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MULTIPLICITY OF SOLUTIONS
FOR ASYMPTOTICALLY LINEAR

n-TH ORDER BOUNDARY VALUE PROBLEMS

Francesca Dalbono

Abstract. In this paper we investigate existence and multiplicity of so-
lutions, with prescribed nodal properties, to a two-point boundary value

problem of asymptotically linear n-th order equations. The proof follows

a shooting approach and it is based on the weighted eigenvalue theory for
linear n-th order boundary value problems.

1. Introduction

This paper is devoted to the study of the existence and multiplicity of solu-
tions, characterized by prescribed nodal properties, to an asymptotically linear
n-th order equation satisfying two-point boundary conditions. In particular, we
are interested in the study of a problem of the form

(1.1)


u(n)(t) + f(t, u(t))u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1},
u(π) = u′(π) = 0,

where {i2, . . . , in−1} is a fixed set of distinct integers contained in {0, . . . , n−1},
n ≥ 3 and f : [0, π]× R → (−∞, 0) is a continuous function.
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We require our problem to be asymptotically linear in a neighbourhood of
the origin and at infinity, by assuming that there exist two continuous maps
a0, a∞: [0, π] → (−∞, 0] which do not vanish identically on any interval in [0, π]
and satisfy

lim
|x|→∞

f(t, x) = a∞(t),(1.2)

lim
x→0

f(t, x) = a0(t),(1.3)

uniformly in t ∈ [0, π].
The second order, asymptotically linear case (obtained by setting n = 2 in

our equation and by replacing the two-point boundary conditions of (1.1) with
Dirichlet boundary conditions) has been widely investigated in the literature. In
this particular framework, multiplicity results have been recently achieved under
more general assumptions (for instance, less regularity is required on the non-
linearities, the sign conditions are relaxed, so that an indefinite asymptotic be-
haviour is allowed, and asymmetric asymptotic situations are analyzed). Among
the various reference concerning this topic, we wish to quote the paper [32] by
Sadyrbaev, the interesting contribution [30] by Rynne, handling with superlinear
nonlinearities near +∞, the more recent work [6] and its asymmetric generaliza-
tion [4] (cf. also references therein).

The aim of this paper consists in extending to the n-th order case some of
the well-known results established for second order problems under asymptoti-
cally linear assumptions. We are also interested in describing some continuous
dependence properties for weighted eigenvalues and eigenfunctions of linear n-th
order boundary value problems (cf. Propositions 2.2 and 2.4) and in developing
a detailed analysis of the behaviour of the nonlinearity when it is applied to the
solutions of prescribed Cauchy problems associated to (1.1) with suitably large
and small initial data (cf. Propositions 2.6 and 2.7). Our multiplicity result fol-
lows by using a shooting approach which combines these properties with degree
theory.

There also exists an extensive literature concerning existence and multiplicity
of solutions for fourth order asymptotically linear problems. An interesting con-
tribution in this setting has been provided by Henrard–Sadyrbaev in [16] where
an asymmetric situation is treated. In [16] multiplicity is achieved by combining
topological techniques with the conjugate point theory, provided that the non-
linearity satisfies some monotonicity conditions. Among many other multiplicity
results concerning fourth order boundary value problems, we wish to mention
the work [25] by Ma treating the special case of nonlinear terms of the form
f(t, x) = a(t)f(x). The article [25] is based on bifurcation arguments. Bifurca-
tion techniques have been also employed in [21] and in [24] to get multiplicity of
nodal solutions for fourth order, asymmetric boundary value problems.
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Recently, many authors have focused their attention on the search of multiple
solutions for asymptotically linear systems of second order ODE’s. We refer to
the papers [3], [5] and [9] for some contribution in this direction.

The next references we wish to quote rely on general order problems. The
list of multiplicity results for n-th order problems available in the literature is
shorter. Existence of infinitely many solutions has been established for superlin-
ear problems by De Coster–Gaudenzi in [7], where a shooting method is adopted,
and by Rynne in the paper [31], based on a bifurcation theory approach. In [7]
the authors impose (n− 1) conditions at the initial point t = 0, while in [31] it
is considered an even order, self-adjoint operator.

In the asymptotically jumping context, we refer to the work [29] by Rynne,
regarding existence and multiplicity of solutions of even order problems endowed
with self-adjoint boundary conditions.

Interesting multiplicity results can be also found in the papers [13] and [28].
We conclude the list of references by quoting some articles providing existence

of solutions (which, in many cases, are positive) for general order boundary value
problems. In particular, among all the contributions in this widely investigated
area, we wish to mention the works [1], [2], [12], [15], [17], [23], [27], [33] and
[34] (cf. also references therein). Superlinear and sublinear problems have been
mostly studied and periodic solutions are achieved in [23].

Before presenting our main result, let us recall the eigenvalue theory for n-th
order linear problems developed by Elias in [11].

Proposition 1.1 (cf. [11]). For every a ∈ D := {a ∈ C([0, π]; (−∞, 0]) :
a 6≡ 0 on any interval in [0, π]}, the problem

(1.4)


u(n)(t) + λa(t)u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1},
u(π) = u′(π) = 0,

admits a positive monotone increasing sequence of eigenvalues

0 < λ1(a) < λ2(a) < . . . < λj(a) →∞ as j →∞.

To every eigenvalue there corresponds an essentially unique eigenfunction and
the eigenfunction corresponding to λj(a) has exactly (j − 1) zeros on (0, π).

Let us finally introduce one more notation, denoting by i0 and i1 the two
different integers belonging to the set {0, . . . , n− 1} \ {i2, . . . , in−1}.

We can now state our main multiplicity result.

Theorem 1.2. Let f : [0, π] × R → (−∞, 0) be a continuous function satis-
fying (1.2) and (1.3). Assume that there exist N, M ∈ N (M ≤ N) such that

(1.5) either λN (a0) < 1 < λM (a∞) or λN (a∞) < 1 < λM (a0).
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Then, for every h ∈ N with M ≤ h ≤ N problem (1.1) has at least two solutions
uh and vh with u(i0)

h (0) < 0 and v(i0)
h (0) > 0 having exactly (h−1) zeros in (0, π).

In order to prove our main result we first use degree theory to find a pla-
nar closed connected set chatacterized by properties involving related weighted
eigenvalues. Then, a shooting argument developed on a suitable angular func-
tion will lead to the required multiplicity result. We point out that a similar
procedure has been followed in [5] to achieve existence of multiple solutions for
planar systems of second order equations.

We conclude this introductory section with some notation. Denote by ‖·‖n−1

the Cn−1([0, π])-norm. We set R := {(x, y) : y > 0} ∪ {(x, 0) : x < 0}, Q2 :=
(−∞, 0)× (0,∞) and Q4 := (0,∞)× (−∞, 0).

2. Preliminary results

The first part of this section is devoted to present some results concerning
the continuity of eigenvalues and eigenfunctions of problem (1.4). We initially
recall a classical theorem regarding the continuous dependence of the solutions
of n-th order linear ODEs on the data.

Proposition 2.1 (cf. [35]). Consider a0 ∈ D, λ0 > 0, t0 ∈ [0, π] and
−→x 0 ∈ Rn. Let u( · ; a0, λ0, t0,

−→x 0) be the solution of the Cauchy problem{
u(n)(t) + λ0a0(t)u(t) = 0,

(u(t0), u′(t0), . . . , u(n−1)(t0)) = −→x 0.

For any fixed ε > 0, there exists δ > 0 such that for every a ∈ D, λ > 0, t ∈ [0, π]
and ~x ∈ Rn satisfying ‖a− a0‖L1 + |λ− λ0|+ |t− t0|+ |−→x −−→x 0| < δ, then

‖u( · ; a, λ, t,−→x )− u( · ; a0, λ0, t0,
−→x 0)‖n−1 < ε.

Recalling that 0 represents a lower bound for each eigenvalue, taking into
account the above stated Proposition 2.1 and following the same arguments
developed by Elias in [11] to prove Corollary 5, we can deduce a continuity
result for the eigenvalues.

Proposition 2.2. For each j ∈ N, the j-th eigenvalue λj depends con-
tinuously on the coefficients a ∈ D whenever the set D is endowed with the
L1([0, π])-norm.

An analogous result for the case of second order equations can be found
in [19].

We are now interested in proving that also the eigenfunctions of problem
(1.4) depend continuously on the coefficient a. Proposition 1.1 guarantees the
essential unicity of the j-th eigenfunction. By the linearity of the problem,
it is not restrictive to define the j-th eigenfunction ψj( · ; a) corresponding to



Asymptotically Linear n-th Order Boundary Value Problems 71

problem (1.4) as the unique solution of problem (1.4) with λ = λj(a) satisfying
(ψ(i0)

j (0; a), ψ(i1)
j (0; a)) ∈ S1 ∩ R. To prove the continuity of ψj( · ; a), we need

the following remark.

Remark 2.3. Problem (1.1) does not admit nontrivial solutions u satisfying
u(i0)(0)u(i1)(0) ≥ 0. This assertion follows from the fact that f(t, x) < 0 for
every (t, x) ∈ [0, π] × R. The same observation holds true for the solutions of
problem (1.4).

According to this note, we point out that (ψ(i0)
j (0; a), ψ(i1)

j (0; a)) ∈ S1 ∩Q2.

Proposition 2.4. For each j ∈ N, the function

(D, ‖ · ‖L1) → (Cn−1([0, π]; R), ‖ · ‖n−1), a 7→ ψj( · ; a)

is continuous.

For similar results we refer to [20] dealing with in the second order case and
to [18] concerned with n-th order BVPs.

As an immediate consequence of Proposition 2.4, we observe that ψj( · ; a)
depends continuously on a when D is endowed with the ‖ · ‖∞-norm.

Proof. Fix j ∈ N. Assume, by contradiction, that there exist a0 ∈ D and
ε > 0 such that for every h ∈ N there exists ah ∈ D satisfying the following
inequalities

(2.1) ‖ah − a0‖L1 <
1
h
, ‖ψj( · ; ah)− ψj( · ; a0)‖n−1 ≥ ε.

In particular, for each h ∈ N ∪ {0}, the j-th eigenfunction ψj( · ; ah) solves the
problem 

u(n)(t) + λj(ah)ah(t)u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1}, (u(i0)(0), u(i1)(0)) = βh,

u(π) = u′(π) = 0,

where, according to Remark 2.3, βh ∈ S1 ∩ Q2. Being βh bounded, it admits
a subsequence (still denoted by βh) converging to γ ∈ S1 ∩ Q2 as h tends to
∞. Moreover, combining Proposition 2.2 with the first inequality in (2.1), we
conclude that limh→∞ λj(ah) = λj(a0). Let us denote by w0 the solution of

u(n)(t) + λj(a0) a0(t)u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1},
(u(i0)(0), u(i1)(0)) = γ ∈ S1 ∩Q2 ⊂ S1 ∩R.

Thus, Proposition 2.1 guarantees that

(2.2) lim
h→∞

‖ψj( · ; ah)− w0( · )‖n−1 = 0.
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Since ψj( · ; ah) is an eigenfunction for each h ∈ N, we immediately obtain that
w0(π) = w′0(π) = 0. Recalling the definitions of ψj( · ; a0) and w0, we note that
w0( · ) ≡ ψj( · ; a0) and, consequently, (2.2) contradicts (2.1). �

Let us now recall some properties of the solutions to linear n-th order bound-
ary value problems, attained by Elias in [10] and [11]. Observe that in the
following lemma only n− 1 boundary conditions are considered.

Lemma 2.5 (cf. [11]). For every a ∈ D and for every two arbitrary sets of
indices {j1, . . . , jk}, {l1, . . . , ln−k−1} in {0, . . . , n− 1}, the problem

(2.3)


u(n)(t) + a(t)u(t) = 0,

u(r)(0) = 0, r ∈ {j1, . . . , jk},
u(r)(π) = 0, r ∈ {l1, . . . , ln−k−1},

admits an essentially unique solution u. Such a solution and its derivatives u(r),
with r ∈ {1, . . . , n − 1}, may have only simple zeros in (0, π) and each u(r)

has exactly one (simple) zero between two consecutive zeros of u(r−1) in [0, π].
Moreover, at most one of u, u′, . . . , u(n−1) can have a zero at most at one of the
two endpoints 0, π in addition to the zeros posed in (2.3).

In the second part of this section we focus our attention on more general
problems.

In particular, for every i ∈ {1, . . . , n}, we consider the function qi ∈ Lp([a, b]),
where p ≥ 1 and a, b ∈ R with a < b. We denote by D the n-th order differential
operator defined by

Du(t) := u(n)(t) +
n∑

i=1

qi(t)u(n−i)(t),

whenever u ∈ F := {u ∈ Cn−1([a, b]) : there exists u(n)(t) for a.e. t ∈ [a, b]}.
Given α ∈ Rn, t0 ∈ [a, b] and a function f : [a, b] × R → R satisfying the
Carathéodory conditions, we denote by uα a solution of the initial value problem

(2.4)

{
Du(t) + f(t, u(t))u(t) = 0,

(u(t0), . . . , u(n−1)(t0)) = α.

Taking into account the asymptotic assumptions (1.2) and (1.3), we determinate
a relation between the behaviour of the nonlinearity f applied to the solutions of
the Cauchy problems (2.4) and the corresponding initial data, when the data are
large enough and sufficiently small. Since these relations might be considered of
independent interest, we prefer to present them in this more general context.
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Proposition 2.6. Consider two maps a∞, µ ∈ Lp([a, b]) and a Carathéo-
dory function f : [a, b] × R → R satisfying (1.2) uniformly a.e. in t ∈ [a, b] and
such that

(2.5) |f(t, x)| ≤ µ(t) for all x ∈ R, for a.e. t ∈ [a, b].

Then, f( · , uα( · )) → a∞( · ) in Lp([a, b]) if |α| → ∞.

Analogous results have been obtained in [3] for systems of second order equa-
tions.

Proof. The proof is inspired by some techniques adopted in [14] and follows
a procedure analogous to the one developed in the proof of Proposition 4.4 in [3].

Consider a sequence αk ∈ Rn with |αk| → ∞ as k → ∞. Our aim consists
in showing that f( · , uαk

( · )) → a∞( · ) in Lp([a, b]) as k →∞. To this purpose,
we prove that every subsequence of αk (still called αk to simplify the notation)
admits a subsequence αlk such that

(2.6) lim
k→∞

‖f( · , uαlk
( · ))− a∞( · )‖Lp = 0.

Let us now define

(2.7)

νk :=
αk

|αk|
∈ Sn−1,

ξk :=
(
uαk

|αk|
,
u′αk

|αk|
, . . . ,

u
(n−1)
αk

|αk|

)
∈ C([a, b],Rn).

In particular,

(2.8) ξk(t) = νk +
∫ t

t0

A(τ, uαk
(τ))ξk(τ) dτ for all t ∈ [a, b],

where for every (t, x) ∈ [a, b]×R we denote by A(t, x) the n×n matrix defined by

A(t, x)lm =A(t)lm := δ(l+1),m if (l,m) ∈ {1, . . . , n− 1} × {1, . . . , n},
A(t, x)nj =A(t)nj := −qn+1−j(t) if j ∈ {2, . . . , n},
A(t, x)n1 := − f(t, x)− qn(t).

Let us now introduce the function

ϕ(t) := max{1, µ(t)}+ max
1≤i≤n

{|qi(t)|} ∈ Lp([a, b]).

Taking into account (2.5), it is easy to verify that

(2.9) ‖A(t, x)‖ ≤ ϕ(t) for all x ∈ R and a.e. t ∈ [a, b].

We claim that the sequence ξk admits a subsequence converging uniformly to a
function ξ ∈ C([a, b],Rn).
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As a consequence of inequalities (2.9), we obtain, for all t ∈ [a, b],

|ξk(t)| ≤ 1 +
∣∣∣∣ ∫ t

t0

‖A(τ, uαk
(τ))‖ |ξk(τ)| dτ

∣∣∣∣ ≤ 1 +
∣∣∣∣ ∫ t

t0

ϕ(τ) |ξk(τ)| dτ
∣∣∣∣.

By applying Gronwall Lemma, it turns out that

(2.10) |ξk(t)| ≤ 1 + e
|
R t

t0
ϕ(τ) dτ | ≤ 1 + e

R b
a

ϕ(τ) dτ =: C

for all t ∈ [a, b], which proves the uniform boundedness of the sequence ξk.
Let us now consider an arbitrary ε > 0. Since ϕ ∈ Lp([a, b]) ⊂ L1([a, b]), we

note that there exists δε > 0 such that for every interval I ⊂ [a, b] with `(I) < δε
we have

∫
I
ϕ(τ) dτ < (ε/C). Taking into account (2.9) and (2.10), we infer that

for each t1, t2 ∈ [a, b] with |t1 − t2| < δε

|ξk(t1)− ξk(t2)| ≤
∣∣∣∣ ∫ t2

t1

A(τ, uαk
(τ))ξk(τ) dτ

∣∣∣∣ ≤ C

∣∣∣∣ ∫ t2

t1

ϕ(τ) dτ
∣∣∣∣ < ε,

ensuring the equicontinuity of ξk. Hence, Ascoli–Arzelà Theorem guarantees
the existence of a subsequence ξlk of ξk converging uniformly to a function ξ =
(z0, . . . , zn−1) ∈ C([a, b],Rn) as k →∞. This proves the claim.

The following step consists in showing that the number of zeros of z0 in [a, b]
is finite.

According to (2.5), we can apply the Dunford–Pettis theorem to deduce the
existence of a subsequence (still denoted with f( · , uαk

( · ))) of f( · , uαk
( · )) such

that
f( · , uαk

( · )) ⇀
k→∞

h( · ) weakly in L1([a, b]).

Furthermore, since νk is bounded, it converges, up to a subsequence, to
ν ∈ Sn−1 as k → ∞. Passing to the limit, component by component, on a
suitable subsequence in (2.8), we infer that

ξ(t) = ν +
∫ t

t0

B(τ)ξ(τ) dτ,

where B(t) is the n × n matrix defined by B(t)lm := A(t)lm whenever l,m ∈
{1, . . . , n} with (l,m) 6= (n, 1) and B(t)n1 := −h(t)−qn(t). In particular, z0 ∈ F
and solves

(2.11)

{
Du(t) + h(t)u(t) = 0 for a.e. t ∈ [a, b],

(u(t0), . . . , u(n−1)(t0)) = ν.

Assume now, by contradiction, that the number of zeros of z0 in [a, b] is not
finite. It is immediate to verify that there exists a limit point t∗ ∈ [a, b] of the
set of all the zeros of z0. By applying iteratively the Rolle Theorem on the
derivatives of z0, starting from the first one, we conclude that z(j)

0 (t∗) = 0 for
each j ∈ {0, . . . , n−1}. Since the Cauchy problems associated the linear equation
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in (2.11) admit a unique solution, it follows that z0 ≡ 0, in contradiction with
the fact that (z0(t0), . . . , z

(n−1)
0 (t0)) = ν ∈ Sn−1.

As claimed, z0 has a finite number of zeros in [a, b].
Denote by {s1, . . . , sm} the set of the zeros of z0 in [a, b]. Taking into account

the definition of ξk in (2.7), we infer that

lim
k→∞

|αlk | = ∞ and lim
k→∞

uαlk
(t)

|αlk |
= z0(t) for all t ∈ [a, b],

whence
lim

k→∞
|uαlk

(τ)| = ∞ for all τ ∈ [a, b] \ {s1, . . . , sm}.

Recalling that assumption (1.2) ensures that f(t, x) → a∞(t) as |x| → ∞ uni-
formly for every t ∈ [a, b] \ J , where J is a suitable set of measure zero, we
obtain

(2.12) lim
k→∞

f(t, uαlk
(t)) = a∞(t) for all t ∈ [a, b] \ (J ∪ {s1, . . . , sm}).

Moreover, from assumptions (2.5) and (1.2), it immediately follows that

|f(t, uαlk
(t))− a∞(t)|p ≤ 2p |µ(t)|p for a.e. t ∈ [a, b].

Taking into account that 2p |µ( · )|p ∈ L1([a, b]) and according to (2.12), we
can apply the Lebesgue dominated convergence theorem to prove (2.6). This
completes the proof. �

An equivalent result holds when suitably small initial data are considered.

Proposition 2.7. Consider a map a0 ∈ Lp([a, b]) and a Carathéodory func-
tion f : [a, b]× R → R satisfying (1.3) uniformly a.e. in t ∈ [a, b]. Then,

f( · , uα( · )) → a0( · ) in Lp([a, b]) if |α| → 0.

An analogous proposition has been obtained in [3] for systems of second order
equations.

Sketch of the Proof. Our aim consists in showing that

(2.13) for all δ > 0 there exists η > 0 such that

|uα(t)| < δ for all α ∈ Rn with |α| < η and all t ∈ [a, b].

Indeed, by combining (2.13) with the assumption (1.3), the thesis easily follows.
In order to prove (2.13), let us first take an arbitrary δ > 0. By the

Carathéodory conditions, there exists µ = µδ ∈ L1([a, b]) such that

(2.14) |f(t, x)| ≤ µ(t) for a.e. t ∈ [a, b] and all x ∈ R such that |x| ≤ δ.

Let us define

ϕ(t) := max{1, µ(t)}+ max
1≤i≤n

{|qi(t)|} ∈ L1([a, b]) and η :=
δ

1 + e
R b

a
ϕ(τ) dτ

.
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Consider α ∈ Rn with |α| < η.
Since by definition |uα(t0)| ≤ |α| < δ, we are able to define

a0 := min{t ∈ [a, t0) : |uα(s)| < δ for all s ∈ (t, t0]},
b0 := max{t ∈ (t0, b] : |uα(s)| < δ for all s ∈ [t0, t)}.

According to (2.14) and arguing as in the first steps of the proof of Proposi-
tion 2.6, we can apply the Gronwall Lemma to obtain

(2.15) |(uα(t), u′α(t), . . . , u(n−1)
α (t))| ≤ |α|(1 + e

|
R t

t0
ϕ(τ) dτ |) < δ

for all t ∈ [a0, b0]. In particular, |uα(a0)| < δ and |uα(b0)| < δ which, respec-
tively, imply that a0 = a, b0 = b. Hence, from (2.15) it follows that |uα(t)| < δ

for every t ∈ [a, b], which proves (2.13). �

3. Main result

In the first part of this section we introduce an additional assumption on the
statement of Theorem 1.2 and we exhibit a proof of our main result under this
further condition. The final part of the section will be devoted to extend the
proof to the general case and to state some remarks concerning more general
situations.

Let us now restrict our attention to nonlinearities f for which uniqueness of
the solutions of initial value problems associated to u(n)(t) + f(t, u(t))u(t) = 0
is guaranteed. We are interested in handling Cauchy problems of the form

(3.1)


u(n)(t) + f(t, u(t))u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1},
(u(i0)(0), u(i1)(0)) = α,

with α ∈ R2. According to the uniqueness assumptions, problem (3.1) admits
a unique solution, which will be denoted by uα throughout the next part of the
paper.

By adding the uniqueness condition, the statement of Theorem 1.2 becomes

Theorem 3.1. Let f : [0, π]×R → (−∞, 0) be a continuous function satisfy-
ing (1.2) and (1.3). Assume that the solutions of u(n)(t) + f(t, u(t))u(t) = 0 are
unique with respect to the initial data and that there exist N,M ∈ N (M ≤ N)
satisfying (1.5). Then, for every h ∈ N with M ≤ h ≤ N problem (1.1) has at
least two solutions uh and vh with u

(i0)
h (0) < 0 and v

(i0)
h (0) > 0 having exactly

(h− 1) zeros in (0, π).

We wish to remark that the proof we are going to exhibit follows a procedure
analogue to the one developed in [5], where planar systems of second order ODEs
are studied.
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Proof. Let us concentrate on the study of the case λN (a0) < 1 < λM (a∞).
The case λN (a∞) < 1 < λM (a0) can be treated analogously. Fix h ∈ N with
M ≤ h ≤ N . From the monotonicity of the eigenvalues, we obtain that

(3.2) λh(a0) < 1 < λh(a∞).

According to the continuity of the nonlinear term and to condition (1.2), we
notice that

there exists σ > 0 such that |f(t, x)| ≤ σ for all x ∈ R and all t ∈ [0, π].

As a consequence, the assumption (2.5) of Proposition 2.6 is satisfied. Thus, by
combining Propositions 2.6 and 2.7 (restricted to the case p = 1) with Proposi-
tion 2.2, we infer that

(3.3) lim
|α|→0

λh(f( · , uα( · ))) = λh(a0) and lim
|α|→∞

λh(f( · , uα( · ))) = λh(a∞).

From (3.2) and (3.3), we attain the existence of two positive constants R1,
R2 with R1 < R2 such that λh(f( · , uα( · ))) < 1 for every α ∈ R2 with |α| = R1

and λh(f( · , uα( · ))) > 1 for every α ∈ R2 with |α| = R2.
Let us now introduce the map F : R2 → D by setting F (α)( · ) := f( · , uα( · )).

This map is well defined, due to the continuity of f . By the continuous depen-
dence from initial data, it follows that F is continuous, whenever D ⊂ C([0, π])
is endowed with the ‖ · ‖∞-norm.

Our next aim consists in proving the existence of a solution u to problem
(1.1) with (u(i0)(0), u(i1)(0)) ∈ Q2, having exactly (h − 1) zeros in (0, π). This
occurs if there exist α∗ ∈ Q2 and a positive constant K such that

(3.4) Kuα∗( · ) ≡ ψh( · ;F (α∗)),

where ψh( · ;F (α∗)) represents the eigenfunction corresponding to λh(F (α∗)) =
λh(f( · , uα∗( · ))). In this case, uα∗ is the required solution.

To achieve our goal, we initially provide a closed connected set C ⊂ Q2 \
{(0, 0)} such that λh(F (α)) = 1 for every α ∈ C. Finally, by using a shooting
approach, we find α∗ ∈ C ∩ Q2 and K > 0 satisfying

(ψ(i0)
h (0;F (α∗)), ψ

(i1)
h (0;F (α∗))) = K α∗.

Define the map g: [R1, R2]× [π/2, π] → R by setting

g(ρ, ϑ) := λh(F (ρ cosϑ, ρ sinϑ))− 1.

Note that the function g satisfies g(R1, ϑ) < 0 < g(R2, ϑ) for every ϑ ∈ [π/2, π]
and it is continuous by Proposition 2.2. Moreover, denoting by deg the Brower
degree, we can deduce that deg(g( · , (π/2)), (R1, R2) , 0) 6= 0. Hence, we can
apply the Leray–Schauder continuation theorem (cf. [22, Théorème Fondamental]
and [26]), which ensures the existence of a closed connected set C∗ ⊂ {(ρ, ϑ) ∈



78 F. Dalbono

(R1, R2) × [(π/2), π] : g(ρ, ϑ) = 0} such that C∗ ∩ ((R1, R2) × {(π/2)}) 6= ∅
and C∗ ∩ ((R1, R2)× {π}) 6= ∅. Reformulating this in cartesian coordinates, we
can assert that there exist two constants a, b ∈ R with b < 0 < a and a closed
connected set C ⊂ Q2 ∩ {α ∈ R2 : R1 < |α| < R2} such that (0, a), (b, 0) ∈ C and

λh(f( · , uα( · ))) = λh(F (α)) = 1 for all α ∈ C.

It remains to prove the existence of α∗ ∈ C∩Q2 satisfying (3.4). To this aim,
we set

(3.5) α̃ := (0, a), α̂ := (b, 0) and β(α) := (ψ(i0)
h (0;F (α)), ψ(i1)

h (0;F (α)))

for all α ∈ R2. Furthermore, given γ = (γ1, γ2) ∈ Q2 \ {(0, 0)}, let us con-
sider its polar coordinates (ϑ(γ), ρ(γ)) ∈ [(π/2), π] × (0,∞), defined by γ1 =
ρ(γ) cosϑ(γ), γ2 = ρ(γ) sinϑ(γ).

According to Remark 2.3 and to the definitions (3.5), we can deduce that
β(α) ∈ S1 ∩Q2,

(3.6) ϑ(β(α̃))− ϑ(α̃) = ϑ(β(α̃))− π

2
> 0, ϑ(β(α̂))− ϑ(α̂) = ϑ(β(α̂))− π < 0.

If we combine the continuity of the map F with Proposition 2.4, we infer that
ψh( · ;F (α)) and, consequently, β(α) depend continuously on α ∈ R2. Therefore,
the function

g: C →
(
− π

2
,
π

2

)
, α 7→ ϑ(β(α))− ϑ(α)

is continuous as well. Hence, recalling that C is a connected set, from (3.6)
it follows the existence of α∗ ∈ C such that ϑ(β(α∗)) = ϑ(α∗). In particular,
α∗ ∈ C ∩ Q2 and β(α∗) = K α∗ for a suitable positive constant K. Thus, since
both ψh( · ;F (α∗)) and Kuα∗ satisfy the linear problem

u(n) + f(t, uα∗(t))u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1},
(u(i0)(0), u(i1)(0)) = β(α∗),

we obtain the claimed (3.4), which ensures that uα∗ solves problem (1.1) and
has exactly (h− 1) zeros in (0, π).

Let us recall that, from Remark 2.3, every solution u to problem (1.1) sat-
isfies the initial condition (u(i0)(0), u(i1)(0)) ∈ Q2 ∪ Q4. To complete the proof,
it remains to prove that for every h ∈ N with M ≤ h ≤ N there exists a
second solution v to (1.1) having exactly (h − 1) zeros in (0, π) and satisfying
(v(i0)(0), v(i1)(0)) ∈ Q4.

Proceeding exactly as in the previous steps, we easily find a closed connected
set C̃ ⊂ Q4 ∩ {α ∈ R2 : R1 < |α| < R2} such that C̃ ∩ ({0} × (−∞, 0)) 6= ∅,
C̃ ∩ ((0,∞)×{0}) 6= ∅ and λh(F (α)) = 1 for every α ∈ C̃. Then, we consider, for
each γ ∈ Q4 \{(0, 0)}, the corresponding angular coordinate ϑ(γ) ∈ [3π/2, 2π] in
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order to study the behaviour of the continuous function α 7→ ϑ(−β(α)) − ϑ(α)
as α varies in C̃. With argument analogous to the ones used above, we deduce
the existence of α∗ ∈ C̃ ∩ Q4 and a negative constant K verifying (3.4), which
yields the conclusion. �

We are now in position to prove our main result. Approximation techniques
based on an application of the Stone–Weierstrass Theorem (similar to the one
adopted in [8]) combined with Lemma 2.5 allow us to extend the results of
Theorem 3.1 to the general case where no uniqueness assumptions are required
on the nonlinearity.

Proof of Theorem 1.2. As in the proof of the previous theorem, let us
concentrate on the study of the case λN (a0) < 1 < λM (a∞) and fix h ∈ N with
M ≤ h ≤ N . According to the continuity of f and to condition (1.2), we deduce
the existence of a constant σ > 1 satisfying

(3.7) −σ < f(t, x) < 0 for all t ∈ [0, π] and all x ∈ R.

Arguing exactly as in the proof of Theorem 3.1, we also prove that there exist
two positive constants R1, R2 with R1 < R2 such that

(3.8)
λh(f( · , uα( · ))) < 1 for all α ∈ R2 such that |α| = R1,

λh(f( · , uα( · ))) > 1 for all α ∈ R2 such that |α| = R2,

where uα is a solution of (3.1). Let us define K := R2(1 + eσπ).
The Stone–Weierstrass Theorem ensures the existence of a sequence of con-

tinuous functions al: [0, π] × [−K,K] → R which are lipschitzian in the second
variable and verify

(3.9) al( · ) −→
l→∞

f( · ) uniformly in [0, π]× [−K,K].

According to (3.7) and (3.9), it is not restrictive to assume that −σ ≤ al < 0 in
[0, π]× [−K,K]. Let us now extend the function al to a continuous function (still
denoted by al) which is lipschitzian in the second variable and whose domain is
the whole set [0, π] × R, by setting al(t, x) := al(t,K) for every (t, x) ∈ [0, π] ×
(K,∞) and al(t, x) := al(t,−K) for every (t, x) ∈ [0, π] × (−∞,K). According
to this definition, it is immediate to verify that

(3.10) −σ ≤ al(t, x) < 0 for all (t, x) ∈ [0, π]× R and all l ∈ N.

Fix α ∈ R2 with |α| ≤ R2 and denote by uα,l the unique solution of the Cauchy
problem 

u(n)(t) + al(t, u(t))u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1},
(u(i0)(0), u(i1)(0)) = α.
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Our first aim consists in proving that

(3.11) there exists l0 ∈ N such that

λh(al( · , uα,l( · ))) < 1 for all l ≥ l0 and all α ∈ R2 with |α| = R1.

Let us argue by contradiction, assuming that for every l ∈ N there exist kl ≥ l

and αl ∈ R2 with |αl| = R1 such that

(3.12) λh(akl
( · , uαl,kl

( · ))) ≥ 1.

Taking into account (3.10) and the definition ofK, we apply the Gronwall Lemma
(as in the proof of Proposition 2.7) to show that

(3.13) |(uαl,kl
(t), u′αl,kl

(t), . . . , u(n−1)
αl,kl

(t))| ≤ |αl|(1 + eσπ) < K,

for all t ∈ [0, π] and all l ∈ N, which proves the uniform boundedness of
ξαl,kl

:= (uαl,kl
, u′αl,kl

, . . . , u
(n−1)
αl,kl

). Proceeding as in the proof of Proposi-
tion 2.6, we easily deduce the equicontinuity of ξαl,kl

and, consequently, from an
application of the Ascoli–Arzelà Theorem, we conclude that ξαl,kl

converges (up
to a subsequence) uniformly to a function ξ = (ξ0, . . . , ξn−1) ∈ C([a, b],Rn) as
l→∞. From (3.13), we immediately note that uαl,kl

(t) and ξ0(t) belong to the
interval [−K,K] when t ∈ [0, π]. Taking into account (3.9) and the equicontinu-
ity of f on [0, π]× [−K,K], we infer that

(3.14) lim
l→∞

‖akl
( · , uαl,kl

( · ))− f( · , ξ0( · ))‖∞ = 0.

Observe also that, up to a subsequence, αl converges to a certain α when l→∞.
Arguing as in the proof of Proposition 2.6, it is easy to check that ξ0 solves
(3.1). Moreover, |(ξ(i0)0 (0), ξ(i1)0 (0))| = R1 and akl

∈ D. Thus, by combining
Proposition 2.2 with (3.14) and (3.8), we finally obtain that, up to a subsequence,
λh(akl

( · , uαl,kl
( · ))) < 1. This contradicts (3.12) and, consequently, proves the

assertion (3.11).
Analogously, one can show that

(3.15) there exists l∗ ∈ N such that

λh(al( · , uα,l( · ))) > 1 for all l ≥ l∗ and all α ∈ R2 with |α| = R2.

For each l ∈ N with l ≥ min{l0, l∗}, we are now able to argue exactly as in the
proof of Theorem 3.1 and to achieve two solutions ul and vl to

u(n)(t) + al(t, u(t))u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1}, R1 < |(u(i0)(0), u(i1)(0))| < R2,

u(π) = u′(π) = 0,

having exactly (h−1) zeros in (0, π) and satisfying respectively (u(i0)
l (0), u(i1)

l (0))
∈ Q2, (v(i0)

l (0), v(i1)
l (0)) ∈ Q4.
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Let us focus our attention on the sequence ul. With arguments analogous
to the ones used above, we can easily verify that it admits a subsequence (still
called ul) converging in the ‖ · ‖n−1-norm to a solution u∗ of the boundary value
problem (1.1). Note that (u(i0)

∗ (0), u(i1)
∗ (0)) ∈ Q2 ∩ {α ∈ R2 : R1 ≤ |α| ≤

R2}. Being R1 > 0, we infer that u∗ is not trivial and, hence, according to
Proposition 1.1, it is the eigenfunction corresponding to the eigenvalue λ = 1 of
the problem

(3.16)


u(n)(t) + λf(t, u∗(t))u(t) = 0,

u(r)(0) = 0, r ∈ {i2, . . . , in−1},
u(π) = u′(π) = 0.

Lemma 2.5 guarantees that u∗ and its derivatives u(r)
∗ (with r ∈ {1, . . . , n −

1}) have only simples zeros in (0, π) and cannot have other zeros at the two
endpoints 0, π in addiction to the ones posed in (3.16). As a first consequence,
(u(i0)
∗ (0), u(i1)

∗ (0)) ∈ Q2.
It remains only to prove that u∗ has exactly (h− 1) zeros in (0, π).
Let us denote by tjl the zeros of ul in (0, π) with j ∈ {1, . . . , h−1}, arranged

in such a way that t1l < . . . < th−1
l . For each j ∈ {1, . . . , h− 1}, we know that,

up to a subsequence, tjl → tj ∈ [0, π] as l→∞. Notice that t1 ≤ . . . ≤ th−1 and
tj are simples zeros of u∗.

We now claim that t1 > 0. Without loss of generality, assume that i0 < i1.
If i0 = 0, the goal is immediately achieved since 0 cannot be a zero of u∗ = u

(i0)
∗ .

Consider now the case i0 > 0. Since ul is the eigenfunction corresponding to
λh(al( · , ul( · ))) = 1, we can proceed iteratively, by applying i0 times Lemma 2.5,
to deduce the existence of τl ∈ (0, t1l ) satisfying u(i0)

l (τl) = 0. If, by contradiction,
t1 = 0, then τl → 0 as l → ∞ and, consequently, u(i0)

∗ (0) = 0. This contradicts
the result regarding the maximum number of zeros of u∗ at its endpoints and
ensures the positivity of t1.

Analogous arguments can be used to show that th−1 < π. Thus, we can
conclude that tj ∈ (0, π) for every j ∈ {1, . . . , h− 1}.

Furthermore, by an application of Lemma 2.5, we deduce the existence of
sj

l ∈ (tjl , t
j+1
l ) such that u′l(s

j
l ) = 0 for every j ∈ {1, . . . , h − 2}. This implies

that tj < tj+1. Indeed, the existence of t∗ := tj = tj+1 would imply that
u′∗(t∗) = 0, a contradiction with the simplicity of the zeros of u∗. We have so
proved that u∗ has at least (h− 1) simples zeros in (0, π).

To complete the proof, we need to verify that u∗ does not admit other zeros
in (0, π) besides t1, . . . , th−1. For every l ∈ N, let us define t0l = t0 = 0 and
thl = th = π and assume, by contradiction, that there exists one more zero s of
u∗ in (tj , tj+1), with j ∈ {0, . . . , h−1}. Being s a simple zero, we can find δ > 0
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such that [s− δ, s+ δ] ⊂ (tj , tj+1) and

(3.17) u∗(s− δ)u∗(s+ δ) < 0.

Note that there exists l0 ∈ N such that [s− δ, s+ δ] ⊂ (tjl , t
j+1
l ) for every l ≥ l0,

whence it follows that ul(s− δ)ul(s+ δ) > 0. Passing to the limit as l→∞, we
obtain a contradiction with (3.17). This means that u∗ is the required solution
to problem (1.1) with u(i0)

∗ (0) < 0, having exactly (h− 1) zeros in (0, π).
Analogous considerations can be repeated for the sequence vl and lead to the

existence of a second solution v∗ of problem (1.1) having exactly (h − 1) zeros
in (0, π) and satisfying v(i0)

∗ (0) > 0. This completes the proof of Theorem 1.2.�

Remark 3.2. Under the assumptions of Theorem 1.2, let us fix h ∈ N with
M ≤ h ≤ N . Taking into account Remark 2.3, we observe that the two solutions
uh and vh to problem (1.1) provided by Theorem 1.2 satisfy uh(t) vh(t) < 0 for
every t ∈ (0, δh), where δh is a suitably small positive constant.

We conclude this work by observing that more general two-point boundary
conditions than the ones exhibited in (1.1) can be considered in the statement
of our main theorem.

Remark 3.3. Theorem 1.2 also holds if we generalize the two-point bound-
ary conditions of problem (1.1) into the following

(3.18)

{
u(r)(0) = 0 for r ∈ {i2, . . . , in−1},
u(r)(π) = 0 for r ∈ {j0, j1},

where {i2, . . . , in−1} and {j0, j1} are fixed subsets of {0, . . . , n− 1} such that

(3.19) for all q ∈ {1, . . . , n− 1}
at least q boundary conditions are imposed on u, u′, . . . , u(q−1).

According to Corollary 3 in [11], this last condition is equivalent to excluding
the existence of zero eigenvalues to the problem (1.4) endowed with boundary
conditions of type (3.18).

Our main multiplicity result holds true by imposing only one condition at
the final point t = π and (n− 1) boundary conditions at the initial point t = 0,
whenever n ≥ 2. In this framework, the multiplicity result follows from an easy
application of the shooting method.

Remark 3.4. Theorem 1.2 also holds for the problem

(3.20)


u(n)(t) + f(t, u(t))u(t) = 0,

u(r)(0) = 0, r ∈ {i1, . . . , in−1},
u(j0)(π) = 0,
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where {i1, . . . , in−1} and {j0} are fixed subsets of {0, . . . , n−1} ensuring the va-
lidity of condition (3.19), f(t, x) > 0 for every (t, x) ∈ [0, π]×R, the asymptotic
functions a0( · ), a∞( · ) introduced in (1.2)–(1.3) are non negative in [0, π] and
do not vanish identically on any interval in [0, π]. In this setting, the eigenvalues
λj(a) of assumption (1.5) correspond to problem (1.4) endowed with the bound-
ary conditions in (3.20). (The eigenvalue theory developed in [11] guarantees the
existence of a positive, unbounded from above, monotone increasing sequence of
these eigenvalues λj(a) whenever a ∈ C([0, π]; [0,∞)) and does not vanish identi-
cally on any interval in [0, π]). Finally, the number i0 which appears in the thesis
of Theorem 1.2 is now the only integer belonging to {0, . . . , n−1}\{i1, . . . , in−1}.

The next few lines are devoted to sketch the proof of Remark 3.4. We first
restrict ourselves to the case in which uniqueness assumptions on the solutions
of Cauchy problems associated to the given equation are guaranteed. In what
follows, the expression λj(a) will be used to denote exclusively the eigenvalues
introduced in the previous remark. Let us first recall that Propositions 1.1
and 2.2 can be rewritten in terms of these eigenvalues. Moreover, for every
α ∈ R, one can introduce the notation of uα to denote u(α,0). According to this
notation, one can argue as in the first steps of the proof of Theorem 3.1 and prove
(3.3). Hence, taking into account the assumption (1.5), it is immediate to deduce
the existence of α1 < 0 and α2 > 0 such that λh(f( · , uαi

( · ))) = 1 for every i ∈
{1, 2}. By the linearity of the eigenvalue problems combined with the assumption
about uniqueness of solutions of Cauchy problems, it turns out that uαi is a
nontrivial multiple of the eigenfunction corresponding to λh(f( · , uαi

( · ))) for
every i ∈ {1, 2}. Consequently, uα1 and uα2 are the required solutions of problem
(3.20) having (h − 1) zeros in (0, π). This proves Remark 3.4 under uniqueness
assumptions. Approximation techniques analogous to the ones developed in the
proof of Theorem 1.2 allow us to complete the proof of the remark.

Remark 3.5. If we restrict problem (3.20) to the second order case (by
setting n = 2) and if we endow it with Dirichlet boundary conditions, we note
that the result stated in Remark 3.4 can be seen as a corollary of Theorem 1.1
in [6]. Let us recall that in [6] and in other papers concerning Dirichlet second
order problems more general nonlinearities have been treated.
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