we take λ+

1 = π2/t21, λ−2 = π2/(2π − t1)2, γ−1 = π2/s2
1 and
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γ+
2 = π2/(2π − s1)2. Such a result can be generalized in order to avoid bounds

on p+ and p−.

Theorem 4.3. Let p+, p− ∈ L1(0, 2π) be nonnegative functions. Assume
that there exist numbers s1, t1 ∈ (0, 2π), such that the eigenvalue problems

u′′ + λp−(t)u = 0, u(0) = 0, u(t1) = 0,

u′′ + λp+(t)u = 0, u(t1) = 0, u(2π) = 0,

have first eigenvalues λ1 ≤ 1 and the eigenvalue problems

u′′ + µp+(t)u = 0, u(0) = 0, u(s1) = 0,

u′′ + µp−(t)u = 0, u(s1) = 0, u(2π) = 0,

have first eigenvalues µ1 ≥ 1. Then, provided that equation (1.4) does not have
a nontrivial 2π-periodic solution, we have dB(I − P,B1) 6= 1, where P is the
Poincaré map associated to (1.4) and B1 the unit disk with center at the origin.

Proof. Using a Sturm–Liouville comparison argument, we can prove that
the solution of the Cauchy problem

u′′ + p+(t)u+ − p−(t)u− = 0, u(t1) = 0, u′(t1) = 1,

is such that u(t) has zeros in both the intervals [0, t1) and (t1, 2π]. Hence θ(t),
the corresponding solution of (2.1), verifies θ(2π)− θ(0) ≥ 2π. In a similar way,
we prove that the Cauchy problem

u′′ + p+(t)u+ − p−(t)u− = 0, u(s1) = 0, u′(s1) = −1,

is such that u(t)(t− s1) ≤ 0 for all t ∈ [0, 2π]. Therefore the corresponding solu-
tion θ(t) verifies θ(2π)− θ(0) ≤ 2π. The claim follows then as in Theorem 4.2.�

Remark. Notice that the assumptions on the eigenvalue problems hold if

p+(t) ≥ π2/t21 for a.e. t ∈ (0, t1),

p−(t) ≥ π2/(2π − t1)2 for a.e. t ∈ (t1, 2π),

p−(t) ≤ π2/s2
1 for a.e. t ∈ (0, s1),

p+(t) ≤ π2/(2π − s1)2 for a.e. t ∈ (s1, 2π).

In particular these conditions are clearly verified (with t1 = s1 = π) if p+, p−
are such that

p−(t) ≤ 1 ≤ p+(t) for a.e. t ∈ (0, π),

p+(t) ≤ 1 ≤ p−(t) for a.e. t ∈ (π, 2π).
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However, without further conditions on p+, p−, it is not excluded that equation
(1.4) admits nontrivial 2π-periodic solutions. The following example provides
conditions excluding that possibility.

Example. Consider the equation

(4.6) u′′ + p+(t)u+ − u− = 0,

where p+ ∈ L∞(0, 2π). Assume that there exist t1 ≤ s1 ≤ π such that

p+ ≥
(

π

t1

)2

for a.e. t ∈ (0, t1), p+ ≤
(

π

2π − s1

)2

for a.e. t ∈ (s1, 2π).

It is easy to see now from Theorem 4.3, that the Brouwer degree dB(I−P,B1) is
different from 1, if we can show that equation (4.6) has no nontrivial 2π-periodic
solution. To this end we assume that there exists some r1 ∈ [t1, s1] such that

p+ ≥ 1 for a.e. t ∈ (0, r1), and p+ ≤ 1 for a.e. t ∈ (r1, 2π),

By contradiction, let us denote by u such a nontrivial 2π-periodic solution and
extend u and p+ by periodicity. Notice first that u cannot remain always strictly
positive and that, on intervals on which it is negative, it must be of the form
c sin t, for some c < 0. Hence, u is negative on intervals of length π and, being
2π-periodic, it must also be positive on intervals of length π. More precisely, a
number τ ∈ [0, 2π) must exist, such that the problem

u′′ + p+(t)u+ − u− = 0,

u(τ) = u(τ + π) = 0, u′(τ) = −u′(τ + π)

has a solution which is positive on (τ, τ + π). Taking into account that p+ − 1
changes sign at the point r1, we distinguish three cases:

(1) p+ − 1 is of constant sign on (τ, τ + π). We multiply then (4.6) by
sin(t− τ) and integrate over (τ, τ + π), which gives∫ τ+π

τ

(p+(t)− 1)u+(t) sin(t− τ) dt = 0.

A contradiction is obtained since the integrand is of constant sign on
(τ, τ + π).

(2) r1 ∈ (τ, τ +π). We multiply then (4.6) by sin(t− r1) and integrate over
(τ, τ +π). An integration by parts again leads to a contradiction, taking
into account the fact that u′(τ) sin(τ − r1) = u′(τ + π) sin(τ + π − r1).

(3) 2π ∈ (τ, τ + π). The same argument works, multiplying (4.6) by sin t.

Consequently, under the hypotheses listed above for p+, we have

dB(I − P,B1) 6= 1.
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Remark. Notice that, under the conditions imposed on p+, p− in Theo-
rem 4.3, if equation (1.4) has a nontrivial 2π-periodic solution, then, for any
sufficiently small perturbations (in the L1 sense) of p+, p−, for which nontriv-
ial 2π-periodic solutions do not exist, the degree dB(I − P,B1) related to the
perturbed equation will be different from 1. This follows from the fact that, pro-
vided that the perturbation is small enough, the function ∆(θ0) = Θ(θ0)−θ0 will
still cross the level 2π. The slopes at the points of crossing cannot be equal to
0, otherwise, as observed earlier, equation (1.4) would have a nontrivial periodic
solution. Hence, there is at least one point θ∗ ∈ [0, 2π) such that ∆(θ∗) = 2π,
∆′(θ∗) 6= 0 and it then follows from Proposition 2.3 that dB(I − P,B1) < 1.

5. Asymptotically positively homogeneous equations

Using the above theorems, it is possible to give various existence conditions,
based on degree arguments, for nontrivial 2π-periodic solutions of

(5.1) u′′ + f(t, u) = 0,

when f is asymptotically positively homogeneous in u for u → ±∞.
For instance, following an idea recalled in the introduction, if p+, p− are

given by (1.3), and if the Brouwer degree dB(I − P,B1) associated to (1.4) can
be shown to be different from 0, the existence of a solution of (5.1) can be
deduced.

Another type of result assumes that f(t, 0) = 0, for all t ∈ R, f being asymp-
totically positively homogeneous in u when u → 0± and u → ±∞. The idea
is then to build conditions such that the positively homogeneous approximation
of (5.1) for u → 0± leads to a degree 1 for the map I−P , whereas the positively
homogeneous approximation of (5.1) for u → ±∞ leads to a degree different
from 1 (or vice versa). The existence of nontrivial 2π-periodic solutions then
follows from the excision property of the degree.

As an example, we present the following result.

Theorem 5.1. Let f : R × R → R, (t, u) 7→ f(t, u) satisfy L1-Carathéodory
conditions. Assume that f(t, 0) = 0, for a.e. t ∈ R, and that there exists a L1-
function F such that ∣∣∣∣f(t, u)

u

∣∣∣∣ ≤ F (t) for all u ∈ R.

Let

q∞,±(t) = lim inf
u→±∞

f(t, u)
u

, Q∞,±(t) = lim sup
u→±∞

f(t, u)
u

,

q0,±(t) = lim inf
u→0±

f(t, u)
u

, Q0,±(t) = lim sup
u→0±

f(t, u)
u

.
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Assume that

(A1) the conditions of Theorem 4.2 are satisfied for any function p+ between
q∞,+ and Q∞,+, and for any function p− between q∞,− and Q∞,−;
assume also that, for such functions p+, p−, equation (1.4) has no non-
trivial 2π-periodic solution;

(A2) the conditions of Theorem 4.1 are satisfied for any function p+ between
q0,+ and Q0,+, and for any function p− between q0,− and Q0,−; assume
also that, for such functions p+, p−, equation (1.4) has no nontrivial
2π-periodic solution.

Then, equation (5.1) has a nontrivial 2π-periodic solution.

Notice that the conditions of Theorem 4.2 in (A2) can be replaced by the
requirement that f(t, u) is asymptotically linear in u for u → 0±, since a linear
equation (1.4) leads to a degree 1 for I −P , provided that there is no nontrivial
2π-periodic solution.

Keeping this in mind, the following example can be given.

Example. Consider the equation

(5.2) u′′ + u +
u

1 + u2
+ (p+(t)− 1)

(u+)2

1 + |u|
= 0,

where p+ is as in the example of the previous section. Then, the above theorem
applies. Indeed, for u → 0, equation (5.2) is asymptotic to the linear equation

u′′ + 2u = 0,

which has no nontrivial 2π-periodic solution, whereas for u → ±∞, it is asymp-
totic to

u′′ + p+(t)u+ − u− = 0,

for which we have shown above that the degree of I − P is different from 1.
Hence, equation (5.2) has a nontrivial 2π-periodic solution.
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