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NEUMANN CONDITION
IN THE SCHRÖDINGER–MAXWELL SYSTEM

Lorenzo Pisani — Gaetano Siciliano

Abstract. We study a system of (nonlinear) Schrödinger and Maxwell
equation in a bounded domain, with a Dirichelet boundary condition for the

wave function ψ and a nonhomogeneous Neumann datum for the electric

potential φ. Under a suitable compatibility condition, we establish the
existence of infinitely many static solutions ψ = u(x) in equilibrium with

a purely electrostatic field E = −∇φ. Due to the Neumann condition, the

same electric field is in equilibrium with stationary solutions ψ = e−iωtu(x)
of arbitrary frequency ω.

1. Introduction

This paper is concerned with a system of Schrödinger and Maxwell equations.
The unknown are the wave function ψ = ψ(x, t) and the gauge potentials A and
φ related to the electromagnetic field (E,B). In other words the electromagnetic
field is not assigned, but it is generated by the charged particle whose wave
function is ψ. This topic has been introduced by Benci and Fortunato in [3] and
it has been developed in several papers (see references below).

We consider a stationary wave

(1.1) ψ = u(x) e−iωt,
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with u(x) ∈ R and ω ∈ R, in equilibrium with a purely electrostatic field

(1.2) E = −∇φ

with φ = φ(x).
Using the minimal coupling rule (see [6] or [20]), after some calculations,

which can be found in [3], we get the following system

−1
2
∆u+ qφu =ωu,(1.3)

−∆φ =4πqu2.(1.4)

We point out that (1.4) is the Gauss equation with charge density ρ = qu2

and q is the charge of the particle whose wave function is ψ. Indeed, if we assume
the usual normalizing condition for the wave function

(1.5)
∫

Ω

u2 dx = 1,

we have ∫
Ω

ρ dx =
∫

Ω

q u2 dx = q.

The system (1.3)–(1.4) will be studied in a open bounded regular set Ω ⊂ R3

with the following boundary conditions

u(x) =0,(1.6)
∂φ

∂n
(x) =g(x),(1.7)

where n denotes the exterior unit normal on ∂Ω.
The Neumann condition on φ has an interesting physical interpretation: g

prescribes the charge of the particle. Indeed we have the well known compati-
bility condition between (1.4) and (1.7):

−4πq
∫

Ω

u2 dx =
∫

∂Ω

g ds.

Taking into account the normalizing condition (1.5), we deduce the necessary
condition

(1.8) q = − 1
4π

∫
∂Ω

g ds.

Of course the equations (1.3) and (1.4) are really coupled if q 6= 0.
In the paper of Benci and Fortunato [3] the same system (1.3)–(1.4) was

studied with the Dirichlet condition also on φ. Here the Neumann condition has
another interesting consequence.
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The “eigenvalue” ω plays no role in the existence of solutions of (1.3)–(1.4).
Indeed, suppose q 6= 0, for every ω ∈ R, the pair (u, φ) is a solution of

−1
2
∆u+ qφu = 0 in Ω,

∆φ+ 4πqu2 = 0 in Ω,

u(x) = 0 on ∂Ω,
∂φ

∂n
(x) = g(x) on ∂Ω,

if and only if (u, φ−ω/q) is a solution of (1.3)–(1.4) (1.6)–(1.7). In other words,
if we find u(x), static solution of the Schrödinger equation, then we have also
the stationary solutions (1.1) with any frequency ω ∈ R. All these solutions are
associated to the same electric field, indeed the change of variable φ 7→ φ− ω/q

has no effect on E defined by (1.2).
We recall that in the Dirichlet problem we have infinitely many solutions

of (1.3)–(1.4), for every value of the charge, but with discrete values of the
frequency ω.

As it is usual in this kind of problems, we can perturb the Schrödinger
equation (1.3) with a nonlinear term |u|p−2u. So our main result can be stated
as follows.

Theorem 1.1. Consider the system

(1.9)



−1
2
∆u+ qφu− α|u|p−2u = 0 in Ω,

∆φ+ 4πqu2 = 0 in Ω,

u(x) = 0 on ∂Ω,∫
Ω

u2(x) dx = 1

∂φ

∂n
(x) = g(x) on ∂Ω,

with q, α ∈ R, p ∈ (2, 10/3), g ∈ H1/2(∂Ω). If (1.8) holds true with q 6= 0, then
there exist {uk} ⊂ H1

0 (Ω), χ ∈ H1(Ω), {ϕk} ⊂ H1(Ω), {µk} ⊂ R with∫
Ω

χdx =
∫

Ω

ϕk dx = 0 and
∫

Ω

|∇uk|2 dx→∞, µk →∞,

as k →∞, such that (uk, χ+ ϕk + µk) are solutions of (1.9).

Remark 1.2. By our choice of the functional spaces, whose definitions we
recall below, the solutions we find have finite energy.

Remark 1.3. We point out that the perturbation |u|p−2u does not influence
the existence of solutions, indeed we can consider also α = 0. If α < 0, the same
result holds with p ∈ (2, 6).
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Remark 1.4. If (1.8) holds true with q = 0 (uncoupled case), there are
infinitely many solutions of (1.3)–(1.4), (1.5)–(1.7) with discrete frequencies ω,
even if we perturb (1.3) with |u|p−2u.

We recall that the case with assigned electromagnetic field has been studied
in [1], [2] and [11].

On the other hand, after the quoted paper [3], a large literature on sys-
tems of Schrödinger–Maxwell equations and Klein–Gordon–Maxwell equations
has been developed. The existence and non-existence of solitary waves in Rn

for Schrödinger–Maxwell systems has been studied in [8]–[10], [14], [18]. Other
papers are concerned with the semiclassical limit in the Schrödinger equation,
i.e. they consider

−~2

2
∆u+ qφu = ωu+ f(u)

(coupled with (1.4)) and study the asymptotic behavior of solutions as ~ → 0
(see [12], [13], [16], [17], [23]). Multiplicity results and non-existence theorems on
Klein–Gordon–Maxwell systems can be found in [4], [5], [7], [14], [15], [19], [21].

2. Variational setting

In (1.8), for the sake of simplicity we assume

(2.1) q = − 1
4π

∫
∂Ω

g ds = −1.

Moreover, we shall consider the more interesting case α ≥ 0.
Taking into account (2.1), we have to solve

(2.2)



−1
2
∆u− φu− α|u|p−2u = 0 in Ω,

∆φ− 4πu2 = 0 in Ω,

u(x) = 0 on ∂Ω,∫
Ω

u2(x) dx = 1

∂φ

∂n
(x) = g(x) on ∂Ω.

First we make a change of variables to deal with an homogeneous boundary
datum. So we consider the problem

(2.3)


∆χ = K in Ω,∫

Ω

χdx = 0,

∂χ

∂n
= g on ∂Ω,

where K = 4π/|Ω| and |Ω| is the measure of Ω. By (2.1), the problem (2.3) has
a unique weak solution of class C(Ω) (see [25]).
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Now we set

µ =
1
|Ω|

∫
Ω

φdx, ϕ = φ− χ− µ.

With the new variables (u, ϕ, µ), our problem (2.2) becomes

−1
2
∆u− (χ+ ϕ)u− α|u|p−2u =µu in Ω,(2.4a)

∆ϕ+K − 4πu2 =0 in Ω,(2.4b)

u(x) = 0 on ∂Ω,(2.4c) ∫
Ω

u2(x) dx =1,(2.4d)

∂ϕ

∂n
=0 on ∂Ω,(2.4e) ∫

Ω

ϕ(x) dx =0.(2.4f)

The problem (2.4) has a variational characterization as eigenvalue problem.
Consider the Sobolev space H1(Ω) endowed with norm

‖ξ‖H1 = ‖ξ‖2 + ‖∇ξ‖2,

where, hereafter, ‖ · ‖p denotes the usual Lp norm. We have

H1(Ω) = H̃ ⊕ R

where H̃ = {η ∈ H1(Ω) :
∫
Ω
η dx = 0}.

On H̃ we have the equivalent norm ‖η‖
eH = ‖∇η‖2.

We recall that H1
0 (Ω) denotes the completion of C∞

0 (Ω) in H1(Ω). In H1
0 (Ω)

we shall use the equivalent norm ‖v‖H1
0

= ‖∇v‖2.
Consider the functional F :H1

0 (Ω)×H1(Ω) → R defined as follows

(2.5) F (u, φ) =
∫

Ω

(
1
4
|∇u|2 − 1

2
χu2 − α

p
|u|p

)
dx

− 1
2

∫
Ω

u2φdx−
∫

Ω

(
1

16π
|∇φ|2 dx− 1

2|Ω|
φ

)
dx.

This functional is C1 and we have, for every v ∈ H1
0 (Ω) and ξ ∈ H1(Ω),

〈F ′
u(u, φ), v〉 =

∫
Ω

(
1
2
∇u∇v − (φ+ χ)uv − α|u|p−2uv

)
dx,(2.6)

〈F ′
φ(u, φ), ξ〉 =

∫
Ω

(
− 1

8π
∇φ∇ξ − 1

2
u2ξ +

1
2|Ω|

ξ

)
dx.(2.7)

Let

S =
{
u ∈ H1

0 (Ω) :
∫

Ω

u2 dx = 1
}
.
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Such S is a smooth manifold of codimension 1; for every u ∈ S the tangent space
to S is

(2.8) TuS =
{
v ∈ H1

0 (Ω) :
∫

Ω

uv dx = 0
}
.

Now we can characterize the solutions of (2.4).

Theorem 2.1. The triplet (u, ϕ, µ), u ∈ H1
0 (Ω), ϕ ∈ H1(Ω), µ ∈ R, is

a solution of (2.4) if and only if (u, ϕ) is a critical point of F constrained on
S × H̃ and

µ = 〈F ′
u(u, ϕ), u〉.

We recall that (u, ϕ) critical point of F constrained on S × H̃ means that
(u, ϕ) ∈ S × H̃ and

〈F ′
u(u, ϕ), v〉 =0, for all v ∈ TuS,(2.9)

〈F ′
φ(u, ϕ), η〉 =0, for all η ∈ TϕH̃ = H̃.(2.10)

Proof. The “only if” part is obvious.
Suppose that (u, ϕ) is a critical point of F constrained on S × H̃. The

normalizing condition (2.4d) and (2.4f) are satisfied.
From (2.9) and 〈F ′

u(u, ϕ), u〉 = µ, by standard arguments, we obtain (2.4a)
and (2.4c).

Now consider ξ ∈ H1(Ω). We have ξ = η + λ with η ∈ H̃ and λ ∈ R, hence

(2.11) 〈F ′
φ(u, ϕ), ξ〉 = 〈F ′

φ(u, ϕ), η〉+ 〈F ′
φ(u, ϕ), λ〉 = 0.

Indeed
(a) 〈F ′

φ(u, ϕ), η〉 = 0 by (2.10).
(b) On the other hand

〈F ′
φ(u, ϕ), λ〉 = −1

2
λ

∫
Ω

u2 dx+
λ

2|Ω|

∫
Ω

dx =
λ

2
(
∫

Ω

u2 dx− 1) = 0.

From (2.11) we deduce (2.4b) and (2.4e). �

The functional F constrained on S × H̃ is unbounded from above and from
below, even modulo compact perturbations. So the next step is to characterize
the critical points of F constrained on S × H̃ as critical point of a functional
defined on S and bounded from below.

The following result follows from the Sobolev embedding and the Riesz rep-
resentation theorems.
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Proposition 2.2. For every w ∈ L6/5(Ω) there exists a unique L(w) ∈ H̃

such that, for every η ∈ H̃,∫
Ω

∇L(w)∇η dx+
∫

Ω

wη dx = 0.

The map L:L6/5(Ω) → H̃ is linear and continuous, hence C∞.

The next result follows from well known properties of the Nemytsky operator
(see e.g. [26]).

Proposition 2.3. The map u ∈ L6(Ω) 7→ 4πu2 − K ∈ L6/5(Ω) is of
class C1.

Taking into account the previous propositions, we can define the C1 map

Φ:H1
0 (Ω) → H̃, Φ(u) = L(4πu2 −K).

For every (u, ϕ) ∈ H1
0 (Ω) × H̃, we have ϕ = Φ(u) if and only if, for every

η ∈ H̃,

(2.12)
∫

Ω

∇ϕ∇η dx+
∫

Ω

(4πu2 −K)η dx = 0.

If we take η = Φ(u) in (2.12), we obtain∫
Ω

|∇Φ(u)|2dx+
∫

Ω

(4πu2 −K)Φ(u) dx = 0,

that is

(2.13)
∫

Ω

|∇Φ(u)|2dx+
∫

Ω

4πu2Φ(u) dx = 0,

from which we deduce

‖∇Φ(u)‖2
2 ≤ 4π‖u2‖2‖Φ(u)‖2 ≤ c1‖u‖2

4‖∇Φ(u)‖2

(where, from now on, ci, i = 1, 2, . . . stand for suitable positive constants). So

‖∇Φ(u)‖2 ≤ c2‖∇u‖2
2

and we have proved the following lemma.

Lemma 2.4. The map Φ is bounded, i.e. it maps bounded sets of H1
0 (Ω) in

bounded sets of H̃.

Remark 2.5. We notice that, for every (u, ϕ) ∈ H1
0 (Ω) × H̃, (2.12) can be

written as 〈F ′
φ(u, ϕ), η〉 = 0, hence the map ϕ = Φ(u) is implicitly defined by
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F ′
φ(u, ϕ) = 0, as cotangent vector on H̃. Moreover, if u ∈ S, then (2.11) holds

true for every ξ ∈ H1(Ω), so we deduce that Φ(u) ∈ H̃ is the unique solution of

(2.14)


∆ϕ+K − 4πu2 = 0 in Ω,
∂ϕ

∂n
= 0 on ∂Ω,∫

Ω

ϕdx = 0.

On the other hand, if u /∈ S, the problem (2.14) has no solutions. In this sense
Φ|S is implicitly defined by (2.14). Since Φ is C1, we have proved that the
solution of (2.14) has a C1 dependence on u ∈ S.

So we can define the C1 functional

(2.15) J :H1
0 (Ω) → R, J(u) = F (u,Φ(u)).

From the previous remark we deduce that for every u, v ∈ H1
0 (Ω)

〈J ′(u), v〉 = 〈F ′
u(u,Φ(u)), v〉.

Then we easily get the following result.

Theorem 2.6. The pair (u, ϕ) ∈ S × H̃ is a critical point of F constrained
on S × H̃ if and only if u is a critical point of J|S and ϕ = Φ(u).

Taking into account Theorem 2.1 and Theorem 2.6, we have to prove that
there exists a sequence {uk} of critical points of J constrained on S. Then we
shall set

ϕk = Φ(uk),

µk = 〈F ′
u(uk, ϕk), uk〉 = 〈F ′

u(uk,Φ(uk)), uk〉 = 〈J ′(uk), uk〉.

Finally, in order to complete the proof of Theorem 1.1, we are going to show
that

‖∇uk‖2 →∞, 〈J ′(uk), uk〉 → ∞.

3. Proof of Theorem 1.1

The functional J has been defined in (2.15). Taking into account (2.13), we
obtain

J(u) =
∫

Ω

(
1
4
|∇u|2 − 1

2
χu2 − α

p
|u|p) dx+

1
16π

∫
Ω

|∇Φ(u)|2 dx.

First we prove that J constrained on S is bounded from below.
Let D a regular domain in Rn. Using the Sobolev Embedding Theorem, we

can prove a simple lemma about the Sobolev space

W 1,s(D) = {u ∈ Ls(D) : ∇u ∈ Ls(D)}.



Schrödinger–Maxwell System 259

Lemma 3.1. Assume

1 ≤ s < n,(3.1)

s <p < s∗ =
ns

n− s
,(3.2)

0 <r ≤ n

(
1− p

s∗

)
.(3.3)

There exists C > 0 such that, for every u ∈W 1,s(D),

(3.4) ‖u‖p
p ≤ C‖u‖p−r

W 1,s‖u‖r
s.

Proof. By (3.2) and the Sobolev embeddings, we have

(3.5) W 1,s(D) ↪→ Lp(D).

For every u ∈W 1,s(D), we have |u|r ∈ Ls/r(D) and |u|p−r ∈ Ls/(s−r)(D), indeed
the left hand side of (3.2) and the right hand side of (3.3) imply that

(3.6)
s(p− r)
s− r

∈ (s, s∗).

So, by the Hölder inequality, we deduce
(3.7)

‖u‖p
p =

∫
D

|u|p−r|u|r dx ≤ ‖|u|p−r‖s/(s−r)‖|u|r‖s/r = ‖u‖p−r
s(p−r)/(s−r)‖u‖

r
s.

By (3.6), we get

(3.8) ‖u‖s(p−r)/(s−r) ≤ C‖u‖W 1,s

with C independent of u. Substituting (3.8) in (3.7), we get the thesis. �

Remark 3.2. If D is bounded, then (3.4) is trivially true also in the case
p ∈ [1, s], with r < p. Moreover, if u ∈W 1,s

0 (D), then we can write

(3.9) ‖u‖p
p ≤ C‖∇u‖p−r

s ‖u‖r
s.

Proposition 3.3. The functional

(3.10) J1(u) =
∫

Ω

(
1
4
|∇u|2 − 1

2
χu2 − α

p
|u|p

)
dx,

constrained on S, is bounded from below and coercive, that is for every sequence
{un} ⊂ S, if ‖∇un‖2 →∞ then J1(un) →∞. Hence the functional

J(u) = J1(u) +
1

16π
‖∇Φ(u)‖2

2,

constrained on S, is bounded from below and coercive.

Proof. For every u ∈ S we have

(3.11)
∣∣∣∣ ∫

Ω

χu2 dx

∣∣∣∣ ≤ ‖χ‖∞‖u2‖1 = ‖χ‖∞‖u‖2
2 = ‖χ‖∞.
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Now we apply Lemma 3.1 with s = 2 and n = 3. Since 2 < p < 10/3, we have

p− 2 < 3
(

1− p

6

)
< 2,

and we can choose r such that

p− 2 < r ≤ 3
(

1− p

6

)
.

So, by (3.9), ∫
Ω

|u|p dx ≤ c5‖∇u‖p−r
2 .

Therefore we obtain

J1(u) ≥
1
4
‖∇u‖2

2 − c6‖∇u‖p−r
2 − 1

2
‖χ‖∞,

which implies the thesis about J1 (indeed p − r < 2). Since J(u) ≥ J1(u), the
same conclusions follow for J . �

Theorem 3.4. The functional J|S satisfies the Palais–Smale condition, i.e.
every {un} ⊂ S such that {J(un)} is bounded and J ′|S(un) → 0 has a convergent
subsequence.

Proof. Let {un} ⊂ S such that

{J(un)} is bounded,(3.12)

J ′|S(un) → 0.(3.13)

Since J is coercive, from (3.12) we deduce that {un} is bounded in H1
0 (Ω), hence,

up to subsequence,

(3.14) un ⇀ u in H1
0 (Ω).

Since J1, defined in (3.10), is bounded from below, from (3.12) we deduce that
{‖∇Φ(un)‖2} is bounded; then, up to subtracting a subsequence, we have also

ϕn = Φ(un) ⇀ ϕ in H̃.

By the compact embedding of H1
0 (Ω) in L2(Ω), we have

(3.15) un → u in L2(Ω)

and of course u ∈ S. We have to prove that

(3.16) un → u in H1
0 (Ω).

For simplicity, we set Tn = Tun
S. (3.13) means that for every sequence

{ξn} ⊂ H1
0 (Ω) with ξn ∈ Tn, it results

(3.17) |〈J ′(un), ξn〉| = εn‖ξn‖ with εn → 0.
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Let Pn be the projection on Tn. Consider

ξn = Pn(un − u) = (
∫

Ω

uun dx)un − u ∈ Tn.

By (3.15), we have

(3.18) an =
∫

Ω

uun dx→ 1

and, in virtue of (3.14),

(3.19) ξn ⇀ 0 in H1
0 (Ω).

By (3.17) and (3.19), we have

(3.20) 〈J ′(un)− J ′(u), ξn〉 → 0.

Expanding the bracket, one reads

(3.21) 〈J ′(un)− J ′(u), ξn〉 =
1
2

∫
Ω

|∇un −∇u|2 dx+An +Bn + Cn

where,

An =
1
2
(an − 1)

∫
Ω

(∇un −∇u)∇un dx,

Bn =
∫

Ω

[u(χ+ ϕ)− un(χ+ ϕn)]ξn dx,

Cn =α

∫
Ω

(|u|p−2u− |un|p−2un)ξn dx.

(3.16) will follow from (3.20) and (3.21) if we prove that An, Bn, Cn → 0.
By (3.18) we have

|An| ≤
1
2
|an − 1|‖∇un −∇u‖2‖∇un‖2 → 0.

Furthermore (3.19) yields ‖ξn‖3 → 0, so

|Bn| ≤ (‖un‖3‖χ+ ϕn‖3 + ‖u‖3‖χ+ ϕ‖3)‖ξn‖3 → 0.

Since 2 < 2(p− 1) < 14/3 < 6, and {un} is bounded in H1
0 (Ω), we deduce that

{‖un‖2(p−1)} is bounded. Then, since ‖ξn‖2 → 0, we obtain

|Cn| ≤ α‖ξn‖2‖|u|p−1 − |un|p−1‖2 ≤ α‖ξn‖2(‖u‖p−1
2(p−1) + ‖un‖p−1

2(p−1)) → 0. �

Finally we can prove the existence of a sequence of critical points of J con-
strained on S.

Since J is even, we can use the Krasnoselskii genus index theory. Let us
recall the basic definition: for every A ⊂ S closed and symmetric subset of S,
the genus of A, denoted by γ(A), is defined as the smallest integer k ∈ N for
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which there exists an odd and continuous map h:A → Rk\ {0}. If there is no
finite such k we set γ(A) = +∞ and, finally, γ(∅) = 0.

For every b ∈ R the sublevel

Jb = {u ∈ S : J(u) ≤ b}

has finite genus (see e.g. [3, Lemma 9]). So, for every k ∈ N, we can set

nk = γ(Jk)

and Ink+1 = {A ⊂ S : A closed, A = −A and γ(A) ≥ nk + 1}.
We know that Ink+1 6= ∅ (see Lemma 8 of [3]), so we can consider

bk = inf
Ink+1

sup
A
J.

It is well known (see e.g. [24]) that bk is a critical value for J|S . So there exists
uk ∈ S critical point of J|S such that

(3.22) J(uk) = bk ≥ k.

In order to complete the proof of Theorem 1.1, we have to show that, up to
a subsequence,

‖∇uk‖2 →∞,(3.23)

〈J ′(uk), uk〉 → ∞.(3.24)

Arguing by contradiction, we deduce that {J1(uk)} (defined in (3.10)) is bounded;
indeed

|J1(uk)| ≤ 1
4
‖∇uk‖2

2 +
1
2
‖χ‖∞ + c7‖∇uk‖p−r

2 ,

where r is the same constant used in the proof of Proposition 3.3. Moreover, by
Lemma 2.4, {‖∇Φ(uk)‖2} is also bounded. Then the sum

J(uk) = J1(uk) +
1

16π
‖∇Φ(uk)‖2

2

is bounded and this contradicts (3.22).
On the other hand we have

〈J ′(uk), uk〉 =
1
2

∫
Ω

|∇uk|2dx−
∫

Ω

u2
k(χ+ Φ(uk)) dx− α

∫
Ω

|uk|p dx.

By (2.13),

〈J ′(uk), uk〉 =
∫

Ω

(
1
2
|∇uk|2 − α|uk|p − u2

kχ

)
dx+

1
4π

∫
Ω

|∇Φ(uk)|2 dx

≥
∫

Ω

(
1
2
|∇uk|2 − α|uk|p − u2

kχ

)
dx

≥1
2
‖∇uk‖2

2 − c8‖∇uk‖p−r
2 − ‖χ‖∞.
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Then, by (3.23), we deduce 〈J ′(uk), uk〉 → ∞. The proof of Theorem 1.1 is
thereby complete. �
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