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REMARKS TO THE ORIENTATION AND HOMOTOPY
IN COINCIDENCE PROBLEMS

INVOLVING FREDHOLM OPERATORS
OF NONNEGATIVE INDEX

Dorota Gabor

Abstract. We introduce a notion of orientation of a Fredholm operators
of nonnegative index and use it in a generalized homotopy property of the

respective coincidence index.

1. Introduction

The coincidence degree theory for perturbations of a linear Fredholm operator
of index zero was started by Mawhin (see e.g. [24], [25]) and next developed and
applied by many authors (e.g. [11], [26], [29]). Roughly speaking, the problem
was the following:

L(x) = f(x), (or equivalently 0 = L(x)− f(x))

where L was a Fredholm operator (of index 0) and f a continuous map. The
coincidence degree was strictly connected with Leray–Schauder degree. The
homotopy property concerned at the beginning only f , while the role of L was
similar to the identity in the fixed point problem.
There are several directions of possible generalizations of this problem. The

first one is connected with perturbations — now they can be multivalued and not
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necessarily compact (see e.g. [10], [9]). The others concern the linear part: e.g.
admitting the homotopy of L, which needs some concept of saving orientation
along the homotopy (see e.g. [12], [2], [9]) or considering nonlinear Fredholm
operators (see e.g. [12], [28]).

But if we assume that the index of L is nonnegative, then previous methods
are not sufficient (comp. [24]). Although there are some ways to deal in such
situation (see [1], [28]), the suitable homotopy invariant is due to Kryszewski (see
[22]). But while it is defined for a quite large class of perturbations, including
noncompact multivalued maps with nonconvex values ([14], [13]), the Fredholm
operator has to be fixed.

This paper is a continuation of [14], where the whole construction of the
generalized coincidence index was involved. We discuss here more general homo-
topy property, which admits continuous deformations in both parts of coincidence
problem, the linear and nonlinear one. Some ideas concerning orientations are
taken from [2] and [4].

The paper is organized as follows. In the next section we introduce some
notation and definitions needed in the sequel. Then, in Section 3 we discuss the
notion of an orientation for Fredholm operators and compare different possibil-
ities of defining it. The last section is devoted to the main considerations. We
start with short recalling a construction of the generalized index and next we
pass to results concerning the homotopy property.

2. Preliminaries

All spaces considered in the paper are metric. If V is a subset of a space,
then we denote the closure, the interior and the boundary of V by clV , intV ,
and bdV , respectively. If z belongs to a Banach space E, then BE(z, ε) = {x ∈
E | ‖x− z‖ < ε}, DE(z, ε) = clBE(z, ε). For a closed set A ⊂ E, by Oε(A) we
denote the set {x ∈ E | infa∈A ‖x− a‖ < ε}.
We always assume that single-valued maps are continuous. If g:X → Y is

a map, A, B are closed subsets of X and Y , respectively, and g(A) ⊂ B, then
we write g: (X,A)→ (Y,B). We denote by IX the identity map of the space X.
Recall that by the homotopy between two single-valued maps f0, f1:X → Y

one understands a map H:X × [0, 1]→ Y such that

H( · , 0) = f0 and H( · , 1) = f1.

Let E, E′ be Banach spaces. We denote by L(E,E′) the Banach space
of bounded linear maps from E to E′, and by Iso (E,E′) its open subset of
isomorphisms. An operator L ∈ L(E,E′) is called Fredholm if dimensions of its
kernel KerL and cokernel CokerL: = E′/ImL (where ImL is the image of L)
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are finite. The index of a Fredholm operator L is defined as the integer

i(L) = dimKerL− dimCokerL.

We always assume that i(L) ≥ 0. The set Φn(E,E′) of all Fredholm operators of
index n is an open subset of L(E,E′) (see [31]). Since ImL is a closed subspace
of E′ (see [16, IV.2.6]), both KerL and ImL are direct summands in E and E′,
respectively. Therefore we may consider continuous linear projections P :E → E

and Q:E′ → E′, such that KerL = ImP and KerQ = ImL. Clearly E, E′ split
into (topological) direct sums

(2.1) KerP ⊕KerL = E, ImL⊕ ImQ = E′.

Moreover, L|KerP is a linear homeomorphism onto ImL. By KP : ImL→ KerP
we denote the inverse operator for L|KerP . Note also that L is proper when
restricted to a closed bounded set or, more generally, to a closed set X such that
P (X) is bounded.

Remark 2.1. Observe that, if X ⊕ Z ⊂ Y ⊕ Z = E, and Z is a finite
dimensional subspace of E, then there is X1 ⊂ Y such that X ⊕ Z = X1 ⊕ Z.
Indeed for any v = x+z, where x ∈ X and z ∈ Z, since x = x1+z1 with x1 ∈ Y
and z1 ∈ Z, we get v = x1 + (z1 + z), so X1 is generated by the set pr(BX),
where BX is the basis of X and pr is the projection of X on the space Y along Z.

Lemma 2.2 (comp. [5, Chapter 12]). If E, E′ are Banach spaces, T :E → E′

is an invertible operator with ‖T−1‖ = d, then any linear operator S:E → E′

such that ‖T −S‖ < 1/d is invertible, and for any ε ∈ (0, 1/2), if ‖T −S‖ < ε/d,
then ‖T−1 − S−1‖ < 2ε‖T−1‖.

Corollary 2.3. If the assumptions of Lemma 2.2 are satisfied, then

‖S−1‖ ≤ ‖S−1 − T−1‖+ ‖T−1‖ ≤ ‖T−1‖(1 + 2ε).

Let X ⊂ E. By a multivalued map ϕ:X ( E′ we understand an upper semi-
continuous transformation which assigns to a point x ∈ X a compact nonempty
set ϕ(x) ⊂ E′. We say that ϕ is compact if clϕ(X) is compact.
Let us remind that a compact space W is cell-like if there exists an abso-

lute neighborhood retract Y and an embedding i:W → Y such that the set
i(W ) is contractible in any of its neighbourhoods U ⊂ Y . Compact convex
or contractible, or Rδ-sets (i.e. the intersections of decreasing families of com-
pact contractible sets) are cell-like. Cell-like sets are acyclic; however there are
examples of acyclic sets which are not cell-like.
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Definition 2.4. Let Γ be a space andX ⊂ E. A proper surjection p: Γ→ X

is

• a Vietoris map if, for each x ∈ X, the fiber p−1(x) is acyclic (1),
• a cell-like map if, for each x ∈ X, the fiber p−1(x) is cell-like.

We say that a pair of maps (p, q) where X
p←− Γ q−→ E′, is

• admissible in the sense of Górniewicz, if p is a Vietoris map,
• c-admissible if p is a cell-like map.

Also the multivalued map φ:X ( E′ determined by (p, q), i.e. such that φ(x) =
q(p−1(x)), is called admissible in the sense of Górniewicz or, respectively, c-
admissible.

Observe that a multivalued map ϕ determined by the pair (p, q) is compact
if and only if q is compact. In such situation we will also say that (p, q) is
a compact pair of maps.
It is known that the Vietoris map induces an isomorphism between respec-

tive cohomology groups (see the Vietoris-Begle theorem in e.g. [30]), that allows
to define the fixed point index for maps admissible in the sense of Górniewicz
(see[18], [17], [7], [6] and [19]). But here we lead with a generalized coincidence
index suitable for more general problem L(x) ∈ φ(x), where Fredholm operator
L admits a “dimensional defect” (see [22], [14]). We need, instead of the classi-
cal Vietoris-Begle theorem, its cohomotopy version due to Kryszewski (see [20],
[21], [22]). Therefore we have to consider one of the following types of pairs or
multivalued maps (all are admissible in the sense of Górniewicz):

(i) Admissible in the sense of Górniewicz and such that

sup
x∈X
dim p−1(x) <∞

(see [22]),

or

(ii) c-admissible.

All results of this paper can be stated for each of these classes. Therefore
we fix one of them, and from now, by the admissible pair (or map) we will
understand the element of the chosen class.

Definition 2.5. We say that admissible pairs X
pk←− Γk

qk−→ E′, k = 0, 1
(or maps determined by them) are homotopic, if there exists an admissible pair

X× [0, 1] R←− Γ S−→ Y and homeomorphical embeddings jk: Γk → Γ, k = 0, 1 (2)

(1) A compact space A is acyclic with respect to the Čech cohomology H∗ with integer

coefficients, if H∗(A) = H∗(pt), where pt is a one-point space.
(2) i.e. a map jk: Γk → jk(Γk) is a homeomorphism.
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such that the following diagram commutes:

X

i0

��

Γ1
p0oo

j0

��

q0

  
@@

@@
@@

@@

X × [0, 1] Γ
Roo S // E′

X

i1

OO

Γ1p1
oo

j1

OO

q1

>>~~~~~~~~

where ik(x) = (x, k) for k = 0, 1 and x ∈ X. The pair (R,S) (or the map Hφ
determined by it) is called a homotopy between pairs (p0, q0) and (p1, q1) (or
between maps determined by them). If additionally (R,S) is a compact pair,
then we call it a compact homotopy.

Remark 2.6. Observe that:
(a) If ϕ:X ( E′ is an admissible map, then its restriction ϕ|A to A ⊂ X is

admissible.
(b) If f :Y → E′ is a single-valued map, then it is admissible (since deter-

mined by (IY , f)). Moreover, the single-valued homotopy H:Y × [0, 1] → E′

may be treated as a homotopy in the sense of the above definition. Namely:
Γ ≡ Y × [0, 1], R ≡ IY×[0,1], S ≡ H.
(c) If (R,S) is a homotopy between admissible pairs (p0, q0) and (p1, q1),

then for any λ ∈ [0, 1], (p0, q0) is homotopic to (pλ, qλ), where

pλ = π ◦R|R−1(X×{λ}):R−1(X × {λ})→ X,

qλ = S|R−1(X×{λ}):R−1(X × {λ})→ E′

and π:X × {λ} → X is a projection. Indeed, the homotopy is determined by

the pair X × [0, 1] P←− Γ̃ Q−→ E′, where Γ̃ = R−1(X × [0, λ]), Q(γ) = S(γ),
P (γ) = z ◦R(γ) and z(x, t) = (x, t/λ).
(d) A set-valued map ϕ:X ( Y1 × Y2 given, for x ∈ X, by ϕ(x) = ϕ1(x)×

ϕ2(x), where ϕi:X ( Yi (i = 1, 2) are admissible maps, is also an admissible
one. Similarly, if Y = Y1 = Y2, the map ψ:X ( Y , defined by ψ(x) := ϕ1(x) +
ϕ2(x) = {y1 + y2 | y1 ∈ ϕ1(x), y2 ∈ ϕ2(x)}, x ∈ X, is admissible. In particular,
if an admissible pair (p, q) determines a map ϕ:X ( Y , and f :X → Y , then
the map f + ϕ:X ( Y , given by (f + ϕ)(x) = {f(x) + y | y ∈ ϕ(x)} for x ∈ X,
is admissible (it is determined by the pair (p, f ◦ p+ q)).

3. Orientation of Fredholm operators

3.1. Main notions. We always assume that the orientation in Rn is a
canonical one, i.e. represented by the ordered basis (e1, . . . , en), where ej =
(δij)ni=1.



166 D. Gabor

If W is a real n-dimensional linear space, then by an orientation in W we
understand one of two equivalence classes of linear isomorphisms of the form
η:W → Rn, where η1 ∼ η2 if and only if det(η1◦η−12 ) > 0. Of course, in fact, each
η determines a choice of an ordered basis (a1, . . . , an) in W (by ai = η−1(ei))
and conversely, if the ordered basis (a1, . . . , an) is given, then it appoints an
isomorphism η by η(ai) = ei. Let ηW and ηV represent orientations in W and
V , respectively. The orientation of the pair of spaces (W,V ) can be considered
as the orientation in W ×V determined by (ηW , ηV ):W ×V → RdimW ×RdimV .
Clearly if we change the orientation in W or in V , then automatically the same
happens in W ×V , but if we change it in both W and V , then the orientation in
W × V stays the same.

Definition 3.1. By an oriented Fredholm operator we understand a pair
(L, [(η, η′)]) where L ∈ Φn(E,E′) and [(η, η′)] is a fixed orientation in KerL ×
CokerL, determined by isomorphisms

η: KerL→ RdimKerL, η′: CokerL→ RdimCokerL.

Let now L be oriented in the sense of Definition 3.1 and P , Q be respective
projections in E and E′. Then [η′] determines an orientation [η′Q] in ImQ as
follows: η′Q = η

′ ◦ z ◦ i, where i: ImQ→ E′ is the inclusion and z:E′ → CokerL
is the quotient map. Observe that if (η1, η′1) ∈ [(η, η′)] and η′1 6∈ [η′], then also
η1 6∈ [η], but still (η1, (ηQ)′1) ∈ [(η, η′Q)], where (ηQ)′1 = η′1 ◦ z ◦ i.
Observe that if dimE,dimE′ < ∞, then there is an one-to-one correspon-

dence between the orientation of L and the orientation of the pair of spaces
(E,E′). Indeed, let (ξ, ξ′) represents the orientation in E × E′, η′ in CokerL
and η′1 in ImL. We take in ImQ the orientation [η

′
Q] determined, like earlier, by

η′ and in KerP the orientation represented by η1 := η′1 ◦ L|KerP . At last we se-
lect the isomorphism η: KerL→ RdimKerL such that ((η1, η), (η′1, η′Q)) ∈ [(ξ, ξ′)].
Then KerL× Coker is oriented by (η, η′). The inverse process is analogous.
Definition 3.1 allows of course CokerL ≡ {0}. Then the orientation of L

depends only on the orientation of KerL, but is still equivalent to the orientation
of E × E′. Then, if L is not an isomorphism, we can determine its orientation
by orientation in E × E′.
But if L is an isomorphism (then i(L) = 0), also KerL ≡ 0, so L does

not have orientation in the sense of the above definition. Nevertheless we can
consider two orientations of L as determined by orientations of E × E′ (the
positive one, if L saves an orientation in E × E′ and the negative one, if not).
If dimE,dimE′ = ∞, then in the similar way, the orientation of L ∈

Φn(E,E′) is equivalent to the orientation in E1 × E′1, where E1, E′1 are fixed
finite dimensional subspaces of E and E′ respectively, such that ImQ ⊂ E′1
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and E1 = L−1(E′1). Indeed, observe that, there is a finite dimensional sub-
space W of E′1 such that W ⊕ ImQ = E′1. Hence E1 = KP (W ) ⊕ KerL and
L|E1 ∈ Φn(E1, E′1) with KerL = KerL|E1 and CokerL = CokerL|E1 .
Another notion of orientation for Fredholm operators was proposed by Be-

nevieri and Furi in [3]. They generalized the earlier ideas of Mawhin (see [24]).
Below we introduce their definition and compare it with Definition 3.1. But
since in [3] most considerations concern Fredholm operators of index 0, while in
this paper the ones of nonnegative index, we have to adapt and develop some
notions.
At the beginning we remind that if the linear operator T :E → E is of the

form T = IE − K, where dim ImK = k < ∞, then for any finite dimensional
subspace E1 containing ImK, T (E1) ⊂ E1. The determinant detT (equal to
det(η ◦T |E1η−1), where η determines the orientation in E1), does not depend on
a choice of E1 (and an orientation [η]).Thus, by detT we understand detT |E1 ,
where E1 is an arbitrary space satisfying the above conditions.
Let L ∈ Φn(E,E′). Denote by z(L) the map acting between E and E′×Rn,

given by z(L)(x) = (L(x), 0). Clearly z(L) ∈ Φ0(E,E′ × Rn). We say that a
linear operator A:E → E′ × Rn with finite dimensional range is a corrector of
L, provided z(L) +A is an isomorphism. We consider the following equivalence
relation in the set C(L) of all correctors of L. Observe that if A,B ∈ C(L), then

(z(L) +B)−1 ◦ (z(L) +A) = (z(L) +B)−1 ◦ (z(L) +B +A−B)
= IE − (z(L) +B)−1 ◦ (A−B)

and (z(L) +B)−1 ◦ (A−B) has a finite dimensional range. Thus

det((z(L) +B)−1 ◦ (z(L) +A))

is well defined. We say that A is L-equivalent to B if

det(z(L) +B)−1 ◦ (z(L) +A) > 0

(see [2] or [3] for details).

Definition 3.2 (see [2], [3], compare also [29]). An orientation of a Fred-
holm operator L is one of two equivalence classes of C(L). L is oriented, when
the orientation is chosen.

The following notion will help us to compare Definitions 3.2 and 3.1.

Definition 3.3. A corrector A of a Fredholm operator L ∈ Φn(E,E′) is
called canonical with respect to the projections P , Q and the orientation [(η, η′)],
if A|KerP ≡ 0 and A|KerL: KerL → ImQ × Rn is an isomorphism which saves
the respective orientations, i.e. such that

det((η′Q, IRn) ◦A|KerL ◦ η−1) > 0,
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where η′Q determines the respective orientation in ImQ (
3)

Obviously, since KerL and ImQ are finite dimensional spaces, a canonical
corrector exists. If i(L) = 0, then z(L) = L and the canonical corrector is an
isomorphism between KerL and ImQ, if dimKerL > 0, or is equal to 0, if L is
an isomorphism. If i(L) > 0, then any corrector must be a nontrivial operator.

Proposition 3.4. Let L ∈ Φn(E,E′) and P , Q, [(η, η′)] be fixed. Then all
canonical correctors of L are L-equivalent.

Proof. Let A and B be canonical correctors of L. Observe that

det((z(L) +A)−1 ◦ (z(L) +B))
= det(η ◦ ((z(L) +A)|KerL)−1 ◦ (z(L) +B)|KerL ◦ η−1)
= det(η ◦ ((A|KerL)−1 ◦B|KerL ◦ η−1)
= det(η ◦ (A|KerL)−1 ◦ (η′Q, IRn)−1 ◦ (η′Q, IRn) ◦B|KerL ◦ η−1)
= det[((η′Q, IRn) ◦A|KerL ◦ η−1)−1] det((η′Q, IRn) ◦B|KerL ◦ η−1) > 0, �

Now it is obvious that if (η, η′) determines the orientation of L, then the corre-
sponding equivalence class of correctors contains the canonical ones. Conversely,
if we choose the orientation [B] of L in the sense of Definition 3.2, then there
always exists A ∈ [B] such that A|KerP ≡ 0 and A|KerL: KerL → ImQ × Rn

is an isomorphism. Indeed, we take an arbitrary isomorphism A between re-
spective spaces, if A does not belong to [B], then A does, where A is given by
A(η−1(e1)) = −A(η−1(e1)), A(η−1(ei)) = A(η−1(ei)) for i 6= 1. One can take
any orientation η′ in CokerL and select an orientation η of KerL such that A
will be a canonical corrector.
Further we will prove that this correspondence does not depend on the choice

of projections P and Q.
The following proposition is an obvious consequence of the definition. Let

L ∈ Φn(E,E′) be oriented in the sense of Definition 3.1 by [(η, η′)].

Proposition 3.5. Let V =W ⊕ ImQ, W ⊂ ImL and dimV <∞. Choose
the orientation in W represented by η′W :W → Rs. In KP (W ) the orientation is
carried back by L from W , i.e. determined by ηW := η′W ◦ L|KP (W ). Then for
any canonical corrector B of L, the operator

(z(L) +B)|KP (W )⊕KerL:KP (W )⊕KerL→W ⊕ ImQ× Rn

saves the orientation, i.e.

det((η′W , η
′
Q, IRn) ◦ (z(L) +B)|KP (W )⊕KerL ◦ (ηW , η)

−1) > 0.

(3) i.e. η′Q = η′ ◦ z ◦ i and i: Im Q → E′ is the inclusion, z: E′ → Coker L is the quotient
map.
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Proposition 3.6. Let PA, QA and PB, QB be two pairs of projections sat-
isfying (2.1) and A, B be a canonical correctors of L defined for PA, QA and
PB, QB, respectively. Then A and B are L-equivalent.

Proof. Assume for the moment that P = PA = PB and define V :=
ImQA + ImQB , W := V ∩ ImL. Observe that W ⊕ ImQA = V =W ⊕ ImQB ,
hence, if we fix the orientation [η′W ] in W , then the orientation in V can be
determined by (η′W , η

′
QA
) or by (η′W , η

′
QB
). We shall prove that in fact they are

the same, i.e. det((η′W , η
′
QB
) ◦ IV ◦ (η′W , η′QA)

−1) > 0. Indeed, if V 3 y = y1+ yA
and yA = y2 + yB , where y1, y2 ∈ W , yA ∈ ImQA, yB ∈ ImQB , then
IV (y) = y1 + (yA − yB) + yB and yA − yB ∈ W . Let s: ImQA → ImQB be
such that s(yA) = yB and w:V →W be given by w(y) = y1 + (yA − yB). Then

IV =
[
IW w|ImQA
0 s

]
But η′QB ◦s◦ (η

′
QA
)−1 = (η′ ◦z ◦ iB)◦s◦ (η′ ◦z ◦ iA)−1 = η′ ◦z ◦ iB ◦s◦ (z ◦ iA)−1 ◦

(η′)−1 (4), and since z(yA) = z(yB), we know that z◦iB ◦s◦(z◦iA)−1 = ICokerL,
therefore det(η′QB ◦ s ◦ (η

′
QA
)−1) = det(η′ ◦ ICokerL ◦ (η′−1)) = 1 > 0. At last we

get det((η′W , η
′
QB
) ◦ IV ◦ (η′W , η′QA)

−1) = 1 > 0.
Denote by ξ = (ηW , η) the map determining an orientation in E1 := KP (W )⊕

KerL (comp. Proposition 3.5). Since Im (A − B) ⊂ V × Rn, and consequently
Im ((z(L) +B)−1 ◦ (z(L) +A)) = Im (z(L) +B)−1 ◦ (A−B) ⊂ E1, we get

det((z(L) +B)−1 ◦ (z(L) +A))
= det(ξ ◦ (z(L) +B)−1 ◦ (z(L) +A)|E1 ◦ ξ−1)
= det(ξ ◦ ((z(L) +B)|E1)−1 ◦ (η′W , η′QB , IRn)−1

◦ (IV , IRn) ◦ (η′W , η′QA , IRn) ◦ (z(L) +A)|E1 ◦ ξ−1)
= det(ξ ◦ ((z(L) +B)|E1)−1 ◦ (η′W , η′QB , IRn)−1)

· det((η′W , η′QA , IRn) ◦ (z(L) +A)|E1 ◦ ξ−1)
= det(((η′W , η

′
QB , IRn) ◦ (z(L) +B)|E1 ◦ ξ−1)−1)

· det((η′W , η′QA , IRn) ◦ (z(L) +A)|E1 ◦ ξ−1) > 0.

If now PA 6= PB , then still E1 = KPA(W )⊕KerL = KPB (W )⊕KerL with
orientations determined by

ξA := (η′W ◦ L|KPA (W ), η) and ξB := (η′W ◦ L|KPB (W ), η),

respectively. Since

η′W ◦ L|KPB (W ) = η
′
W ◦ L|KPA (W ) ◦KPA ◦ L|KPB (W ),

(4) Recall that z: E′ → Coker L is a quotient map; iA: Im QA → E′ and iB : Im B → E′

are the inclusions
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then considering the identity map IE1 , we have

IE1(xB + x1) = KPA ◦ L|KPB (W )(xB) + x1 + (xB −KPA ◦ L|KPB (W )(xB)),

where xB ∈ KPB (W ), x1 ∈ KerL, and using arguments similar to the above, one
can prove that ξA and ξB determines the same orientation in E1. Proposition 3.5
completes the proof. �

Remark 3.7. We have just proved that there is a one-to-one correspondence
between the orientations of L defined in Definition 3.2 and in Definition 3.1, and
that it does not depend on a choice of P and Q. Thus, from now we shall identify
both orientations. By a positive corrector of an oriented Fredholm operator L
we will understand any one belonging to the chosen orientation (in the sense of
Definition 3.2). It means that it is L-equivalent to any (then, by Propositions 3.4
and 3.5 to all) canonical corrector for the orientation described in Definition 3.1.
Observe that all positive correctors of L are L-equivalent and any corrector being
L-equivalent to a positive one is also positive.

Below we introduce a few technical results concerning correctors which will
be used in the further considerations.

Remark 3.8 (comp. [3]). Let E′1 be a finite dimensional subspace of E
′

such that E′ = ImL + E′1 and let E1 = L−1(E′1). Then L1:E1 → E′1 defined
by L1(x) = L(x) is a Fredholm operator and i(L1) = i(L). Since E1 is finite
dimensional, one can split E in a topological direct sum E = E0⊕E1. Moreover,
also E′ = L(E0)⊕E1, because L0: = L|E0 :E0 → E′0 is an isomorphism. Thus L
and z(L) can be represented by

L =
[
L0 0
0 L1

]
and z(L) =

[
L0 0
0 z(L1)

]
.

A linear operator A:E → E′ × Ri(L), represented by

A =
[
0 0
0 A1

]
,

is a corrector of L if and only if A1 is a corrector of L1. One can easily check, that
two correctors of L1 are L1-equivalent if and only if the corresponding correctors
of L are L-equivalent.

Proposition 3.9. Let L ∈ Φn(E,E′) be oriented by [(η, η′)]. If V = W ⊕
ImQ ⊂ E′ and dimV < ∞, then there is a positive corrector B of L such that
ImB = V × Rn.

Proof. Without loosing the generality we can assume that W ⊂ ImL (see
Remark 2.1) and, since W is finite dimensional, that ImL =W0 ⊕W . Let take
a canonical corrector A and put B|KerL ≡ A, B|KP (W )(x) = (1/2)L(x) and
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B|KP (W0) ≡ 0. One can easily check that B is L-equivalent to A, thus it is a
positive corrector of L. �

Corollary 3.10. Proposition 3.5 is also true for any positive corrector A
such that ImA ⊂ V × Rn.

3.2. The continuity of the orientation. Some results of this subsection
may be compared with [3], where Fredholm operators of index 0 are considered.

Proposition 3.11. If A and B are L-equivalent correctors of L∈Φn(E,E′),
then there is an open neighborhood V ⊂ Φn(E,E′) of L such that for any L1 ∈ V ,
A and B are L1-equivalent correctors of L1.

Proof. At first observe that, since Iso (E,E′ × Rn) is an open subset of
L(E,E′ × Rn), there is εA > 0 such that for any Z ∈ L(E,E′ × Rn),

if ‖L+A− Z‖ < εA, then Z ∈ Iso (E,E′ × Rn).

Thus for any L1 ∈ Φn(E,E′) such that ‖L− L1‖ < εA, also

‖z(L) +A− (z(L1) +A)‖ < εA,

what implies that z(L1) + A is an isomorphism and consequently, that A is
a corrector of L1.
In the same way we get εB for B. Let ε < min(εA, εB). For L1 ∈ Φn(E,E′),

‖L − L1‖ < ε, A and B are correctors of L1. We have to prove that A and B
are L1-equivalent.
Observe that for a finite dimensional space

E1 = Im ((z(L) +B)−1 ◦ (A−B)) + Im ((z(L1) +B)−1 ◦ (A−B)),

since ((z(L)+B)−1◦(z(L)+A))(E1) ⊂ E1 and ((z(L1)+B)−1◦(z(L1)+A))(E1) ⊂
E1, we get for any isomorphism ξ:E1 → Rk determining the orientation of E1,

det((z(L)+B)−1 ◦ (z(L)+A)) = det(ξ ◦ (z(L)+B)−1 ◦ (z(L)+A)|E1 ◦ ξ−1) > 0

and

det((z(L1)+B)−1 ◦ (z(L1)+A)) = det(ξ ◦ (z(L1)+B)−1 ◦ (z(L1)+A)|E1 ◦ ξ−1).

Of course, if dimE <∞, one can take simply E1 = E. But det: Iso (Rk,Rk)
→ R is a continuous function, so if ξ ◦ (z(L) + B)−1 ◦ (z(L) + A)|E1 ◦ ξ−1

and ξ ◦ (z(L1) + B)−1 ◦ (z(L1) + A)|E1 ◦ ξ−1 are “sufficiently close”, then also
det(ξ ◦ (z(L1) +B)−1 ◦ (z(L1) +A)|E1 ◦ ξ−1) > 0.
Observe that for any ε > 0 and L1 ∈ Φn(E,E′) such that ‖L − L1‖ <

ε/‖z(L) +B‖ also ‖z(L)+B−(z(L1)+B)‖ < ε/‖z(L) +B‖. Then by Lemma 2.2
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and Corollary 2.3,

‖(z(L) +B)−1 ◦ (z(L) +A)− (z(L1) +B)−1 ◦ (z(L1) +A)‖
= ‖(z(L) +B)−1 ◦ (z(L) +A)− IE1 + IE1 − (z(L1) +B)−1 ◦ (z(L1) +A)‖
= ‖(z(L) +B)−1 ◦ (z(L) +A)− (z(L) +B)−1 ◦ (z(L) +B)
+ (z(L1) +B)−1 ◦ (z(L1) +B)− (z(L1) +B)−1 ◦ (z(L1) +A)‖

= ‖(z(L) +B)−1 ◦ (z(L) +A− z(L)−B)
+ (z(L1) +B)−1 ◦ (z(L1) +A− z(L1)−B)‖

= ‖(z(L) +B)−1 ◦ (A−B) + (z(L1) +B)−1 ◦ (A−B)‖
= ‖((z(L) +B)−1 − (z(L1) +B)−1) ◦ (A−B)‖
≤‖(z(L) +B)−1 − (z(L1) +B)−1‖ · ‖A−B‖
< 2ε‖(z(L) +B)−1‖ · ‖A−B‖.

Therefore we can choose ε > 0 so small that the distance between

(z(L) +B)−1 ◦ (z(L) +A)|E1 and (z(L1) +B)−1 ◦ (z(L1) +A)|E1

is sufficient for det(ξ ◦ (z(L1) +B)−1 ◦ (z(L1) +A)|E1 ◦ ξ−1) > 0. �

Thus, if L ∈ Φn(E,E′) is an oriented Fredholm operator, then it deter-
mines the choice of “consistent” orientations of maps in some its neighborhood
in Φn(E,E′). Of course the neighborhood depends on the choice of a corrector.
However, it is worth stressing, that the sets of positive correctors may differ even
for close operators, as one can see in the example below. Here, and in the next
examples we describe the orientations of the finite dimensional spaces by the
ordered basis (see remarks at the beginning of Section 3).

Example 3.12. Let E = R3, E′ = R2, Lt(x, y, z) = (x, ty). Observe that
A:R3 → R2 × R given by A(x, y, z) = ((0, y), z) is a corrector of Lt, if e.g.
t ∈ [−1/2, 1/2], while C:R3 → R2×R, C(x, y, z) = ((0, 0), z) is a corrector of Lt
for any t 6= 0, but not of L0. Also C(L0) 6⊂ C(Lt), since Bt:R3 → R2 × R given
by B(x, y, z) = ((x,−ty),−z) is a corrector of L0 but not of Lt.
Moreover, A determines an orientation of the pair of spaces

KerL0 = Lin ((0, 1, 0), (0, 0, 1)) and CokerL0 ≡ Lin ((0, 1))

as follows: we choose the orientation [(0, 1)] of CokerL0, it determines the ori-
entation [(0, 1)] in ImQ for Q(x, y) := (0, y), the orientation [(0,1,0),(0,0,1)]
in KerL0 is transposed by the canonical corrector A from ImQ × R, since
A(0, 1, 0) = ((0, 1), 0) and A(0, 0, 1) = ((0, 0), 1).
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For t 6= 0, KerLt = Lin ((0, 0, 1)) and CokerLt = {0}, thus the orientation
depends only on those of KerLt. Observe that Ct:R3 → R2 × R,

Ct(x, y, z) =

{
((0, 0), z) for t > 0,

((0, 0),−z) for t < 0,

is a corrector of Lt, Lt-equivalent to A. Thus, the “consistent” orientation of
KerLt is transposed by Ct from {0} × R, namely it is [(0, 0, 1)] for t > 0 and
[(0, 0,−1)] for t < 0.

We will describe the notion of the orientability for continuous maps of the
form HL: Λ→ Φn(E,E′), where Λ is a topological space.
Let Φ̂n(E,E′) = {(L, ω) | L ∈ Φn(E,E′), ω be a class of L-equivalent

correctors of L}. Observe that the sets OW,A := {(L, ω) ∈ Φ̂n(E,E′) | L ∈
W, A ∈ ω}, where W is an open subset of Φn(E,E′), A:E → E′ × Rn is
bounded linear and dim ImA < ∞, form a basis for a topology on Φ̂n(E,E′).
Moreover, the projection r: (L, ω) 7→ L is a double covering of Φn(E,E′).

Definition 3.13. An orientation of the map HL defined above is a con-
tinuous map ĤL: Λ → Φ̂n(E,E′), such that r ◦ ĤL = HL, i.e. ĤL is a lifting
of HL. The map HL is orientable when it admits an orientation and oriented if
an orientation is chosen. The subset W of Φn(E,E′) is orientable (oriented) if
so is the inclusion map i:W → Φn(E,E′).

Remark 3.14. Let HL: Λ→ Φn(E,E′), then:
(a) Any restriction of HL is orientable provided so is HL.
(b) If Λ1 is a topological space, s: Λ1 → Λ is a continuous map and HL is

orientable, then HL ◦ s is orientable.
(c) IfHL is orientable, then z(HL): Λ→ Φ0(E,E′×Rn), given by z(HL)(λ) =

(HL(λ), 0) is orientable in the sense of definition from [3] (i.e. Definition 3.13 for
n = 0).
(d) HL is orientable, if HL(Λ) is contained in an orientable subset of the set

Φn(E,E′).
(e) If Λ is path connected, then HL: Λ → Φn(E,E′) is orientable, and then

the choice of orientation for HL(λ) in one λ ∈ Λ determines the orientations for
the others.
Moreover,
(f) by Proposition 3.11, Φn(E,E′) is locally orientable, and therefore any

continuous HL: Λ→ Φn(E,E′) is locally orientable. If dimE, dimE′ <∞, then
Φn(E,E′) is simply orientable.
(g) In particular, the homotopy HL: [0, 1]→ Φn(E,E′) is orientable and the

orientation may be determined by orientation of e.g. HL(0). But if we have two
homotopies HL, H ′L such that HL(0) = H ′L(0) = L0, HL(1) = H ′L(1) = L1
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and for both we take the orientation determined by the same orientation of
L0, then orientation of HL(1) can be different than that of H ′L(1) (see e.g. [3,
Theorem 3.15]). It may happen when Iso (E,E′) is nonempty and connected i.e.
in some infinitely dimensional spaces (see e.g. [23], [27]).

It is also worth mentioning that another interesting notion of the orientation
for maps of the form HL: Λ→ Φ0(E,E′) (and some more general, but still with
Fredholm index equal to 0) was earlier proposed by Fitzpatrick, Pejsachowicz
and Rabier (see e.g. [11], [12]). One can find the comparison in [3].

4. The homotopy property of the coincidence index

As we have mentioned in Introduction, the main aim of this paper is to
generalize the homotopy property of the coincidence index, which is used in
problems of the form

L(x) ∈ φ(x),

where L ∈ Φn(E,E′), and φ:X ( E′, (X ⊂ E) is a multivalued map. Till now
the homotopy property has concerned the situation with fixed L, i.e. Ind L(φ1, X)
= Ind L(φ2, X), provided φ1 and φ2 are homotopic (see [22], [14]). But it is quite
natural to admit also a continuous deformation of L (see [12], [2], [9] for Fredholm
operators of index 0).
In this section we first remind briefly a definition of the generalized coin-

cidence index and then we pass to the main results concerning the homotopy
property.

4.1. Coincidence index. The coincidence index Ind L((p, q), X) of a com-
pact admissible pair X

p←− Γ q−→ E′ is defined in [22] or, in a bit different way,
in [14]. We do not repeat the whole construction, but only discuss some parts of
it, strictly connected with the homotopy property. All other properties of Ind ,
i.e. existence, localization, additivity, restriction, as well as the very definition,
stay the same if we admit the continuous deformation of L. But we would like
to stress that, because of possible “dimensional defect”, this coincidence index
is an element of the respective stable homotopy group. However, if there is no
“dimensional defect”, i.e. i(L) = 0, then the coincidence index is in fact equiva-
lent to the fixed point index for admissible maps, when L = id (comp. [22]), or
to the index due to Mawhin in a general case (see [26], [25]).
Assume for a moment that E = Rm, E′ = Rn, m ≥ n, U is an open

bounded subset of Rm and clU p←− Γ q−→ E′ is an admissible pair such that
q(p−1(bdU)) ⊂ Rn \ {0} and then of course q(p−1(bdU)) ⊂ Rn \ Bn(0, ρ) for
some ρ > 0. We consider the problem

0 ∈ q(p−1(x))
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with dimensional defect equal to m− n. In the following sequence of maps:

(Rn,Rn \Bn(0, ρ)) q←− (Γ,Γ′) p−→ (clU,bdU)
i1−→ (Rm,Rm \ U) i2←− (Rm,Rm \Bm(0, r)),

Γ′ := p−1(bdU), i1, i2 are the inclusions and r > 0 is such that clU ⊂ B(0, r).
All these maps induce maps between respective cohomotopy sets. Moreover,
since p and i1 induce bijections (see [22] or [14] for details), the map

K := i#2 ◦ (i
#
1 )
−1 ◦ (p#)−1 ◦ q# : πn(Sn) ∼= πn(Rn,Rn \Bn(0, ρ))

→ πn(Rm,Rm \Bm(0, ε)) ∼= πn(Sm).

is well defined.

Definition 4.1. By the generalized degree of the admissible pair (p, q) on
the set U in 0 we understand the element

deg((p, q), U, 0) := K(1) ∈ πn(Sm),

where 1 is the homotopy class of the identity map id:Sn → Sn in πn(Sn) ∼= Z.

Let now T , V be finite dimensional Banach spaces with dimT = m, dimV =
n and U be an open bounded subset of T . The isomorphisms ηT :T → Rm and
ηV :V → Rn determine the orientations in T and V . Assume that

(clU,bdU)
p←− (p−1(clU), p−1(bdU)) q−→ (V, V \BV (0, ρ))

is an admissible pair.

Definition 4.2. By the generalized degree of (p, q) given above on the set
U in 0 we understand the element

deg((p, q), U, 0) := deg((ηT ◦ p, ηV ◦ q), ηT (U), 0).

Of course the degree (in particular, its “sign”) defined above depends on the
choice of orientations in T and V .

As one can see, the generalized degree deg defined above depends on dimen-
sions m and n. There is also a possibility to define so-called stable degree Deg
which depends only on the difference m−n and belongs to the stable homotopy
group of spheres Πm−n, when one uses deg and respective suspension operators
(see [22], [15]). We only mention that for m < 2n− 1, deg and Deg are equal.
This generalized degree is a homotopy invariant with usual properties: exis-

tence, localization, additivity (see [22], [14] or [13]). We explain here only the
homotopy property, since it is strictly connected with our considerations.
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Theorem 4.3. Let clU × [0, 1] R←− Γ S−→ Rn be a homotopy between two
admissible pairs (p0, q0) and (p1, q1) such that 0 6∈ S(R−1(x, t)) for x ∈ bdU ,
t ∈ [0, 1]. Then deg((p0, q0), U, 0) = deg((p1, q1), U, 0).

If we consider the coincidence problem

L(x) ∈ q(p−1(x)),

where L:T → V is a Fredholm operator, then it is of course equivalent to the
following

0 ∈ L(x)− q(p−1(x)).

Observe that the map on the right hand side is admissible and determined by
a pair (p, L ◦ p− q). Therefore the following definition of the coincidence index
is correct:

Ind L((p, q), U) := Deg ((p, L ◦ p− q), U, 0).

Let now E, E′ be infinite dimensional Banach spaces, L:E → E′ be an
oriented (see Definition 3.1) Fredholm operator of index i(L) = k ≥ 0. Like
earlier we denote by P , Q the respective projections, by KP the map inverse
to L|KerP and by η, η′, η′Q the isomorphisms representing orientations in KerL,
CokerL and in ImQ, respectively (η′Q is determined by η

′, comp. Section 3).
Assume that V is a finite dimensional subspace of E′ such that V = W ⊕

ImQ and η′W represents a fixed orientation in W . Then (η
′
Q, η

′
W ) represents an

orientation in V . In L−1(V ) = KP (W )⊕KerL we choose the orientation given
by (ηKP (W ), η), where ηKP (W ) = η

′
W ◦ L|KP (W ).

Remark 4.4. Observe that, if we take another projection P1:E → E satis-

fying respective conditions, then the composition KP (W )
L−→ W

KP1−→ KP1(W )
saves the orientation, i.e. ηKP1 (W ) ◦ KP1 ◦ L|KP (W ) = η′W ◦ L|KP1 (W ) ◦ KP1 ◦
L|KP (W ) = η′W ◦ L|KP (W ) = ηKP (W ).

Assume that an admissible pair clU
p←− Γ q←− E′ is compact and that the

set of coincidence points C = {x ∈ clU | L(x) ∈ q(p−1(x))} is compact and
contained in U (recall that U is an open bounded subset of E). Since L|clU is
a proper map, D := {y ∈ E′ | y ∈ L(x) − q(p−1(x)), x ∈ bdU} is a closed set
and 0 6∈ D. Therefore there exists ε0 > 0 such that D ∩BE

′
(0, 2ε0) = ∅.

Take ε ∈ (0, ε0]. Let lε: cl q(p−1(U)) → E′ be a Schauder projection (comp.
§II in [8]) of the compact set cl q(p−1(U)) on the finite dimensional subspace
Z ∈ E′ such that ‖lε(y)− y‖E′ < ε for any y ∈ cl q(p−1(U)).
One can find a finite dimensional subspace W of ImL such that Z ⊂ V :=

W ⊕ ImQ and UV := U ∩ L−1(V ) 6= ∅. Observe that the closure and the
boundary of UV in L−1(V ) are contained in clU ∩L−1(V ) and in bdU ∩L−1(V ),
respectively.
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Moreover, the pair (pV , qV ), where pV = p|p−1(clUV ): p−1(clUV ) → clUV ,
qV = lε ◦ q|p−1(clUV ): p−1(clUV )→ V is admissible and LV := L|L−1(V ):L−1(V )
→ V is a Fredholm operator with i(LV ) = i(L) = k.
Without loosing the generality one can assume that dimV := n ≥ k + 2.

Then, since m := dimL−1(V ) = n+ k, we get m > n and m < 2n− 1. For such
m and n the following definition is correct, i.e. does not depend on the choice of
ε, lε, W , P and Q (see [22], [14]).

Definition 4.5. By the generalized coincidence index of the compact ad-
missible pair (p, q) satisfying the above assumptions we understand the element

Ind L((p, q), U) := deg((pV , LV ◦ pV − qV ), UV , 0) ∈ πn(Sm) ∼= Πk.

Remark 4.6. This generalized index has also usual properties like existence,
additivity, localization and homotopy (see [22], [14]). But it of course depends
on the (fixed) operator L and the orientation of the space KerL×CokerL. The
homotopy property is the following:

• Let clU × [0, 1] R←− Γ S−→ E′ be the compact homotopy between two
admissible pairs (p0, q0) and (p1, q1) such that L(x) 6∈ S(R−1(x, t)) for
x ∈ bdU , t ∈ [0, 1]. Then Ind L((p0, q0), U) = Ind L((p1, q1), U).

This property follows from the respective one for the finite dimensional case
if one uses reduction similar to that in the very definition.

As we have mentioned earlier, in this property the homotopy concerns only
admissible pairs, while the Fredholm operator is not being changed.

4.2. The general homotopy property. Let us introduce at the beginning
the homotopy which will be considered and its simple properties. Like earlier E,
E′ are real Banach spaces and L ∈ Φn(E,E′).

Definition 4.7. Let L0, L1 ∈ Φn(E,E′) and φ0, φ1 be admissible maps.
We say that pairs (L0, φ0) and (L1, φ1) are homotopic (and write (L0, φ0) ∼
(L1, φ1)), if there is a pair of maps (HL,Hφ) such that HL: [0, 1] → Φn(E,E′)
is continuous and Hφ is a homotopy of admissible maps in the sense of Defini-
tion 2.5.

Remark 4.8. The map H:E × [0, 1] → E′ defined by H(x, t) = HL(t)(x)
(HL is as in the above definition) is a homotopy between two single-valued con-
tinuous maps L0 and L1. We will often use the map H denoting it also by HL.
Conversely, if such homotopy H is given, and one knows that it is uniformly

continuous on clBE(0, 1) and for any t ∈ [0, 1], H( · , t) ∈ Φn(E,E′), then the
map [0, 1] 3 t 7→ H( · , t) ∈ Φn(E,E′) is continuous. Observe that, if e.g. dimE,
dimE′ < ∞, then a linear homotopy between two Fredholm operators satisfies
this conditions.
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Proposition 4.9. If (HL,Hφ) is a homotopy between (L0, φ0) and (L1, φ1),
where φi is determined by (pi, qi), then there is a homotopy H̃φ between admis-
sible pairs (p0, L0 ◦ p0− q0) and (p1, L1 ◦ p1− q1). Moreover, if HL and Hφ have
not a coincidence point in some set W ⊂ E (i.e. for any t ∈ [0, 1] and x ∈ W ,
HL(t)(x) 6∈ Hφ(x, t)), then 0 6∈ H̃φ(x, t) for any x ∈W , t ∈ [0, 1].

Proof. If (R,S) determines Hφ, then H̃φ is determined by (R, S̃), where
S̃: Γ→ E′ and S̃(γ) = HL(R(γ))− S(γ).
Assume now that 0 ∈ S̃(R−1(x, t)). It means that

0 ∈ (HL ◦R− S)({γ ∈ Γ | R(γ) = (x, t)})

and, consequently, that

0 ∈ {HL ◦R(γ)− S(γ) | γ ∈ Γ, R(γ) = (x, t)}.

Then 0 ∈ {HL(x, t) − S(R−1(x, t)) | (x, t) ∈ X × [0, 1]} and hence HL(x, t) ∈
S(R−1(x, t)), what implies that x 6∈W . �

Now we want to consider a homotopy from Definition 4.7 and prove the
general homotopy property. The main idea of reducing the problem to a finite
dimensional situation is in fact the same, but tools are quite different then earlier.
They are partially taken from [4], but here we use them for another purpose.
We start from preparing some additional maps. Let HL: [0, 1] → Φr(E,E′)

be an oriented homotopy. For simplicity we denote HL(t) by Lt. Take any
λ ∈ [0, 1] and a positive corrector A of Lλ. There is δ1 > 0 such that for any
t ∈ (λ − δ1, λ + δ1) ∩ [0, 1], A is a positive corrector of Lt (see Proposition 3.11
and Remark 3.14). Moreover, ImA ⊂ E′ × Rr and dim ImA < ∞. Therefore
there exists a closed subspace E′0 of E

′ such that (E′0 × {0})⊕ ImA = E′ × Rr

(see Remark 2.1). Of course also

Im z(Lt) + ImA = E′ × Rr for t ∈ (λ− δ1, λ+ δ1) ∩ [0, 1].

Take G:E′ → E′ being a linear projection onto E′0 with G(y) = 0 for any
(y, 0) ∈ ImA. Then KerG × Rr = ImA and G is a Fredholm operator of
index i(G) = 0. Define the map G:E′ × Rr → E′ × Rr by G(x, s) = (G(x), 0).
Consider the composition G ◦ Lt, for any t ∈ (λ − δ1, λ + δ1) ∩ [0, 1]. Observe
that ImG ◦ (z(Lt)+A) = E′×{0}, since z(Lt)+A is an isomorphism, and that
for x ∈ E

G ◦ (z(Lt) +A)(x) = G ◦ z(Lt)(x) +G ◦A(x) = (G ◦ Lt(x), 0).

Therefore ImG ◦ Lt = E′0. Moreover,

dimKer (G ◦ Lt) = i(G ◦ Lt) + dimCoker (G ◦ Lt)
= i(G) + i(Lt) + dim ImA− r = 0 + r + dim ImA− r = dim ImA.
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Let E0 = (z(Lλ) +A)−1(E′0 × {0}). Observe that

(4.1) E0 ⊕KerG ◦ Lλ = E,

and G ◦Lλ|E0 :E0 → E′0 is a linear isomorphism. Therefore, since Iso (E0, E
′
0) is

an open subset of Φ(E0, E′0), there exists δ2 > 0 such that δ2 ≤ δ1 and for any
t ∈ (λ− δ2, λ+ δ2) ∩ [0, 1] the map G ◦ Lt|E0 :E0 → E′0 is also an isomorphism.
Consider a family of maps (comp. [4]) Bt:E → E for t ∈ (λ−δ2, λ+δ2)∩[0, 1]

defined by

Bλ = idE ,

Bt(x) = x− (G ◦ Lt|E0)−1 ◦ (G ◦ Lt)(x1),

where x = x0+x1 and x0 ∈ E0, x1 ∈ KerG ◦Lλ (see (4.1) above). Observe that
Bt(KerG ◦ Lλ) ⊂ KerG ◦ Lt, since

(G ◦ Lt)(Bt(x1)) = (G ◦ Lt)(x1 − (G ◦ Lt|E0)−1 ◦ (G ◦ Lt)(x1))
= G ◦ Lt(x1)−G ◦ Lt(x1) = 0.

Moreover, KerG ◦ Lt ⊂ Bt(Ker (G ◦ Lλ)). Indeed, if x = x0 + x1 ∈ KerG ◦ Lt,
where, like earlier, x0 ∈ E0, x1 ∈ KerG ◦ Lλ, then G ◦ Lt(x0 + x1) = 0, i.e.
G ◦ Lt(x0) = −G ◦ Lt(x1). Then Bt(x1) = x1 − (G ◦ Lt|E0)−1 ◦ G ◦ Lt(x1) =
x1 − (G ◦Lt|E0)−1 ◦ (−G ◦Lt(x0)) = x1 + x0 = x, what means that x = Bt(x1).
Hence

Bt(KerG ◦ Lλ) = KerG ◦ Lt.

Lemma 4.10. Bt defined above is an isomorphism for any t ∈ (λ − δ2, λ +
δ2) ∩ [0, 1].

Proof. If Bt(x0+x1) = 0, then x0+x1−(G◦Lt|E0)−1◦(G◦Lt)(x1) = 0. But,
since (G◦Lt|E0)−1◦(G◦Lt)(x1) ∈ E0, we get x0−(G◦Lt|E0)−1◦(G◦Lt)(x1) = 0
and x1 = 0, what implies (G◦Lt|E0)−1◦(G◦Lt)(x1) = 0 and consequently x0 = 0,
what proves that Bt is a monomorphism.
Take any v ∈ E, v = v0 + v1, where v0 ∈ E0 and v1 ∈ KerG ◦ Lλ. Let

y0 = G ◦ Lt(v0) and y1 = G ◦ Lt(v1). Of course both y0 and y1 belong to E′0.
For x0 = (G ◦ Lt|E0)−1(y0 + y1) ∈ E0 and x1 = v1,

Bt(x0 + x1) = x0 + x1 − (G ◦ Lt|E0)−1 ◦ (G ◦ Lt)(x1)
= (G ◦ Lt|E0)−1(y0 + y1) + v1 − (G ◦ Lt|E0)−1 ◦ (G ◦ Lt)(v1)
= (G ◦ Lt|E0)−1(y0) + (G ◦ Lt|E0)−1(y1) + v1 − (G ◦ Lt|E0)−1(y1)
= v0 + v1 = v,

what implies that Bt is an epimorphism and ends the proof. �
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Lemma 4.11. The map (λ − δ2, λ + δ2) ∩ [0, 1] 3 t 7→ Bt ∈ Φ(E,E) is
continuous.

Proof. Take any

t0 ∈ (λ− δ2, λ+ δ2) ∩ [0, 1] and ε ∈ (0, ‖Lt0‖ · ‖(G ◦ Lt0 |E0)−1‖).

Since HL is continuous, there is δ > 0 such that,

‖Lt − Lt0‖ < ε/(4 · ‖(G ◦ Lt0 |E0)−1‖2 · ‖Lt0‖)

for t ∈ (t0 − δ, t0 + δ) ⊂ (λ− δ2, λ+ δ2) ∩ [0, 1].
Observe that, for any x = x0 + x1, where x0 ∈ E0 and x1 ∈ KerG ◦ Lλ,

‖Bt0(x) −Bt(x)‖
= ‖x− (G ◦ Lt0 |E0)−1 ◦ (G ◦ Lt0(x1)− x+ (G ◦ Lt|E0)−1 ◦ (G ◦ Lt)(x1)‖
= ‖(G ◦ Lt0 |E0)−1 ◦ (G ◦ Lt0)(x1)− (G ◦ Lt|E0)−1 ◦ (G ◦ Lt0)(x1)
+ (G ◦ Lt|E0)−1 ◦ (G ◦ Lt0)(x1)− (G ◦ Lt|E0)−1 ◦ (G ◦ Lt)(x1)‖

≤‖(G ◦ Lt0 |E0)−1 − (G ◦ Lt|E0)−1‖ · ‖G‖ · ‖Lt0(x1)‖+
+ ‖(G ◦ Lt|E0)−1‖ · ‖G‖ · ‖Lt0(x1)− Lt(x1)‖

= ‖(G ◦ Lt0 |E0)−1 − (G ◦ Lt|E0)−1‖ · ‖Lt0(x1)‖
+ ‖(G ◦ Lt|E0)−1‖ · ‖Lt0(x1)− Lt(x1)‖.

Hence

‖Bt0−Bt‖ ≤ ‖(G◦Lt0 |E0)−1−(G◦Lt|E0)−1‖·‖Lt0‖+‖(G◦Lt|E0)−1‖·‖Lt0−Lt‖.

But since
‖(G ◦ Lt0 |E0)− (G ◦ Lt|E0)‖ ≤ ‖Lt0 − Lt‖,

i.e.

‖(G ◦ Lt0 |E0)− (G ◦ Lt|E0)‖ ≤
ε′

‖(G ◦ Lt0 |E0)−1‖
,

where ε′ = ε/(4‖Lt0‖ · ‖(G ◦ Lt0 |E0)−1‖) and ε′ ≤ 1/4, Lemma 2.2 implies

‖(G ◦ Lt0 |E0)−1 − (G ◦ Lt|E0)−1‖ · ‖Lt0‖+ ‖(G ◦ Lt|E0)−1‖ · ‖Lt0 − Lt‖
≤ 2ε′ · ‖(G ◦ Lt0 |E0)−1‖ · ‖Lt0‖

+ (1 + 2ε′) · ‖(G ◦ Lt0 |E0)−1‖ ·
ε

4 · ‖(G ◦ Lt0 |E0)−1‖2 · ‖Lt0‖

≤ ε

2
+ 2 · ε

4
= ε. �

Let V = W ⊕ ImQλ be a finite dimensional subspace of E′ (for example
containing the image of the Schauder projection of some compact set clφ(U) for
compact map φ), where Qλ is a respective projection for Lλ. Without loosing the
generality we assume that W ⊂ ImLλ (see Remark 2.1). There exists a positive
corrector A of Lλ such that ImA = V ×Rr (see Proposition 3.9). Let E′0, E0, G,
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Bt be defined like above for this A. Observe that then L−1t (V ) = KerG ◦ Lt =
(z(Lt) +A)−1(ImA) for any t ∈ (λ− δ2, λ+ δ2) ∩ [0, 1].
If we fix the orientation [ξ] in V , then we automatically get orientations

[(ξ, IRn)] in ImA and [(ξ, IRn) ◦ (z(Lt) + A)|Ker (G◦Lt)] in KerG ◦ Lt for t ∈
(λ− δ2, λ+ δ2) ∩ [0, 1].

Lemma 4.12. There is δ3 > 0, such that for t ∈ (λ − δ3, λ + δ3) ∩ [0, 1] the
map Bt|KerG◦Lλ : KerG◦Lλ → KerG◦Lt saves the orientations described above.

Proof. Observe that (Lt ◦Bt(KerG◦Lλ))×{0} ⊂ ImA for t ∈ (λ− δ2, λ+
δ2) ∩ [0, 1]. Indeed, if x1 ∈ KerG ◦ Lλ and Lt(x1) = y0 + y1, where y0 ∈ E′0 and
(y1, 0) ∈ ImA, then G ◦ Lt(x1) = y0 and, consequently, (G ◦ Lt|E0)−1(y0) = x ∈
E0, what means that Lt(x) = y0 + y1 with (y1, 0) ∈ ImA. Therefore

Lt ◦Bt(x1) = Lt(x1 − (G ◦ Lt|E0)−1 ◦G ◦ Lt(x1))
= Lt(x1)− Lt(x) = y0 + y1 − y0 − y1 = y1 − y1,

and (y1 − y1, 0) ∈ ImA.
Since

det((ξ, IRr ) ◦ (z(Lλ) +A)|KerG◦Lλ ◦ [(ξ, IRr ) ◦ (z(Lλ) +A)|Ker (G◦Lλ)]
−1) > 0,

and the following maps t 7→ Lt, t 7→ Bt, det are continuous, there is δ3 ∈ (0, δ2)
such that for t ∈ (λ− δ3, λ+ δ3) ∩ [0, 1], A is also a corrector of Lt ◦Bt (5) and

det((ξ, IRr ) ◦ (z(Lt ◦Bt)+A)|KerG◦Lλ ◦ [(ξ, IRr ) ◦ (z(Lλ)+A)|Ker (G◦Lλ)]
−1) > 0.

But observe that A ◦Bt|KerG◦Lλ(x) = A(x− (G ◦Lt|E0)−1 ◦G ◦Lt(x)) = A(x),
because (G ◦ Lt|E0)−1 ◦ G ◦ Lt(x) ∈ E0. Then (z(Lt ◦ Bt) + A)|KerG◦Lλ =
(z(Lt ◦Bt) +A ◦Bt)|KerG◦Lλ = (z(Lt +A) ◦Bt)|KerG◦Lλ and hence

0 < det((ξ, IRr ) ◦ (z(Lt ◦Bt) +A)|KerG◦Lλ ◦ [(ξ, IRr )

◦ (z(Lλ) +A)|Ker (G◦Lλ)]
−1)

= det((ξ, IRr ) ◦ (z(Lt) +A) ◦Bt|KerG◦Lλ) ◦ [(ξ, IRr )

◦ (z(Lλ) +A)|Ker (G◦Lλ)]
−1)

= det((ξ, IRr ) ◦ (z(Lt) +A)|KerG◦Lt ◦ [(ξ, IRr ) ◦ (z(Lt) +A)|Ker (G◦Lt)]
−1

◦ [(ξ, IRr ) ◦ (z(Lt) +A)|Ker (G◦Lt)]
◦Bt|KerG◦Lλ ◦ [(ξ, IRr ) ◦ (z(Lλ) +A)|Ker (G◦Lλ)]

−1)

= det((ξ, IRr ) ◦ (z(Lt) +A)|KerG◦Lt ◦ [(ξ, IRr ) ◦ (z(Lt) +A)|Ker (G◦Lt)]
−1)

· det([(ξ, IRr ) ◦ (z(Lt) +A)|Ker (G◦Lt)]
◦Bt|KerG◦Lλ ◦ [(ξ, IRr ) ◦ (z(Lλ) +A)|Ker (G◦Lλ)]

−1),

(5) see Proposition 3.11, Lt ◦Bt is sufficiently close to Lλ
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that implies

det([(ξ, IRr ) ◦ (z(Lt) +A)|Ker (G◦Lt)] ◦Bt|KerG◦Lλ
◦ [(ξ, IRr ) ◦ (z(Lλ) +A)|Ker (G◦Lλ)]

−1) > 0,

i.e. Bt saves the respective orientations. �

Now assume additionally that t ∈ (λ − δ3, λ + δ3) ∩ [0, 1] and U is an open
subset of E.

Lemma 4.13. The set Ũ := {(x, t) | x ∈ U ∩ (Lt ◦ Bt)−1(V )} is open in
Ker (G ◦ Lλ)× ((λ− δ3, λ+ δ3) ∩ [0, 1]).

Proof. Take any (x, t) ∈ Ũ . It means that x ∈ U and Lt ◦ Bt(x) ∈ W .
Let ε1 > 0 be such that BE(x, ε1) ∈ U and ε2 > 0 such that (t − ε2, t + ε2) ⊂
(λ − δ3, λ + δ3) ∩ [0, 1]. We shall prove that BE×((λ−δ3,λ+δ3)∩[0,1])((x, t), ε) ∩
(KerG ◦ Lλ × ((λ− δ3, λ+ δ3) ∩ [0, 1])) ⊂ Ũ for ε := min(ε1, ε2).
If (x′, t′) ∈ BE×((λ−δ3,λ+δ3)∩[0,1])((x, t), ε)∩KerG◦Lλ×((λ−δ3, λ+δ3)∩[0, 1]),

then x′ ∈ BE×((λ−δ3,λ+δ3)∩[0,1])((x, t), ε) and x′ ∈ KerG ◦ Lλ and t′ ∈ (t − ε,
t + ε) ∩ ((λ − δ3, λ + δ3) ∩ [0, 1]). But condition x′ ∈ KerG ◦ Lλ implies that
Bt′(x′) ∈ KerG◦Lt′ , what means thatG◦Lt′◦Bt′(x′) = 0, and then Lt′◦Bt′(x′) ∈
KerG = V . We have just proved that x′ ∈ U∩(Lt′◦Bt′)−1(V ) and, consequently,
that (x′, t′) ∈ Ũ . �

Below we give two examples illustrating notions described above.

Example 4.14. As in Example 3.12, let E = R3, E′ = R2 and Lt(x, y, z) =
(x, ty). Like earlier A:R3 → R2 ×R given by A(x, y, z) = ((0, y), z) is a positive
corrector of L0 (and consequently for Lt if t ∈ [−1/2, 1/2]). Observe that ImA =
Lin (((0, 1), 0), ((0, 0), 1)), so we define E′0 = Lin ((1, 0)) ⊂ R2 and G:R2 → R2,
G(u, v) = (u, 0). Consequently, KerG ◦ L0 = Lin ((0, 1, 0), (0, 0, 1)) = KerG ◦ Lt
and E0 = Lin ((1, 0, 0)). Then

Bt(x, y, z) = (x, y, z)− (G ◦ Lt|E0)−1 ◦G ◦ Lt(0, y, z)
= (x, y, z)− (G ◦ Lt|E0)−1(0, 0) = (x, y, z)− (0, 0, 0) = (x, y, z),

i.e. Bt = IR3 .
In ImA the orientation is represented by [((0, 1), 0), ((0, 0), 1)] and then in

KerG◦L0 = KerL0 we get the orientation [(0, 1, 0), (0, 0, 1)] (since A is a canon-
ical corrector of L0), while in KerG◦Lt the induced orientation is represented by
[(0, 1/(1 + t), 0), (0, 0, 1)], because (z(Lt) + A)((0, 1/(1 + t), 0) = ((0, 1), 0) and
(z(Lt) + A)((0, 0, 1)) = ((0, 0), 1). The determinant of Bt in these orientations
is positive. Indeed,

detBt =
∣∣∣∣ 1 + t 00 1

∣∣∣∣ = 1 + t > 0.
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Example 4.15. Let E = E′ = l2, t ∈ [−1/2, 1/2] and Lt((x1, x2, . . . )) =
(((1 − t)(x1 + x2), t2(x3 − x1), x4 − tx2, . . . , xn+1 − xn−1, . . . )). Observe that
KerL0 = Lin ((1,−1, 0, 0, . . . ), (0, 0, 1, 0, . . . )), CokerL0 ≡ Lin ((0, 1, 0, 0, . . . ))
and for t 6= 0, KerLt = Lin ((1,−1, 1,−t, t,−t2, t2,−t3, . . . )), CokerLt ≡ 0.
Then i(Lt) = 1. For the finite dimensional subspace V = Lin ((1, 0, 0, . . . ), (0, 1,
0, . . . ), (0, 0, 1, 0, . . . )), the positive corrector A: l2 → l2 × R of L0 such that
ImA = V × R can be given by A((x1, x2, . . . )) = ((x2, x3, x4, 0, . . . ),−x1) (the
orientation in KerL0 and CokerL0 is determined by specified elements in given
order).
We get E′0 = Lin ((0, 0, 0, 1, 0, . . . ), (0, 0, 0, 0, 1, 0, . . . ), . . . ) and the projection

G: l2 → E′0, i.e. G((y1, y2, . . . )) = (0, 0, 0, y4, y5, . . . ). Then

G ◦ L0((x1, x2, . . . )) = (0, 0, 0, x5, x6, . . . ),
G ◦ Lt((x1, x2, . . . )) = (0, 0, 0, x5 − tx3, x6 − tx4, . . . )

and, consequently,

KerG ◦ L0 =Lin ((1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), (0, 0, 0, 1, 0, . . . )),
E0 =Lin ((0, 0, 0, 0, 1, 0, . . . ), (0, 0, 0, 0, 0, 1, 0, . . . ), . . . ),

KerG ◦ Lt =Lin ((1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, 0, t, 0, t2, 0, t3, . . . ),
(0, 0, 0, 1, 0, t, 0, t2, . . . )).

Observe that dimKerG ◦ L0 = dimKerG ◦ Lt = 4. We fix the orientation in
ImA:

[((1, 0, 0, . . . ), 0), ((0, 1, 0, . . . ), 0), ((0, 0, 1, 0, . . . ), 0), ((0, 0, . . . ), 1)]

and carry it back to KerG ◦ Lt by (z(Lt) + A)−1. Namely we get the following
orientations:[(

0,
1
2
, 0, . . .

)
, (0, 0, 1, 0, . . . ),

(
0, 0, 0,

1
2
, 0, . . .

)
,

(
− 1, 1
2
, 0, . . .

)]
in KerG ◦ L0 and[(

0,
1
2− t

, 0,
t

4− 2t
, 0,

t2

4− 2t
, . . .

)
,

(
0, 0,

1
1 + t2

, 0,
t

1 + t2
, . . .

)
,(

0, 0, 0,
1
2
, 0,

t

2
, . . .

)
,

(
− 1, 1− t
2− t

,
−t2

1 + t2
,
t(1− t)
4− 2t

,
−t3

1 + t2
,
t2(1− t)
4− 2t

, . . .

)]
in KerG ◦ Lt for t 6= 0.
The maps Bt: l2 → l2 are given by

Bt((x1, x2, . . . )) = (x1, x2, x3, x4, x5 − tx3, x6 − tx4, x7 − t2x3, x8 − t2x4, . . . ).

For any t ∈ [−1/2, 1/2], Bt|KerG◦L0 : KerG◦L0 → KerG◦Lt saves the orientation
described above.
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We are going to prove that if (HL,Hφ) is the homotopy between (L0, (p0, q0))
and (L1, (p1, q1)) in the sense of Definition 4.7, such that HL is orientable and
Hφ is compact, then

Ind L0((p0, q0), U) = Ind L1((p1, q1), U).

In a finite dimensional situation it is an obvious consequence of the definition
and some properties (see Proposition 4.9, Theorem 4.3 and remarks after). But
we have to generalize earlier considerations before applying in the infinite di-
mensional case. Namely we need an open set U ⊂ E × [0, 1] instead of U × [0, 1]
as a domain of the homotopy.

Lemma 4.16. Let U be an open subset of E × [0, 1] such that Uα := {x ∈
E | (x, α) ∈ U} 6= ∅ for any α ∈ [0, 1] and Z be a compact subset of U . Denote:
Zα := {x ∈ E | (x, α) ∈ Z}, Ũ :=

⋃
α∈[0,1] Uα. For any α ∈ [0, 1] there are

δ > 0, ρ > 0, such that

(Ũ×((α−δ, α+δ)∩[0, 1]))∩clOE×[0,1]δ (Z) ⊂ clOEρ (Zα)×((α−δ, α+δ)∩[0, 1]) ⊂ U .

Proof. Let ρ = 1/2dist (Z,bdU) > 0 (6). Then it is easy to see that for
any δ ≤ ρ/2, the last inclusion is true, i.e. OEρ (Zα)× ((α− δ, α+ δ)∩ [0, 1]) ⊂ U .
We prove that there is δ ≤ ρ/2 such that

⋃
β∈(α−δ,α+δ)∩[0,1] Zβ × {β} ⊂

Oρ/2(Zα×{α}). Suppose for a moment that it is not true. Then, for any n ∈ N,
there is (xn, tn) ∈

⋃
β∈(α−1/n,α+1/n)∩[0,1] Zβ×{β} and (xn, tn) 6∈ Oρ/2(Zα×{α}).

It means that xn ∈ Ztn and, since tn ∈ (α−1/n, α+1/n)∩ [0, 1], limn→∞ tn = α.
But Z is a compact set, so (passing to the subsequence, if necessary) we get
limn→∞(xn, tn) = (x0, α) ∈ Z, and, consequently, x0 ∈ Zα. Therefore, there is
n0 ∈ N, such that (xn, tn) ∈ Oρ/2(Zα × {α}) for n > n0, and this contradiction
proves the hypothesis.
Let now (x, t) ∈ (Ũ × ((α − δ, α + δ) ∩ [0, 1])) ∩ clOδ(Z). Then t ∈ (α − δ,

α + δ) and there is (xz, tz) ∈ Z such that ‖(x, t) − (xz, tz)‖ ≤ δ. But (xz, tz) ∈⋃
β∈(α−δ,α+δ)∩[0,1] Zβ × {β}. Therefore (xz, tz) ∈ Oρ/2(Zα × {α}), i.e. there is

xα ∈ Zα such that ‖(xα, α)−(xz, tz)‖ < ρ/2. Hence ‖(x, t)−(xα, α)‖ < δ+ρ/2 ≤
ρ, what implies that (x, t) ∈ clOEρ (Zα)× ((α− δ, α+ δ)∩ [0, 1]) and the proof is
complete. �

Observe that the family of sets {Oα := OEρ (Zα) × ((α − δα, α + δα) ∩
[0, 1])}α∈[0,1] composes an open covering of a compact set Z, so one can choose
a finite sequence (α1, . . . αk) such that Z ⊂

⋃
i∈{1,... ,k}Oαi . Without loosing

the generality we assume that [0, 1] ⊂
⋃
i∈{1,... ,k}(αi − δαi , αi + δαi) (since the

respective construction is valid also for Zα = ∅).

(6) Recall that for a compact set Z and a closed set A, dist (Z, A) := supz∈Z infv∈A ‖z−v‖.
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Consider a compact admissible pair of maps clU R←− Γ S−→ Rn, where U is
an open subset of Rm × [0, 1] and assume that Z = {x ∈ clU | 0 ∈ S(R−1(x))}
is a compact set contained in U .
Let pα:R−1(Uα × {α}) → Uα and qα:R−1(Uα × {α}) → Rn be given by

(pα(γ), α) = R(γ) and qα(γ) = S(γ), where Uα is as in Lemma 4.16.

Lemma 4.17. Under the above assumptions and notation,

deg((p0, q0), U0, 0) = deg((p1, q1), U1, 0).

Proof. Let Z ⊂
⋃
i∈{1,... ,k}Oαi where Oαi = OEρ (Zαi)×((αi−δi, αi+δi)∩

[0, 1]). Observe that, by the localization property of the generalized degree deg,
for any t ∈ (αi − δi, αi + δi),

deg((pt, qt), Ut, 0) = deg((pt, qt),OEρ (Zαi), 0),

and, by Remark 2.6(c) and the homotopy property of deg,

deg((pt, qt), (OEρ (Zαi), 0) = deg((pαi , qαi),OEρ (Zαi), 0).

Once more by the localization property we get

deg((pαi , qαi), (OEρ (Zαi), 0) = deg((pαi , qαi), Uαi , 0).

It means that the map t 7→ deg((pt, qt), Ut, 0) is constant in (αi − δi, αi + δi) ∩
[0, 1]. Therefore, since {Oαi}i∈{1,... ,k} is a finite covering of Z, and [0, 1] ⊂⋃
i∈1,... ,k}(αi − δαi , αi + δαi),

deg((p0, q0), U0, 0) = deg((p1, q1), U1, 0). �

Corollary 4.18. Let V , T be Banach spaces, dimV = n, dimT = m

and ηV , ηT represent their orientations, respectively. If W is an open subset of
T × [0, 1] and clW r←− Γ s−→ Rn is an admissible pair such that Z = {x ∈ clW |
0 ∈ s(r−1(x))} is a compact set contained in W, then deg((r0, s0),W0, 0) =
deg((r1, s1),W1, 0), where Wα := {x ∈ V | (x, α) ∈ W} and rα : r−1(Wα ×
{α}) → Wα, sα : r−1(Wα × {α}) → T are given by (rα(γ), α) = r(γ) and
sα(γ) = s(γ).

Proof. It is enough to define U := ηV (W), R := ηV ◦ r, S := ηT ◦ s, and
then apply Lemma 4.17 and Definition 4.2. �

Observe that the above lemma is in fact the mentioned generalization of the
homotopy property for deg. We will use it in the last lemma.
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Lemma 4.19. Let F :Rm → Rm be a linear isomorphism, H: [0, 1]→ Iso (Rm,
Rm) be a continuous map such that H(0) ≡ IRn , H(1) ≡ F and detH(α) > 0
for any α ∈ [0, 1]. Then

deg((F−1 ◦ p, q), F−1(U), 0) = deg((p, q), U, 0)

for any admissible pair

(clU,bdU)× [0, 1] p←− (p−1(clU), p−1(bdU)) q−→ (Rn,Rn \Bn(0, ρ)).

Proof. Let R: Γ× [0, 1]→
⋃
α∈[0,1]((H(α))

−1(U)×{α}) and S: Γ× [0, 1]→
Rn be given by R(γ, α) = ((H(α))−1 ◦ p(γ), α) and S(γ, α) = q(γ). We shall
prove that all assumptions of Lemma 4.17 are satisfied.
Observe that the map H̃:Rm × [0, 1] → Rm × [0, 1] given by H̃(x, t) =

(H(t)(x), t) is a continuous map. Therefore U :=
⋃
α∈[0,1]((H(α))

−1(U) × {α})
is open in Rm× [0, 1], since it is equal to the preimage H̃−1(U× [0, 1]) of an open
set U × [0, 1].
It is easy to see that the map S is continuous, since so is q. Examine the

map R. Let (γ, t) ∈ Γ× [0, 1], and ε ∈ (0, 2‖(H(t))−1‖ · ‖p(γ)‖).
There are δ1 > 0 and δ2 > 0, such that, if ‖γ′ − γ‖ < δ1, then

‖p(γ′)− p(γ)‖ < ε

4‖(H(t))−1‖
,

and, if |t′ − t| < δ2, then

‖H(t′)−H(t)‖ < ε

4‖p(γ)‖ · ‖(H(t))−1‖
.

This implies that
‖(H(t))−1 − (H(t′))−1‖ ≤ 2 ε

4‖p(γ)‖
(see Lemma 2.2). Observe that, if ‖(γ′, t′)− (γ, t)‖ < δ := min(δ1, δ2), then

‖R(γ, t) −R(γ′, t′)‖ = ‖(H(t))−1 ◦ p(γ)− (H(t′))−1 ◦ p(γ′)‖
≤‖(H(t))−1 ◦ p(γ)− (H(t))−1 ◦ p(γ′)‖
+ ‖(H(t))−1 ◦ p(γ′)− (H(t′))−1 ◦ p(γ′)‖

≤‖(H(t))−1‖ · ‖p(γ)− p(γ′)‖+ ‖(H(t))−1 − (H(t′))−1‖ · ‖p(γ′)‖

≤‖(H(t))−1‖ · ε

4‖(H(t))−1‖
+

ε

2‖p(γ)‖
· (‖p(γ′)− p(γ)‖+ ‖p(γ)‖)

≤ ε

4
+

ε

2‖p(γ)‖
· ε

4‖(H(t))−1‖
+
ε

2
< ε,

what implies that R is continuous. Moreover, since

R−1(x, t) = (((H(t))−1 ◦ p)−1(x), t) = (p−1(H(t)(x)), t),

and (p, q) is an admissible pair, (R,S) is also admissible. Then, by Lemma 4.17,
the proof is complete. �
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Now we are ready to prove the main result of this paper, i.e. the homotopy
property of the coincidence index Ind , which admits a continuous change of
Fredholm operator.
Assume that HL is an oriented homotopy between L0 and L1 and that the

admissible pair clU × [0, 1] r←− Γ s−→ E′ determines the compact homotopy
between (p0, q0) and (p1, q1), where U is an open subset of E. As earlier we will
write Lt := HL(t), qt := s|r−1(U×{t}) and pt when (pt(γ), t) = r(γ). Moreover,
let Z = {x ∈ E | Lt(x) ∈ qt(p−1t (x)) for t ∈ [0, 1]} be compact and contained
in U .

Theorem 4.20. Under the above assumptions

Ind L0((p0, q0), U) = Ind L1((p1, q1), U).

Proof. Take any λ ∈ [0, 1] and a finite dimensional subspace V = W ⊕
ImQλ of E′ sufficiently close to s(r−1(clU×[0, 1]) (i.e. containing lε(s(r−1(clU×
[0, 1])), where lε is the respective Schauder projection). We have proved that
there is δ3 > 0 such that the family of isomorphisms {Bt}t∈(λ−δ3,λ+δ3) has prop-
erties described in Lemmas 4.10–4.13. We will prove that Ind Lt((pt, qt), U) is
constant in (λ− δ3, λ+ δ3).
Let t ∈ (λ− δ3, λ+ δ3). Observe that, by the definition,

Ind Lλ((pλ, qλ), U) = deg((pλ, (Lλ)V ◦ pλ − qλ),Wλ, 0),

and
Ind Lt((pt, qt, U) = deg((pt, (Lt)V ◦ pt − qt),Wt, 0),

where Wλ = U ∩ L−1λ (V ), Wt = Bt(U) ∩ L−1t (V ), pt = pt|pt−1(clWt), pλ =
pλ|p−1λ (clWλ), qt = lε ◦ qt|pt−1(clWt), qλ = lε ◦ qλ|p−1λ (clWλ), (Lλ)V = Lλ|L−1λ (V )
and (Lt)V = Lt|L−1t (V ). But of course L

−1
λ (V ) and L

−1
t (V ) may be different

and, consequently, one can not at once compare the right hand sides of the
above equalities.
To simplify the notations, here and to the end of this proof, by Bt we un-

derstand Bt|KerG◦Lλ , and by (r, s) the pair determining the homotopy between
(pλ, qλ) and (pt, qt) (in fact (r, s) should be changed like in Remark 2.6(c).
Consider the following commutative diagram:

clUλ
Bλ //

iλ

��

clWλ p−1λ (clWλ)
pλoo

jλ

��

fqλ

''NNNNNNNNNNNNN

cl Ũ
⋃
(p−1τ (clWτ )× {τ})

Roo S // V

clUt
Bt

//

it

OO

clWt p−1t (clWt)pt
oo

jt

OO

eqt

77ooooooooooooo
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where Ũ is as in Lemma 4.13, Uλ = Wλ, Ut = B−1t (Wt) = B−1t (L
−1
t (V ) ∩ U),

q̃t = (Lt)V ◦ pt − qt, q̃λ = (Lλ)V ◦ pλ − qλ and pτ = r|r−1(Uτ×{τ}).
Observe that R and S given by R(γ, τ) = (B−1τ ◦ pτ (γ), τ) and S(γ, τ) =

(Lτ )V ◦ pτ (γ) − qτ (γ) (7) are both continuous. Indeed, all maps composing S
are the respective restrictions of continuous maps while R is a composition of an
admissible map r and a map (x, τ) 7→ (B−1τ (x), τ). The last one is continuous
since, by Lemmas 2.2 and 4.11, one can always find δ > 0 such that for |τ−τ ′| < δ,
B−1τ and B

−1
τ ′ are as close as it is needed. Moreover, (R,S) is admissible, so it

is the homotopy between (B−1λ ◦ pλ, qλ) and (B
−1
t ◦ pt, qt).

By Lemma 4.17 and Corollary 4.18, since Bλ is the identity map,

(4.2) deg((pλ, (Lλ)V ◦ pλ − qλ),Wλ, 0) = deg((B−1t ◦ pt, (Lt)V ◦ pt − qt), Ut, 0)
= deg((B−1t ◦ pt, (Lt)V ◦Bt ◦ (Bt)−1 ◦ pt − qt), Ut, 0).

Denote by ξ the isomorphism representing the fixed orientation in V and by
χt the isomorphisms determining suitable orientations in KerG ◦ Lt for any
t ∈ (λ − δ3, λ + δ3), i.e. χt = (ξ, IRr ) ◦ (z(Lt) + A)|Ker (G◦Lt). We have proved
in Lemma 4.12 that det(χt ◦ Bt ◦ χ−1λ ) > 0. Moreover, by the definition (see
Definition 4.2), in fact

(4.3) deg((pt, (Lt)V ◦pt−qt),Wt, 0) = deg((χt◦pt, ξ◦((Lt)V ◦pt−qt)), χt(Wt), 0),

and, by Lemma 4.19 for F = χt ◦Bt ◦ χ−1λ ,

(4.4) deg((χt ◦ pt, ξ ◦ ((Lt)V ◦ pt − qt)), χt(Wt), 0)
= deg(((χt ◦Bt ◦ χ−1λ )

−1χt ◦ pt, ξ ◦ ((Lt)V ◦ pt − qt)),
(χt ◦Bt ◦ χ−1λ )

−1(χt(Wt)), 0)
= deg((χλ ◦ (Bt)−1 ◦ pt, ξ ◦ ((Lt)V ◦ pt − qt)), χλ ◦ (Bt)−1(Wt), 0)
= deg((χλ ◦ (Bt)−1 ◦ pt, ξ ◦ ((Lt)V ◦Bt ◦ (Bt)−1 ◦ pt − qt)), χλ(Ut), 0).

Once more, by Definition 4.2,

deg((χλ ◦ (Bt)−1 ◦ pt, ξ ◦ ((Lt)V ◦Bt ◦ (Bt)−1 ◦ pt − qt)), χλ(Ut), 0)
= deg(((Bt)−1 ◦ pt, (Lt)V ◦Bt ◦ (Bt)−1 ◦ pt − qt), Ut, 0).

Hence by (4.3) and (4.4),

deg((pt, (Lt)V ◦ pt − qt),Wt, 0)
= deg(((Bt)−1 ◦ pt, (Lt)V ◦Bt ◦ (Bt)−1 ◦ pt − qt), Ut, 0),

and finally, by (4.2),

deg((pλ, (Lλ)V ◦ pλ − qλ),Wλ, 0) = deg((pt, (Lt)V ◦ pt − qt),Wt, 0),

(7) By qτ we understand the map lε ◦ s|r−1(Uτ×{τ})
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what implies that

Ind Lλ((pλ, qλ), U) = Ind Lt((pt, qt), U).

It means that the map [0, 1] 3 t 7→ Ind Lt((pt, qt), U) is locally constant. But
since [0, 1] is a compact connected set, it is also globally constant and the proof
is complete. �

At the end observe that quite often it is sufficient to know whether the
homotopy invariant is not trivial. As a simple corollary of our consideration we
get the following form of the homotopy property:

Corollary 4.21. If (L0, (p0, q0)) and (L1, (p1, q1)) are homotopic in the
sense of Definition 4.7, then

Ind L0((p0, q0), U) = 0 if and only if Ind L1((p1, q1), U) = 0.

One can find similar results for Fredholm operators of index 0 e.g. in [9].
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