
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 27, 2006, 299–331

TOPOLOGIES
ON THE GROUP OF HOMEOMORPHISMS

OF A CANTOR SET

Sergey Bezuglyi — Anthony H. Dooley — Jan Kwiatkowski

Abstract. Let Homeo(Ω) be the group of all homeomorphisms of a Can-
tor set Ω. We study topological properties of Homeo(Ω) and its subsets

with respect to the uniform (τ) and weak (τw) topologies. The classes of

odometers and periodic, aperiodic, minimal, rank 1 homeomorphisms are
considered and the closures of those classes in τ and τw are found.

1. Introduction

The present paper is a continuation of our article [1] about topologies on the
group Aut(X,B) of all Borel automorphisms of a standard Borel space. In the
introduction to that article, we discussed our approach to the study of topologies
on groups of transformations of an underlying space. As we mentioned there, we
were motivated, first of all, by remarkable results in ergodic theory concerning
topological properties of the group of all automorphisms of a standard measure
space. We refer to the classical articles of Halmos [10] and Rokhlin [16] where
the uniform and weak topologies appeared as “key players” in ergodic theory.

The central object of the present paper is the group Homeo(Ω) of all home-
omorphisms of a Cantor set Ω. Although we consider several topologies on
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Homeo(Ω), this group is mostly studied under two topologies, τ and τw. These
are analogues of the uniform and weak topologies in measurable dynamics. We
should remark that τw is, in fact, the usual sup-topology of uniform convergence
which has occurred in many papers on topological dynamics (see, e.g. [7], [9]).
Many interesting questions can be asked about the topological properties of
Homeo(Ω) and its subsets. For instance, E. Glasner and B. Weiss studied in [9]
the Rokhlin property on (Homeo(Ω), τw) showing that the action of Homeo(Ω)
on itself by conjugation has dense orbits. In this article, we will concentrate on
the following directions, which we believe are natural initial questions in this
theory: (i) global properties of some basic topologies on Homeo(Ω), (ii) find-
ing closures of subsets of Homeo(Ω) consisting of periodic, aperiodic, minimal,
topologically transitive, rank 1 homeomorphisms, and odometers in τ and τw.

It might be asked why we consider only Cantor sets as the underlying space.
First of all, we remark that Cantor sets and their homeomorphisms arise nat-
urally in various areas of dynamical systems, for example in fractals, low-di-
mensional dynamics etc. Although topological and measurable dynamics are,
strictly speaking, completely different theories, we believe that Cantor dynam-
ics has several features in common with measurable dynamics. To support this
point of view we refer to the results on orbit equivalence of minimal homeo-
morphisms and full groups proved in [6]–[8], [11], [3], [4]. We believe that the
following properties of Cantor sets underlie this similarity: (a) all Cantor sets
are homeomorphic; (b) for every Cantor set, there exists a countable family of
clopen sets generating the topology; (c) any Cantor set can be partitioned into
a finite collection of clopen subsets. Nevertheless, we are optimistic that some
ideas of this paper may be used in the context of general topological dynamics.

The paper is organized as follows. In Section 2, we introduce several topolo-
gies on Homeo(Ω) and study global topological properties of Homeo(Ω) mostly
with respect to τ and τw. All possible relations between these topologies are
found in Theorem 2.3. We mention the curious fact that (Homeo(Ω), τw) is
a zero-dimensional Polish space. It turns out that τw is equivalent to the topol-
ogy p whose base of neighbourhoods is defined by W (T ;F1, . . . , Fk) = {S ∈
Homeo(Ω) | SFi = TFi, i = 1, . . . , k} where Fi is clopen. This fact is a justifi-
cation of the name “weak” topology which we use for τw. Section 3 deals prin-
cipally with the problem of approximation by periodic homeomorphisms. We
prove a topological version of the Rokhlin lemma for minimal homeomorphisms
for both τ and τw. On the other hand, we show that pointwise periodic homeo-
morphisms are not dense in (Homeo(Ω), τw). Amongst other results, we obtain a
description of periodic and aperiodic homeomorphisms from the topological full
group of a minimal homeomorphism. In Section 4, we consider homeomorphisms
of rank 1 and show that they are necessarily odometers. In the last section, we
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study closures of various subsets in Homeo(Ω) with respect to τ and τw. In par-
ticular, we prove that the τw-closure of the set of minimal homeomorphisms is
the same as the closure of the set of odometers. Moreover, we give a dynamical
description of homeomorphisms which belong to the closure: T ∈ Homeo(Ω)
belongs to the τw-closure of the set of minimal homeomorphisms if and only if T

has the following property: for every non-trivial clopen F , the sets TF \ F and
F \ TF are non-empty.

Throughout the paper, we use the following standard notation:

• Ω is a Cantor set;
• CO(Ω) is the family of all clopen subsets in Ω;
• Homeo(Ω) is the group of all homeomorphisms of Ω with identity map

I ∈ Homeo(Ω);
• Aut(X,B)(X, B) is the group of all one-to-one Borel automorphisms of

a standard Borel space (X,B);
• Ap is the set of all aperiodic homeomorphisms;
• Per is the set of all pointwise periodic homeomorphisms and Per0 is

the subset of Per consisting of homeomorphisms with finite period;
• Min is the set of all minimal homeomorphisms;
• Mix is the set of all mixing homeomorphisms;
• M1(Ω) is the set of all Borel probability measures on Ω;
• δx is the Dirac measure at x ∈ Ω;
• E(S, T ) = {x ∈ Ω | Tx 6= Sx} ∪ {x ∈ X | T−1x 6= S−1x} where

S, T ∈ Homeo(Ω);
• µ(f) =

∫
X

f dµ where f is in C(Ω)1 (= the set of continuous real-valued
functions with ‖f‖ := sup{|f(x)| : x ∈ Ω} ≤ 1), and µ ∈M1(Ω);

• µ ◦ S(A) := µ(SA) and µ ◦ S(f) :=
∫
Ω

f d(µ ◦ S) =
∫
Ω

f(S−1x) dµ(x)
where S ∈ Homeo(Ω);

• Ac = Ω \A.

2. Topologies on Homeo(Ω)

In this section, we define several topologies on Homeo(Ω). These topologies
are similar to those studied in [1] for Aut(X,B). We make the following (rather
obvious) changes to the settings of [1]: a standard Borel space (X,B) is replaced
by a Cantor set Ω, and Borel sets and functions are replaced by clopen sets and
continuous functions.

Definition 2.1 (cf. [1, Definition 2.1]).

(a) The uniform topology τ on Homeo(Ω) is defined as the relative topology
on Homeo(Ω) induced from (Aut(Ω,B), τ). The base of neighbourhoods
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is formed by

(2.1) U(T ;µ1, . . . , µn; ε) = {S ∈ Homeo(Ω)) | µi(E(S, T )) < ε, i = 1, . . . , n}.

(b) The topology τ ′ is defined on Homeo(Ω) by the base of neighbourhoods

(2.2) U ′(T ;µ1, . . . , µn; ε)

=
{

S ∈ Homeo(Ω)
∣∣∣ sup

F∈CO(Ω)

µi(TF ∆ SF ) < ε, i = 1, . . . , n
}

.

(c) The topology τ ′′ is defined on Homeo(Ω) by the base of neighbourhoods

(2.3) U ′′(T ;µ1, . . . , µn; ε)

=
{

S ∈ Homeo(Ω)
∣∣ sup

f∈C(Ω)1

|µi ◦ S(f)− µi ◦ T (f)| < ε, i = 1, . . . , n
}

.

(d) The topology p is defined on Homeo(Ω) by the base of neighbourhoods

(2.4) W (T ;F1, . . . , Fk) = {S ∈ Homeo(Ω) | SFi = TFi, i = 1, . . . , k}.

(e) The topology p is defined on Homeo(Ω) by the base of neighbourhoods

(2.5) W (T ;F1, . . . , Fk;µ1, . . . , µn; ε) = {S ∈ Homeo(Ω) |
µj(SFi ∆ TFi) + µj(S−1Fi ∆ T−1Fi) < ε, i = 1, . . . , n; j = 1, . . . , k}.

In all the above definitions, we have taken T ∈ Homeo(Ω), µi ∈ M1(Ω), and
Fi ∈ CO(Ω), i = 1, . . . , n.

It is a simple exercise to verify that the collections of sets so defined do indeed
form bases of topologies.

As in [1], we will study the topologies which are defined by their bases of
neighbourhoods. With some abuse of definition, we will say that two topologies
are equivalent if they are defined by equivalent bases of neighbourhoods (actually
such topologies coincide).

We remark that in the Borel case (see [1]) we have also defined the topologies
τB , τ ′B , τ ′′B , pB , and pB (the subindex B stands for Borel; in [1] these topologies
were denoted without B). In fact, only one of them, τ , is the relative topology in-
duced on Homeo(Ω) from (Aut(Ω,B), τB). The others are not relative topologies
on Homeo(Ω) because in their definition we use clopen subsets and continuous
functions instead of Borel ones (see (2.2)–(2.5)). Obviously, τ ′B , τ ′′B , pB , and pB

being induced onto Homeo(Ω) from Aut(Ω,B) are at least not weaker than the
corresponding topologies τ ′, τ ′′, p, and p. Thus, we have to deal here with the
topological counterparts of topologies studied in [1]. Nevertheless, we will see
that the greater part of our results about relations between the topologies proved
in [1] is still true in the context of homeomorphisms of Cantor sets. In most cases,
the proofs for homeomorphisms are either word for word repetition of those in
the Borel case or can be easily adapted.
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Definition 2.2. For S, T ∈ Homeo(Ω), define

(2.6) dw(S, T ) = sup
x∈Ω

d(Sx, Tx) + sup
x∈Ω

d(S−1x, T−1x).

Denote by τw the topology on Homeo(Ω) generated by the metric dw.

The topology τw is well known in topological dynamics and probably is gen-
erally considered as the most natural topology on Homeo(Ω). In particular, it
can easily be seen that τw is equivalent to the topology defined by the base of
neighbourhoods W̃ (T ; f1, . . . , fn; ε) = {S ∈ Homeo(Ω) | ‖fi ◦ T − fi ◦ S‖ < ε,
i = 1, . . . , n} where f1, . . . , fn are Z-valued continuous functions on Ω. The
proof of this fact is similar to that of [1, Theorem 4.7] for Borel dynamics.

We call it the weak topology following our point of view explained in [3], [4]
(see also Theorem 2.3(d) below).

It is well known that (Homeo(Ω), τw) is a Polish space (for every compact
metric space Ω). By Bδ(T ), we denote the set {S ∈ Homeo(Ω) | dw(S, T ) < δ},
T ∈ Homeo(Ω).

Our first main result is the following

Theorem 2.3.

(a) The topologies τ and τ ′ are equivalent.
(b) The topology τ (∼ τ ′) is strictly stronger than τ ′′.
(c) The topology τ (∼ τ ′) is strictly stronger than p.
(d) The topology τw is equivalent to p.
(e) The topology p (∼ τw) is strictly stronger than p.
(f) The topology τ is not comparable with τw (∼ p) and the topology τ ′′ is

not comparable with p.

Proof. A direct analogue of this theorem was proved in the context of Borel
dynamics in [1]. The principal difference is here that one needs to work with
clopen sets instead of Borel sets. We will indicate only what modifications need
to be made for the use of Homeo(Ω).

(a) We follow the idea of the proof of [1, Theorem 4.2]. The fact that τ � τ ′

may be proved as in [1]. To prove that τ ′ � τ , we show that each neighbourhood
U = U(I;µ1, . . . , µn; ε) contains U ′ = U ′(I;µ1, . . . , µn; ε/2). By definition, T ∈
U ′(I;µ1, . . . , µn; ε/2) if µi(TF ∆ F ) < ε/2 for all clopen F and all i = 1, . . . , n.
We first note that E(T, I) is open, T -invariant, and contains some clopen E0

such that E0 ∩ TE0 = ∅. Thus one of the following alternatives must hold:

(i) for every clopen F ⊂ E(T, I) with F ∩ TF = ∅ there exists a clopen set
F ′ ⊃ F such that F ′ ∩ TF ′ = ∅; or

(ii) there exists a clopen F0 ⊂ E(T, I), F0 ∩ TF0 = ∅ which cannot be
extended to a large set F ′ preserving disjointness of F ′ and TF ′ (in other
words, each clopen set F ′ ⊃ F0 has a nonempty intersection with TF ′).
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Clearly, condition (ii) is equivalent to the following property: F0 ∪ TF0 ∪
T 2F0 = E(T, I). Therefore, in this case,

µi(E(T, I)) ≤ µi(TF0 ∆ F0) + µi(TF0 ∆ T 2F0) < ε.

If (i) holds, then one can find F1 ∈ CO(Ω) such that F1 ∩ TF1 = ∅ and
µi(E(T, I)− (F1 ∪ TF1)) < ε/2. This implies that µi(E(T, I)) < ε, i = 1, . . . , n,
and by (2.1), we are done.

(b) The method of proof that τ is strictly stronger than τ ′′ is the same as
in [1, Theorem 4.6]. To show that a statement analogous to [1, Proposition 4.5]
holds, we need to use clopen sets in the definitions of two auxiliary topologies
τ̃ and τ as well as continuous functions in the proof of that proposition (see
[1, Remark 4.9]). In particular, one sees that the topology τ ′′ is equivalent on
Homeo(Ω) to the topology τ defined by the base

(2.7) V (T ;µ1, . . . , µn; ε)

=
{

S ∈ Aut(X,B)
∣∣∣ sup

F∈CO(Ω)

|µj(TF )− µj(SF )| < ε, j = 1, . . . , n
}

,

where T ∈ Homeo(Ω) and µi ∈M1(Ω).
(c) The proof is a word for word repetition of [1, Proposition 4.3].
(d) Fix some δ > 0 and let Q = (Fi)n

i=1 be a partition of Ω into clopen sets
such that diam(Fi) < δ, i = 1, . . . , n. If S ∈ W (I;F1, . . . , Fn), then SFi =
Fi, and therefore supx∈Ω d(Sx, x) + supx∈Ω d(S−1x, x) ≤ 2δ. This proves that
B2δ(I) ⊃ W (I;F1, . . . , Fn).

Conversely, let W (I; F1, . . . , Fn) be given. Take the partition Q = (Ei)i∈I

which is generated by all Fi and F c
i = Ω − Fi, i = 1, . . . , n. Take ε > 0 such

that

ε < min{min
i 6=j

dist(Ei, Ej), min
i

(diam(Ei))}.

Then, every S ∈ Bε(I) has the property SEi = Ei, i.e. Q is fixed. Therefore
SFk = Fk, k = 1, . . . , n, because every Fk is a union of some Ei’s. Thus,
S ∈ W (I;F1, . . . , Fk).

(e) As an immediate corollary of the equivalence proved in (d), we obtain
τw � p. To see that p is strictly weaker than τw, we note that p is weaker than
the topology τ ′ ∼ τ . If we assumed that p was equivalent to τw, we would have
that τ is always stronger than τw. But the latter is false (see (f) or [3]).

(f) See [1, Proposition 4.8] where the pairs τ ′′ and p have been considered.
The fact that τ and τw are not comparable is a direct consequence of [3, Theo-
rem 4.8]. �

Now we formulate several statements concerning topological properties of
Homeo(Ω).
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Proposition 2.4.

(a) (Homeo(Ω), p) is a 0-dimensional complete metric space with no isolated
points.

(b) Homeo(Ω) is a Hausdorff topological group with respect to the topologies
τ , τ ′, τ ′′, p, τw.

(c) Homeo(Ω) is not closed in (Aut(Ω,B), τ).
(d) Homeo(Ω) is dense in (Aut(Ω,B), τ).

Proof. The proof of the first statement follows easily from [1, Proposi-
tion 2.11], replacing Borel sets by clopen sets. In fact it can be shown that the
sets W (T ;F1, . . . , Fn) (see (2.4)) are closed with respect to the topologies τ , τ ′′, p

and p. The second statement of the proposition is based on a routine verification
(see [1]). The third assertion is taken from [3].

(d) We need to show that for any Borel automorphism T of (Ω,B), for any
ε > 0, and for any µ1, . . . , µn ∈ M1(Ω) there exists a homeomorphism S of
Ω such that µi(E(S, T )) < ε, 1 = 1, . . . , n. By Lusin’s theorem, we can find
a closed subset Fi of Ω such that the restriction of T to Fi is a one-to-one
continuous map from Fi onto T (Fi) and

µi(Ω \ Fi) <
ε

2
, µi ◦ T (Ω \ Fi) <

ε

2
, i = 1, . . . , n.

Let F =
⋃n

i=1 Fi. Then F is closed, T is continuous on F , and µi(Ω\F )+µi(Ω\
T (F )) < ε for all i.

Since F and TF are closed, we can represent Ω \ F and Ω \ TF as unions
of infinitely many clopen sets: Ω \ F =

⋃∞
j=1 Aj and Ω \ TF =

⋃∞
j=1 A′j . Then

by Theorem 1 of [13], the continuous map T :F → TF can be extended to
a homeomorphism S of Ω such that Tx = Sx, x ∈ F and T−1x = S−1x,
x ∈ TF . Clearly, µi(E(S, T )) < ε, i = 1, . . . , n. �

Convention. As mentioned above, Homeo(Ω) is not closed in Aut(Ω,B) in
the uniform topology τ , therefore the τ -closure of a subset Y ⊂ Homeo(Ω) does
not belong to Homeo(Ω), in general. For convenience, we will use the following
convention Y

τ
:= Y

τ ∩Homeo(Ω) without further explanation.

Proposition 2.5. Let (Tn) be a sequence of homeomorphisms of Ω. Then:

(a) Tn
τ−→ S if and only if for all x ∈ Ω there exists n(x) ∈ N such that

Tnx = Sx for all n > n(x).
(b) Tn

p−→ I if and only if for all F ∈ CO(Ω) there exists n(F ) such that
TnF = F for all n > n(F ).

(c) Tn
p−→ I if and only if for all µ ∈M1(Ω) and for all F ∈ CO(Ω)

(2.8) µ(TnF ∆ F ) + µ(T−1
n F ∆ F ) → 0
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or if and only if for all F ∈ CO(Ω),

(2.9) F = lim sup
n→∞

TnF = lim sup
n→∞

T−1
n F,

where

lim sup
n→∞

TnF =
⋃
m

⋂
n>m

TnF.

Proof. Notice that (a) is proved in [3] and (b) is obvious. Relation (2.8) is
a direct consequence of the definitions. To prove the other equivalence in (c), we

note that for any x ∈ Ω and F ∈ CO(Ω), the convergence Tn
p−→ I implies that

δx(TnF ∆ F ) + δx(T−1F ∆ F ) → 0

as n → ∞. This means that if x ∈ F , then there exists n0 = n0(x, F ) such
that x ∈ TnF and x ∈ T−1

n F for all n > n0. Thus, we have proved that F ⊂⋃
m

⋂
n>m TnF and F ⊂

⋃
m

⋂
n>m T−1

n F . In fact, these inclusions are equalities.
Indeed, if we assume that there exists x0 ∈ F c = Ω − F with x0 ∈

⋂
n>m TnF

for some m, then we have a contradiction to the fact that x0 also belongs to⋃
k

⋂
n>k TnF c. Thus, (2.9) holds.

Conversely, let Em =
⋂

n>m TnF and
⋃

m Em = F . Since Em ⊂ Em+1, we
see that for any measure µ ∈ M1(Ω), µEm → µF (m → ∞). Remark that
Em ⊂ TnF for all n > m. Therefore Em = Em ∩ TnF ⊂ F ∩ TnF ⊂ F . Thus,
we have µ(F ∩ TnF ) → µF as n →∞. Similarly µ(F ∩ T−1

n F ) → µF . By (2.8),
the proof is complete. �

3. Periodic approximation

Let Ω be a Cantor set equipped with a metric d compatible with the clopen
topology. It is natural to distinguish two principal classes of homeomorphisms
of Ω, the periodic and the aperiodic. We will say that P ∈ Homeo(Ω) is pointwise
periodic if every P -orbit is finite. If T ∈ Homeo(Ω) has no periodic points, then
T is called aperiodic. Denote these classes by Per and Ap, respectively.

In the paper [9] a new interesting notion of simple homeomorphisms was
defined. Recall that, by definition, S ∈ Homeo(Ω) is simple if it satisfies the
following conditions:

(i) There exist clopen subsets Fj and integers rj ≥ 1, j = 1, . . . , k, such
that the collection {SiFj | i = 0, 1, . . . , rj , j = 1, . . . , k} is pairwise
disjoint and S has period rj on Fj .

(ii) There exist clopen subsets Cs, s = 1, . . . , l, and, for each s, two disjoint
periodic orbits (y+

s , Sy+
s , . . . , Sq+

s −1y+
s ), (y−s , Sy−s , . . . , Sq−s −1y−s ) such
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that the sets (SnCs | n ∈ Z, s = 1, . . . , l) are pairwise disjoint and
spiral towards the periodic orbits of y+

s and y−s , that is

lim
n→±∞

dist(SnCs, S
ny±s ) = 0.

(iii) The space Ω may be represented as

(3.1) Ω =
k⋃

j=1

rj−1⋃
i=0

SiFj ∪
l⋃

s=1

⋃
n∈Z

SnCs

∪
l⋃

s=1

[(y+
s , . . . , Sq+

s −1y+
s ) ∪ (y−s , . . . , Sq−s −1y−s )].

It was shown in [9, Theorem 2.2] that the set S of simple homeomorphisms
is dense in (Homeo(Ω), τw).

Theorem 3.1.

(a) Ap is closed in Homeo(Ω) with respect to the topologies τ and τ ′′.
(b) Ap is dense in Homeo(Ω) with respect to τw and p.

Proof. (a) The fact that Ap
τ

= Ap may be proved in the same way as
in [1]. (Recall that by the convention from Section 2 we take the part of the
τ -closure of Ap that lies in Homeo(Ω)). Furthermore, since τ � τ ′′, we have

Ap
τ ′′ ⊇ Ap

τ
. To prove (a), we need to show that the above inclusion is in fact

equality. We will use the equivalence of τ ′′ and τ (see (2.7)). Let S ∈ Ap
τ

and assume S has a point x0 of period n. Then (x0, x1, . . . , xn−1) is a finite S-
periodic orbit, where xi = Six0 and Snx0 = x0. Take µi = δxi

, i = 0, . . . , n− 1,
and consider an arbitrary homeomorphism T from V = V (S;µ0, . . . , µn−1; ε).
It follows that T has the same periodic orbit (x0, . . . , xn−1). To see this, assume
that Tx0 6= Sx0. Then there exists a clopen set F containing Tx0 which does
not contain Sx0. By (2.7) this contradicts the fact that T ∈ V . Similarly, one
can show that Txi = Sxi for i = 1, . . . , n−1. Thus, every such homeomorphism
T has a periodic orbit. This contradicts our assumption that there exists some
S ∈ Ap

τ ′′ \ Ap.

We remark that Ap is not closed in τw. Indeed, one can easily find a sequence
of aperiodic homeomorphisms that converges to the identity map in τw.

(b) To prove that Ap is dense in (Homeo(Ω), τw) (hence in (Homeo(Ω), p)),
it suffices to show that each simple homeomorphism can be approximated by
an aperiodic homeomorphism. We use the above notation from the definition of
simple homeomorphisms.
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Let S be a simple homeomorphism and let ε > 0. Denote by

F̃j =
rj−1⋃
i=0

SiFj , j = 1, . . . , k,

C̃s =
⋃
n∈Z

SnCs ∪ {y+
s , . . . , Sq+

s −1y+
s } ∪ {y−s , . . . , Sq−s −1y−s }, s = 1, . . . , l.

The sets F̃1, . . . , F̃k and C̃1, . . . , C̃l are clopen, disjoint, S-invariant and by (3.1)

Ω =
k⋃

j=1

F̃j ∪
l⋃

s=1

C̃s.

Given ε, we will find an aperiodic homeomorphism T such that

(3.2) dw(S, T ) = sup
x∈Ω

d(Tx, Sx) + sup
x∈Ω

d(T−1x, S−1x) < ε.

To do this, it suffices to find aperiodic homeomorphisms Pj : F̃j → F̃j and
Rs: C̃s → C̃s satisfying (3.2) on the sets F̃j and C̃s for all j, s. To construct Pj ,
j = 1, . . . , k, we divide the S-tower (Fj , . . . , Srj−1Fj) into finitely many clopen
subtowers (Fjm, . . . , Srj−1Fjm), m = 1, . . . , mj , such that diam(SiFjm) < ε for
all i and m. Let Pj(m) be an aperiodic homeomorphism of Fjm. Define Pjx = Sx

for x ∈
⋃rj−1

i=1 SiFjm and Pjx = SPj(m)x for x ∈ Fjm, m = 1, . . . , mj . By con-
struction, Pj maps F̃j onto itself and dw(Pj , S) < ε on each F̃j , j = 1, . . . , k.

Fix some s ∈ {1, . . . , l}. To construct an aperiodic homeomorphism Rs of
C̃s such that dw(S, Rs) < ε, we will use the following property:

(∗) given a proper clopen subset A of a Cantor set Z, one can find a sequence
of disjoint clopen sets A1 = A,A2, . . . in Z and a homeomorphism
R:Z → Z \A such that
(i) the set Z \

⋃∞
j=1 Aj is uncountable,

(ii) RAj = Aj+1, R(Z \
⋃∞

j=1 Aj) = X \
⋃∞

j=1 Aj and R is aperiodic on
Z \

⋃∞
j=1 Aj .

Let a be the minimum of distances between the points {Siy+
s , Sjy−s | i =

0, . . . , q+
s − 1; j = 0, . . . , q−s − 1}. Given 0 < ε < a/2, we can find n0 such that

dist(SnCs, S
ny+

s ) < ε/4 and diam(SnCs) < ε/4 for n ≥ n0. Without loss of
generality we can assume that n0 ≡ 0 mod (q+

s ).
Denote by

Bp =
∞⋃

i=0

Sn0+p+iq+
s (Cs) ∪ {Spy+

s }, p = 0, . . . , q+
s − 1.

The set Bp is clopen and diam(Bp) < ε/2 for each p. Observe that SBp =
Bp+1, p = 0, . . . , q+

s − 2, and SBq+
s −1 = B0 \ A where A = Sn0Cs. Now we

can apply property (∗) for Z = B0. Choose an infinite sequence of clopen sets
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A1 = A,A2, A3, . . . such that every Ai is a subset of B0 and the set B0 \
⋃∞

i=1 Ai

is uncountable. Take a homeomorphism R0 (defined on B0 only) which maps B0

onto B0 \A and satisfies the condition:

R0

(
B0 \

∞⋃
i=1

Ai

)
= B0 \

∞⋃
i=1

Ai, R0Ai = Ai+1, i = 1, 2, . . . .

Let now Ri be a homeomorphism defined on Bi−1 such that RiBi−1 = Bi,
i = 1, . . . , q+

s − 1. Define the homeomorphism R+
s :Ds → Ds where Ds =⋃q+

s −1
p=0 Bp as follows: R+

s x = Rpx for x ∈ Bp, p = 0, . . . , q+
s − 2 and R+

s x =
R0(R−1

1 . . . R−1

q+
s −1

)x for x ∈ Bq+
s −1. We see that R+

s Bq+
s −1 = B0\A and therefore

SBp = R+
s Bp for all p. It follows that d(R+

s x, Sx) + d(R+−1
s x, S−1x) < ε for

x ∈ Ds.
Replacing S by S−1 in the above construction, we can similarly define a home-

omorphism R−s which acts only on the clopen set D′
s =

⋃q−s −1
r=0 B′

r where

B′
r =

∞⋃
i=0

S−m0−r−iq−s (Cs) ∪ {S−rz−s }, r = 0, . . . , q−s − 1.

Here m0 ≡ 0 mod (q−s ) is defined analogously to n0 and z−s = Sq−s −1y−s . It can
be easily checked that dw(S, R−s ) < ε on the set D′

s.
Finally, we define Rs: C̃s → C̃s, s = 1, . . . , l as follows

R−s x =


Sx for x ∈

n0−1⋃
i=−m0+1

SiCs,

R+
s x for x ∈ Bs,

R−s x for x ∈ B′
s.

Thus, the aperiodic homeomorphism T defined by Pj and Rs (j = 1, . . . , k; s =
1, . . . , l) satisfies (3.2). �

We note that every simple homeomorphism has a nontrivial periodic part
Z =

⋃k
j=1

⋃rj−1
i=0 SiFj . Therefore the two dense subsets, Ap and S, are disjoint

in Homeo(Ω).
Let Per0 be the subset of Per consisting of all homeomorphisms with finite

period, that is P ∈ Per0 if and only if there exists m ∈ N such that Pmx = x

for all x ∈ Ω. This means that Ω can be decomposed into a finite union of
clopen sets Ωp such that the period of P at each point from Ωp is exactly p.
By Perp, we denote the subset of Per0 consisting of homeomorphisms with
Ωp = Ω. Such homeomorphisms are called p-periodic. Clearly, the set of simple
homeomorphisms, S contains Per0.

Let P ∈ Perp, then any P -orbit consists of p different points. A subset
E ⊂ Ω is called fundamental for P if (E,P (E), . . . , P p−1(E)) is a partition of Ω.
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Lemma 3.2. Let Ω be a Cantor set and let P be a p-periodic homeomorphism.
Then there exists a clopen P -fundamental subset E ⊂ Ω.

Proof (suggested by B. Weiss). Let d be a metric on Ω compatible with the
clopen topology. We note that there exists some c > 0 such that d(x, P i(x)) > c

for all x ∈ Ω and all i = 1, . . . , p − 1. Indeed, let us fix some i < p and
assume that for any n ∈ N there exists xn ∈ X such that d(xn, P i(xn)) < 1/n.
Take a convergent subsequence {xnk

} ⊂ {xn} such that xnk
→ x0 as k → ∞.

Then P i(xnk
) → P (x0), and therefore d(x0, P

i(x0)) = 0. This contradicts the
assumption that P ∈ Perp.

Now let (A1, . . . , An) be a partition of Ω into clopen sets such that

(3.3) diam(Ai) ≤
c

2
for all i = 1, . . . , n.

Define E1 = A1, and for i = 2, . . . , n, set inductively

(3.4) Ei = Ei−1 ∪ (Ai \OP (Ei−1))

where OP (F ) =
⋃p−1

i=0 P i(F ). We first prove that

(3.5) Ek ∩ P i(Ek) = ∅, k = 1, . . . , n, i = 1, . . . , p− 1.

Clearly, (3.5) is true for k = 1. Assume that this relation is valid for Ek−1. Then
it follows from (3.3) and (3.4) that

Ek ∩ P i(Ek) = [Ek−1 ∩ P i(Ek−1)] ∪ [Ek−1 ∩ (P i(Ak) \OP (Ek−1)]

∪ [P i(Ek−1) ∩ (Ak \OP (Ek−1))]

∪ [(Ak \OP (Ek−1)) ∩ (P i(Ak) \OP (Ek−1))] = ∅.

Next, we show that

(3.6)
p−1⋃
i−0

P i(Ek) ⊃
k⋃

j=1

Aj , k = 1, . . . , n.

Again assume that (3.6) is proved for Ek−1. Then

p−1⋃
i=0

P i(Ek) =
p−1⋃
i−0

P i(Ek−1) ∪
p−1⋃
i=0

(P i(Ak) \OP (Ek−1))

=
p−1⋃
i=0

P i(Ek−1) ∪ (Ak \OP (Ek−1)) ∪
p−1⋃
i=0

(P i(Ak) \OP (Ek−1)).

The first term contains A1 ∪ · · · ∪ Ak−1 by assumption. The first and second
terms together contain Ak.

Thus, it follows from (3.5) and (3.6) that for the clopen set E = En the orbit
OP (E) consists of pairwise disjoint sets and OP (E) = Ω. �
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It follows immediately from Lemma 3.2 that for every P ∈ Per0 there exists
a P -invariant partition (Ω1, . . . , Ωm) of Ω into clopen subsets such that Ωi =⋃ki−1

j=0 P jEi where Ei is a fundamental clopen subset for P on Ωi and ki is the
period of P on Ωi.

We will now consider the closure of Per in Homeo(Ω) with respect to both
τ and τw. Firstly, we show that Per

τw is a proper subset in Homeo(Ω). This
means that there are homeomorphisms which cannot be approximated by peri-
odic homeomorphisms in τw.

We call a homeomorphism T ∈ Homeo(Ω) dissipative if there exits a clopen
set F ⊂ Ω such that either TF & F or F & TF . Clearly, dissipative homeomor-
phisms exist in Homeo(Ω) since any two clopen sets are homeomorphic.

Proposition 3.3.

(a) The set Per
τw is a proper subset in (Homeo(Ω), τw): In fact, if T is

a dissipative homeomorphism of Ω, then T /∈ Per
τw .

(b) (S \ Per0) ∩ Per
τw = ∅; in other words, if a simple homeomorphism S

has an aperiodic part, then it cannot be approximated in τw by pointwise
periodic homeomorphisms.

Proof. (a) Take a dissipative homeomorphism T and let F be a clopen
subset such that TF & F . We will show that the neighbourhood W (T ;F ) does
not contain any homeomorphism from Per. Assume that this is false and let
P ∈ Per be such that PF = TF . Then PnF & · · · & PF (= TF ) & F for any n.
It follows that there are points from F with infinite orbits, and this contradicts
the pointwise periodicity of P .

(b) It suffices to show that each S from (S\Per0) is dissipative. We use nota-
tion from the definition of simple homeomorphisms. Note that it follows from de-
composition (3.1) that every closed set Es = (

⋃∞
n=0 SnCs)∪ [(y+

s , . . . , Sq+
s −1y+

s )]
is, in fact, clopen because Ω \ Z is a finite disjoint union of closed sets. Clearly,
SEs & Es and the result follows from (a). �

In Section 5 we will strengthen the above result and give a complete descrip-
tion of the set Per0

τw .
Let T be a minimal homeomorphism of a Cantor set Ω. We consider the

full group [T ] = {γ ∈ Homeo(Ω) | γx = Tmγ(x)x, for all x ∈ Ω} and the topo-
logical full group [[T ]] of homeomorphisms generated by T . Recall that a home-
omorphism γ ∈ Homeo(Ω) belongs to [[T ]] if and only if γx = Tmγ(x)x where
x 7→ mγ(x) is a continuous function Ω → Z (see [3], [7], [8] for details).

It was shown in [3] how one can use Kakutani–Rokhlin partitions to describe
the structure of homeomorphisms from [[T ]]. Here we recall some facts that will
be used later on.
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Let (An) be a sequence of clopen subsets of Ω such that An ⊃ An+1, n ∈ N,

and
⋂

n An is a singleton in Ω. Given T and An, we can produce a Kakutani–
Rokhlin partition ξn of Ω which is determined by the function of first return
to An under the action of T ([15], [11]). The partition ξn consists of a finite
collection of T -towers ξn(v), v ∈ Vn:

ξn(v) = {P i
n(v) := T iPn(v) | i = 0, . . . , hn(v)− 1}

where P 0
n(v) = Pn(v). We note that (An) can be also chosen such that ξn+1

refines ξn and
⋂

n ξn generates the clopen topology on Ω. Moreover one can
assume that diam(An) → 0 as n →∞.

Suppose γ ∈ [[T ]]. Then there exists N ∈ N such that Ei = {x ∈ Ω | γx =
T ix}, −N ≤ i ≤ N , is a clopen finite partition of Ω (some of Ei’s may be
empty). Note that for sufficiently large n, each set Ei becomes a ξn-set, that
is γP i(vn) = T lP i(vn) for some l = l(i, vn). Moreover, we may suppose that
N < 2−1hn, where hn = min(hn(v) : v ∈ Vn).

We will now commence the study of the periodic and aperiodic parts of the
topological full group with respect to the uniform and weak topologies τ and τw.

Let us denote by Per0(T ) the set Per0 ∩ [[T ]].

Theorem 3.4. Min ⊂ Per0
τ

and Min ⊂ Per0
τw . More precisely, let T be

a minimal homeomorphism of Ω, then:

(a) given a neighbourhood U(T ;µ1, . . . , µm; ε), there exists a periodic home-
omorphism P ∈ Per0(T ) such that P ∈ U(T ;µ1, . . . , µm; ε);

(b) given ε > 0 there exists Q ∈ Per0(T ) such that dw(T,Q) < ε.

Proof. We will prove (a); assertion (b) can be proved similarly.
Every measure µ ∈M1(Ω) has an at most countable set of points of positive

measure; denote it by {xµ(k)}. Given µ1, . . . , µm and ε > 0, find a finite set
Y = {xµi

(k) | i = 1, . . . , m, k ∈ I(µi) ⊂ N} where the finite subset I(µi) is
determined by the condition

(3.7)
∑

k/∈I(µi)

µi({xµi
(k)}) ≤ ε

3
, i = 1, . . . , m.

Let Y = (y1, . . . , yN ). Choose a point x ∈ Ω \ Y such that Tx = y does not
belong to Y . By [11], we can find a sequence (ξn), ξn = {T iDj(n) | 0 ≤ i ≤
k(j, n) − 1, j ∈ K(n)}, |K(n)| < ∞, of Kakutani–Rokhlin partitions satisfying
the following conditions:

(i) ξn+1 refines ξn and for the base B(n) =
⋃

j Bj(n), one has B(n + 1) ⊂
B(n);

(ii) (ξn) spans the clopen topology on Ω;
(iii)

⋂
n B(n) = {y} and

⋂
n C(n) = {x} where C(n) =

⋃
j T k(j,n)−1Dj(n).
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Let n0 be sufficiently large so that B(n0) ∩ Y = C(n0) ∩ Y = ∅ and

(3.8) µi(B(n0)) <
ε

2
, µi(C(n0)) <

ε

2
, i = 1, . . . , m.

The sets B(n0) and C(n0) may contain points of positive measure µi but, by
(3.7), the total contribution of these points to the measures of either of the sets
is less than ε/3.

For every T -subtower ξj
n0

= {T iDj(n0) | 0 ≤ i ≤ k(j, n0) − 1}, j ∈ K(n0),
we define a periodic homeomorphism Pj(n0):

(3.9) Pj(n0)x =

{
Tx if x /∈ T k(j,n0)−1Dj(n0),

T−k(j,n0)+1x otherwise.

We define the periodic homeomorphism P as follows: Px = Pj(n0)x if x ∈ ξj,n.
We get from (3.9) that P ∈ [[T ]] and E(P, T ) = B(n0) ∪ C(n0). Thus, by (3.8),
we obtain that P ∈ U(T ;µ1, . . . , µm; ε).

To prove (b), we observe that diam(B(n)) and diam(C(n)) tend to 0 as n →
∞. Therefore, the above method allows us to find a periodic homeomorphism
Q ∈ Per0(T ) which is ε-close to T with respect to τw. �

Although we have shown that Per0 is not dense in (Homeo(Ω), τw) it is
interesting to decide whether Per0(T ) is dense in [T ] with respect to τ and τw.

Theorem 3.5. Let (Ω, T ) be a Cantor minimal system, then:

(a) Per0(T )
τ

= [T ] and
(b) Per0(T )

τw ⊃ [[T ]].

Proof. Case (a) will be considered in detail, case (b) is similar.
We use here notation from the preceding proof. Let γ ∈ [[T ]]. Then there

exists K ∈ N such that for all i ∈ [−K, K], the clopen sets Ei = {x ∈ Ω |
γx = T ix} constitute a partition η = η(γ) of Ω. We first prove that for any
neighbourhood Uγ = U(γ;µ1, . . . , µm; ε) there exists a periodic homeomorphism
P ∈ P such that P ∈ Uγ . We apply the method used in the proof of Theorem 3.4.
Let Y and (ξn) be as above. In addition to (i)–(iii), we may assume that (ξn)
satisfies the following conditions (see [3] for details):

(iv) the height k(j, n) of every T -subtower ξj
n approaches to infinity as

n →∞;
(v) ξn refines η, i.e. every Ei is a union of atoms from ξn; in particular, for

every element D ∈ ξn, γx = T ix, x ∈ D, where i = i(D).

Take M ∈ N and choose n1 so large that min{k(j, n) | j ∈ K(n)} ≥ K(M+2)
for all n ≥ n1. Let

Z =
( K−1⋃

i=0

T iB(n1)
)
∪

( K−1⋃
i=0

T−iC(n1)
)

,
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where B(n1) and C(n1) are the base and top of ξn1 , respectively. It follows
from (i)–(v) that the γ-orbit of any atom D of the partition ξn meets Z at least
once. Furthermore, by the same reasoning as in the proof of Theorem 3.4, we
can assume that n1 is chosen sufficiently large that µi(Z) < ε, i = 1, . . . , m.

Now fix a T -subtower ξj
n1

, consisting of sets T iDj(n1) = D(i, j). Define
a periodic homeomorphism P (j, n1): ξj

n1
→ ξj

n1
from [[T ]] as follows. Let D(K, j)

be the first atom (with respect to the natural order on ξj
n1

) that does not belong
to Z. Consider the sets γpD(K, j), p = 0, . . . , L, where γL(D(K, j)) ⊂ Z

and γpD(K, j) ∩ Z = ∅. Define P (j, n1)x = γx on
⋃

0≤p<L γp(D(K, j)) and
P (j, n1)x = γ−Lx on γL(D(K, j)). Let D(i1, j) be the first atom in ξj

n1
where

P (j, n1) has not been defined. We extend the definition of P (j, n1) on a finite
piece of the γ-orbit outgoing from D(i1, j) that does not meet Z. Repeating
this construction we eventually define P (j, n1) for all D(i, j) with K ≤ i <

k(j, n1)−K + 1 and for some D(i, j) from Z. We set P (i, n1) to be the identity
map for the remaining part of atoms of Z. Let now Px = P (j, n1)x if x is in ξj

n1
.

Then P is a periodic homeomorphism from [[T ]] whose period is at most M at
every point. By construction, E(P, γ) ⊂ Z, that is P ∈ Uγ . To complete the
proof of (a), use the argument of [3, Theorem 4.5] where the density of [[T ]] in
[T ] was established.

For case (b), first observe that diam(Z) can be made arbitrarily small by
choosing n sufficiently large. Then use the same method to prove that each
γ ∈ [[T ]] can be approximated in τw by homeomorphisms from Per0(T ). As was
shown in [3], the τw-closure of [[T ]] does not, in general, contain [T ]. �

Our next goal is to describe periodic and aperiodic homeomorphisms γ from
[[T ]] where T is a minimal homeomorphism of Ω. We will refine the results
proved in [3], describing all possible types of γ-orbits.

Fix some ξ =
⋃

v∈V ξ(v) from the sequence (ξn) of Kakutani–Rokhlin par-
titions built by T and a refining sequence of clopen subsets (An) (see above).
Given ξ and T , define two partitions α and α′ of V : we say that J is an atom
of α if J is the smallest subset of V such that T (

⋃
v∈J Th(v)−1D(v)) is a ξ-set.

Similarly, J ′ ∈ α′ if T−1(
⋃

v∈J′ D(v)) is a ξ-set and J ′ is the smallest subset
with this property. Obviously, for every J ∈ α there exists J ′ ∈ α′ such that

(3.10) T

( ⋃
v∈J

Th(v)−1D(v)
)

=
⋃

v∈J′

D(v).

Notice that (3.10) defines a one-to-one correspondence m: J → J ′ between atoms
of α and those of α′.
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For J ∈ α and J ′ ∈ α′ define Ltj(J) and Lbk(J ′), 0 ≤ j, k ≤ h/2, h =
minv∈V h(v) as follows:

(3.11) Ltj(J) =
⋃
v∈J

Th(v)−j−1D(v), Lbk(J ′) =
⋃

v′∈J′

T kD(v′)

(here t stands for “top” and b stands for “base”). Remark that the indexes j

and k in Ltj(J) and Lbk(J ′) indicate the distance of Dh(v)−j−1(v), v ∈ J , and
Dk(v), v′ ∈ J ′, from the top and from the base of the corresponding towers.

Since (ξn) generates the clopen topology, we note that given γ ∈ [[T ]] there
exists ξ ∈ (ξn) such that for every i ∈ Z the set {x ∈ Ω | γx = T ix}, is a ξ-set.
Then for every ξ-atom Di(v), there exists an integer l = l(Di(v)) such that

(3.12) γx = T lx, x ∈ Di(v).

On the other hand, it was proved in [3] that for γ and ξ as above, the following
property holds: if γ(Di(v)) = T l(Di(v)) and l+i ≥ h(v) (i.e. Di(v) goes through
the top of ξ(v) under action of γ), then the entire set Ltj(J), j = h(v) − i − 1,
containing Di(v), also goes through the top of

⋃
v∈J ξ(v). Furthermore, Ltj(J)

is mapped by γ onto Lbk(J ′) where J ′ = m(J) and k is uniquely determined
by j, l. A similar property holds when γ(Dk(v′)) = T s(Dk(v′)), v′ ∈ J ′, and
k + s < 0. In this case, the set Lbk(J ′) goes through the base and is mapped by
γ onto some Ltj(J).

It turns out that the above result allows us to solve the inverse problem, that
is, to find a finite collection of objects that uniquely determine a homeomorphism
γ ∈ [[T ]]. For this, we take the following data:

(a) a positive integer N < h/2;
(b) subsets IL(J), IIL(J ′), IA(J), IIA(J ′) of {0, . . . , N} such that |IL(J)| =

|IIA(J ′)|, |IIL(J ′)| = |IA(J)|, J ∈ α, J ′ ∈ α′;
(c) one-to-one maps ρ(J): IL(J) → IIA(J ′), σ(J ′): IIL(J ′) → IA(J) where

J ∈ α, J ′ ∈ α′, and m(J) = J ′;
(d) a one-to-one map π(v): INL(v) → INA(v) where v ∈ J ∩ J ′, J ∈ α, J ′ ∈

α′, and the set INL(v) (resp. INA(v)) consists of those k ∈ {0, . . . , h(v)−
1} such that k /∈ IIL(J ′) (resp. k /∈ IIA(J ′)) and h(v) − k − 1 /∈ IL(J)
(resp. h(v)− k − 1 /∈ IA(J)).

In the above notation, the indexes A, L, NA, NL mean the first letters in
words “arriving”, “leaving”, “not arriving”, “not leaving”.

Using these data, we can define a homeomorphism γ from [[T ]] by the fol-
lowing rule:

For every ξ-atom Dj(v) = T j(D(v)), v ∈ J ∩ J ′, we have that: either

(1) j is in INL(v), or
(2) h(v)− j − 1 ∈ IL(J), or
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(3) j ∈ IIL(J ′).

(Note that in view of (a)–(d) only one of the above possibilities can occur). If (3)
holds, then Dj(v) belongs to Lbj(J ′); if (2) holds, then Dj(v) belongs to Ltk(J)
where k = h(v)− j − 1.

According to cases (1)–(3), we define

γ(T jD(v)) = Tπ(v)(j)D(v) if j ∈ INL(v),(3.13)

γ(Ltk(J)) = Lb,ρ(J)(k)(J ′) if j ∈ IL(J),(3.14)

γ(Lbj(J ′)) = Lt,σ(J′)(j)(J) if j ∈ IIL(J ′).(3.15)

We observe that the image of Dj(v) under the γ-action is a ξ-set if γ is defined
by (3.13) and is no longer a ξ-set if γ is defined by (3.14) and (3.15).

Denote by Γ(ξ) the set of all homeomorphisms that can be constructed from
the data (a)–(d) by (3.13)–(3.15). It was proved in [3] that Γ(ξn) is an increasing
sequence of subsets in [[T ]] and, for every γ ∈ [[T ]], there exists ξ from (ξn) such
that γ ∈ Γ(ξ).

Fix a homeomorphism γ ∈ [[T ]]. Let ξ ∈ (ξn) satisfy (3.12). Then γ deter-
mines the subsets IL(J), IIL(J ′), IA(J), IIA(J ′) and maps ρ(J), σ(J ′) such that
(3.13)–(3.15) hold. Let us consider γ-orbits in terms of these subsets and maps.

First suppose that γ ∈ [[T ]] is periodic. There are two possible types of
periodic behaviour for γ.

Case 1. We start with some Dj0(v) where j0 ∈ INL(v) ∩ INA(v). Suppose
that the γ-orbit of Dj0(v) does not leave ξ(v). By (3.13), this means that the
entire sequence (jk)s

k=0, jk = π(v)(jk−1), belongs to INL(v)∩INA(v) and js = j0,
jk 6= j0, k < s. Let

(3.16) η1 = {T jkD(v) | k = 0, . . . , s− 1} = {γi(T j0D(v)) | i = 0, . . . , s− 1}

be the γ-orbit where γ(T jkD(v)) = T jk+1(D(v)). Then, it follows that the γ-
orbit of Dj0(v) returns to this set and because the orbit is a part of T -tower, we
get that γ is periodic.

Case 2. The other type of cyclic γ-orbit has the following structure. Fix
some J ∈ α and let J ′ = m(J). Suppose that that j0 ∈ IL(J) ∩ IA(J),
j1 = ρ(J)(j0) ∈ IIA(J ′) ∩ IIL(J ′), j2 = σ(J ′)(j1) ∈ IA(J) ∩ IL(J), . . . , j2s−1 =
ρ(J)(j2s−2) ∈ IIA(J ′)∩ IIL(J ′) and σ(J ′)(j2s−1) = j0. By (3.14) and (3.15), this
case corresponds to the following periodic γ-orbit

(3.17) η2 = {γi(Ltj0(J)) | i = 0, . . . , 2s− 1}

where γ(Ltj0(J)) = Lbj1(J
′), γ(Lbj1(J

′)) = Ltj2(J)) etc. until it returns to
Ltj0(J).

It follows from the above proof that γ belongs to Per0. We summarize the
above observations in the following statement.
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Lemma 3.6. Let γ be a periodic homeomorphism from [[T ]]. Then there
exists ξ from (ξn) such that every periodic γ-orbit either has the form (3.16) or
the form (3.17).

We can study γ-orbits for an aperiodic γ ∈ [[T ]] in a similar manner. Given
ε > 0 and γ ∈ [[T ]]ap where [[T ]]ap = [[T ]] ∩ Ap, we take ξ from the sequence
(ξn) such that γ ∈ Γ(ξ). Since diam(An) → 0 as n →∞, we can assume that

(3.18) diam
( ⋃

J∈α

N⋃
j=0

Ltj(J)
)

+ diam
( ⋃

J′∈α′

N⋃
j=0

Lbj(J ′)
)

< ε.

Considering γ-orbits of atoms of ξ, one can find a finite partition ζ of Ω into
clopen subsets, γ-towers, such that those towers have their bases and tops into
the sets

⋃N
j=0 Lbj(J ′) and

⋃N
j=0 Ltj(J). Then we can construct an odometer

which is, by (3.18), ε-close to γ in τw (see e.g. the proof of Theorem 5.3). The
case of the topology τ is considered similarly. We should note that given ε > 0
and µ1, . . . , µn ∈M1(Ω) we can chose ξ such that for all i,

µi

( ⋃
J∈α

N⋃
j=0

Ltj(J)
)

+ µi

( ⋃
J′∈α′

N⋃
j=0

Lbj(J ′)
)

< ε.

This relation guarantees that the odometer which we have found is also ε-close
to γ in τ .

Using these ideas, it is now easy to prove the following theorem. We leave
details to the reader. Another proof of the first relation of the theorem can also
be obtained from Theorem 5.9 (see Remark 5.13 below).

Theorem 3.7. If T is a minimal homeomorphism of Ω, then [[T ]]ap ⊂Min
τ

and [[T ]]ap ⊂Min
τw where [[T ]]ap = [[T ]] ∩ Ap.

Let T be a homeomorphism of a Cantor set Ω. Then T can be also considered
as a Borel automorphism of (Ω,B). Therefore, one can define two full groups
[T ]C and [T ]B where

[T ]C = {S ∈ Homeo(Ω) | Sx ∈ {Tnx | n ∈ Z} for all x ∈ Ω},
[T ]B = {S ∈ Aut(Ω,B) | Sx ∈ {Tnx | n ∈ Z} for all x ∈ Ω}.

Here the subindeces C and B correspond to the cases of Cantor and Borel dy-
namics. Obviously, [T ]C ⊂ [T ]B and [T ]B is closed in Aut(Ω,B) with respect
to τ [1].

If S ∈ [T ]C (or S ∈ [T ]B), then S generates two partitions π(S) = (Xn |
n ∈ Z) and π′(S) = (X ′

n | n ∈ Z) of Ω into closed (Borel) subsets Xn = {x ∈ Ω |
Sx = Tnx} and X ′

n = S(Xn) = Tn(Xn). Those homeomorphisms from [T ]C ,
for which the sets Xn are clopen, form the so called topological full group [[T ]]C .



318 S. Bezuglyi — A. H. Dooley — J. Kwiatkowski

It was shown in Section 2 that Homeo(Ω) is non-closed and dense in Aut(Ω,B).
On the other hand, we proved in [3] that for a minimal homeomorphism T ,

(3.19) [[T ]]C
τ
∩Homeo(Ω) = [T ]C .

But the problem of finding the entire closure of [[T ]]C in Aut(Ω,B) with respect
to τ remained open. We answer this question in the following theorem.

Theorem 3.8. Let T be a minimal homeomorphism of a Cantor set Ω. Then
[[T ]]C

τ
= [T ]B.

Proof. It is clear that [[T ]]C
τ
⊂ [T ]B . Take a Borel automorphism S ∈

[T ]B . Let U(S) = U(S;µ1, . . . , µm; ε) be a τ -neighbourhood of S. To prove the
theorem we need to show that U(S) contains a homeomorphism R from [[T ]]C .
By (3.19), it suffices to prove that there exists some R1 ∈ [T ]C ∩ U(S).

Consider the partitions π(S) and π′(S) defined above. Choose n0 such that

(3.20)
∑
|n|>n0

µi(Xn) <
ε

4
,

∑
|n|>n0

µi(X ′
n) <

ε

4
, i = 1, . . . , m.

For each Xn, |n| ≤ n0, find a closed Fn ⊂ Xn such that for all i = 1, . . . , m,

(3.21) µi(Xn \ Fn) <
ε

4(2n0 + 1)
, µi(Xn \ S(Fn)) <

ε

4(2n0 + 1)
.

Let F ′
n = S(Fn). Clearly, F ′

n is also a closed subset in X ′
n. The collections (Fn)

and (F ′
n) consist of pairwise disjoint sets. Then there exist clopen sets Gn ⊃ Fn

and G′
n ⊃ F ′

n such that (Gn : |n| ≤ n0) and (G′
n : |n| ≤ n0) are pairwise disjoint

collections of sets.
Let ξk =

⋃
v∈Vk

ξk(v) be a sequence of Kakutani-Rokhlin partitions built
by T and a decreasing sequence of clopen sets (see above). For every k, find
partitions α = αk and α′ = α′k with atoms J and J ′ satisfying (3.10). Define
a new partition ηk of Ω which consists of the sets Ltj(J), Lbj(J ′), J ∈ α, J ′ ∈ α′,
j = 1, . . . , n0 (see (3.11)) and the remaining atoms of ξk. Clearly, every atom of
ηk is a ξk-set and the sequence (ηk) generates the clopen topology on Ω.

Choose k sufficiently large such that

min
v∈Vk

h(k, v) > 3n0,

where h(k, v) is the height of ξk(v) and every set Gn, G′
n, |n| ≤ n0, is an ηk-set.

Without loss of generality, we can assume that if E is an atom of η = ηk such
that E ⊂ Gn (or E ⊂ G′

n), then E ∩ Fn 6= ∅ (or E ∩ F ′
n 6= ∅), |n| ≤ n0.

Fix some Gn. By construction, Gn is a union of atoms D1, . . . , Dp of ξk

and sets Ltj(J), Lbj(J ′) and each of these sets intersects Fn. Define Sx = Tnx

if x ∈
⋃p

s=1 Ds. We also define Sx = Tnx if x ∈ Ltj(J) (or x ∈ Lbj(J ′)) and
the set Ltj(J) (Lbj(J ′)) goes through the top (base) of ξk under the action of
Tn. If Ltj(J) (or Lbj(J ′)) is a subset of Gn which does not go through the top
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(base) under Tn, we discard from Ltj(J) (Lbj(J ′)) those atoms of ξk which do
not meet Fn and set Sx = Tnx for x from the remaining atoms. In such a way,
we have found a clopen subset Gn ⊂ Gn and a map S defined on Gn. Clearly,
Gn ⊃ Fn. Similarly, we define a clopen set G′

n such that F ′
n ⊂ G′

n ⊂ G′
n. It

can be easily seen that SGn = G′
n. Indeed, if E ⊂ Gn and E ∈ η, then there

exists y ∈ E ∩Fn. Hence Tny ∈ F ′
n. At the same time, Tn(E) is an η-set. Thus,

Tn(E) ⊂ G′
n. In such a way, we have found a partially defined homeomorphism

S such that S(A) = B where

A =
⋃

|n|≤n0

Gn and B =
⋃

|n|≤n0

G′
n.

Since S ∈ [[T ]]C on the clopen set
⋃
|n|≤n0

Gn, we get that for any T -invariant
measure ν

ν

(
X \

⋃
|n|≤n0

Gn

)
= ν

(
X \

⋃
|n|≤n0

G′
n

)
.

By [8, Proposition 2.6], there exists a homeomorphism R′ ∈ [T ]C which maps
X\

⋃
|n|≤n0

Gn onto X\
⋃
|n|≤n0

G′
n. Now define Rx = Sx if x ∈ A and Rx = R′x

if x ∈ X \ A. Then R ∈ [T ]C and it remains to show that R ∈ U(S). Note that
if x ∈ Fn, then Sx = Sx = Rx. Therefore

E(S, R) ⊂
(

X \
⋃

|n|≤n0

Fn

)
∪

(
X \

⋃
|n|≤n0

F ′
n

)
.

Then, for given measures µi, i = 1, . . . , m, we have by (3.20) and (3.21)

µi(E(S, R)) <µi

(
X \

⋃
|n|≤n0

Fn

)
+ µi

(
X \

⋃
|n|≤n0

F ′
n

)

=µi

(
X \

⋃
|n|≤n0

Xn

)
+ µi

(
X \

⋃
|n|≤n0

X ′
n

)

+ µi

( ⋃
|n|≤n0

(Xn \ Fn)
)

+ µi

( ⋃
|n|≤n0

(X ′
n \ F ′

n)
)

<
ε

4
+

ε

4
+ 2(2n0 + 1)

ε

4(2n0 + 1)
= ε. �

Remark 3.9. We note that the τw-closures of the full group [T ] and the
topological full group [[T ]], T ∈ Ap, can be easily found. Indeed, it was noted
[T ]

τw = {S ∈ Homeo(Ω) | µ ◦ S = µ for all µ ∈ M1(T )} where M1(T ) is the
set of T -invariant Borel probability measures [7]. It is not hard to show that
R ∈ [[T ]]

τw if and only if for every clopen set E there exists γ ∈ [[T ]] such that
RE = γE. In other words, R ∈ [[T ]]

τw if and only if the clopen sets E and
RE are [[T ]]-equivalent for every E. Recall that in [3] we defined the notion
of saturated homeomorphisms: a minimal homeomorphism T is called saturated
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if any two clopen sets A and B such that µ(A) = µ(B) for all µ ∈ M1(T ) are
[[T ]]-equivalent. Obviously, every odometer is a saturated homeomorphism. It
was proved there that T is saturated if and only if [[T ]]

τw = [T ]
τw . Now this

result follows easily from the above description of the τw-closures.

4. Rank of a homeomorphism

The concept of the rank of an automorphism of a standard measure space is
an important invariant in ergodic theory. This notion has been studied in many
papers. M. Nadkarni [14] has recently defined rank for Borel automorphisms.
Here we consider rank for homeomorphisms of a Cantor set.

We first recall the definition of odometer (or adding machine). Let {λt}∞t=0 be
a sequence of integers such that λt ≥ 2. Denote by p−1 = 1, pt = λ0λ1 · · ·λt, t =
0, 1, . . . Let ∆ be the group of all pt-adic numbers; then any element of ∆ can
be represented as an infinite formal series:

∆ =
{

x =
∞∑

i=0

xipi−1

∣∣∣∣ xi ∈ (0, 1, . . . , λi − 1)
}

.

It is well known that ∆ is a compact metric abelian group. An odometer,
S, is the transformation acting on ∆ as follows: Sx = x + 1, x ∈ ∆, where
1 = 1p−1 + 0p0 + 0p1 + . . . ∈ ∆. From the topological point of view, (∆, S) is
a strictly ergodic Cantor system.

Let

Dt
0 =

{
x =

∞∑
i=0

xipi−1

∣∣∣∣ x0 = x1 = . . . = xt = 0
}

.

We see that the sets (Dt
0, . . . , Dt

pt−1), Dt
i = Si(Dt

0) form a partition ξt of ∆ into
clopen sets. Clearly, (ξt), t ≥ 0, is a refining sequence of of S-towers. Moreover,
S(ξ)t = ξt for every t.

We will denote by Od = Od(Ω) the set of homeomorphisms of Ω homeomor-
phic to an odometer (∆, S). Elements from Od will be also called odometers.

Lemma 4.1. Let T ∈ Homeo(Ω) and let (F1, . . . , Fn) be a partition of Ω into
clopen sets such that TFi = Fi+1, 1 ≤ i ≤ n − 1, TFn = F1. Then there exists
an odometer S such that SFi = TFi for all i, i.e. S ∈ W (T ;F1, . . . , Fn).

The proof of the lemma is based on the definition of odometer and left to
the reader.

Definition 4.2. Let T ∈ Homeo(Ω) and let Fn, n ∈ N, be a partition of Ω
which is a union of r disjoint T -towers consisting of clopen sets, that is

Fn =
r⋃

j=1

hn(i)−1⋃
i=0

T iFn(j)
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where Fn(j) ∈ CO(Ω) is the base of jth tower and hn(j) is its height. We say
that T has rank at most r if Fn+1 refines Fn and all Fn’s generate the clopen
topology on Ω. We say that T has rank r if T has rank at most r but does not
have rank at most r − 1. T has infinite rank if it does not have rank r for any
finite r.

Obviously, every odometer is a homeomorphism of rank one.
We denote the set of all homeomorphisms having rank at most r by R(≤ r)

and the set of homeomorphisms of rank r by R(r).

Proposition 4.3. Let T ∈ Homeo(Ω) and suppose rank(T ) = r < ∞. If
(Fn) is a sequence of clopen subsets of Ω as in Definition 4.2, then Fn = Ω for
all sufficiently large n.

Proof. We note that Fn ⊂ Fn+1 for all n ∈ N by Definition 4.2. If we
assume that Fn 6= Ω for all n, then we get that

⋂
n(Ω\Fn) 6= ∅. This contradicts

the assumption that the Fn’s generate the topology on Ω. �

Suppose that the clopen set F is a disjoint union of r disjoint families of
clopen sets: F =

⋃
i,j Dij where i = 1, . . . , r and j = 0, 1, . . . , h(i) − 1. Let σ

be a total order on the set (0, 1, . . . , h(i) − 1) for i = 1, . . . , r. Denote by σ(j)
the successor of j ∈ (0, . . . , h(i)− 1). Define

(4.1) Zr,σ(F) = {R ∈ Homeo(Ω) | RDij = Diσ(j),

i = 1, . . . , r, j = 0, . . . , h(i)− 2}.

Let S ∈ Zr,σ(F). Then S transforms the sets (Dij : j = 0, . . . , h(i) − 1) into
an S-tower, provided we introduce a new enumeration such that SDij = Dij+1.
Note that

Zr,σ(F) =
r⋂

i=1

h(i)−2⋂
j=0

W (S;Dij)(4.2)

= W (S;D10, . . . , D1h(1)−2, D20, . . . , Drh(r)−2).

Theorem 4.4. For every finite r, the set R(≤ r) is a Gδ-set in τw-topology
and R(≤ r) is an Fσδ-set in the topologies τ , τ ′′, p. In particular, R(1), the set
of homeomorphisms of rank 1, is a Gδ-set in τw and R(1) is a Fσδ in τ , τ ′′, p.

Proof. Let (Qn) be a refining sequence of finite partitions into clopen sets
generating the clopen topology. Then for a finite partition F into clopen subsets
there exists Qn such that Qn refines F , Qn � F . One can easily check that

(4.3) R(≤ r) =
∞⋂

n=1

∞⋃
k=n

⋃
Qn≺F≺Qk

⋃
σ

Zr,σ(F).
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By (4.2) and Proposition 2.4, every set Zr,σ(F) is clopen in τw and closed in τ ,
τ ′′, p. The theorem follows. �

Theorem 4.5. If T has rank 1, then T is minimal.

Proof. Let (F)n be a refining sequence of T -towers generating the topology
on Ω. Without loss of generality, we may assume that every Fn is a clopen
partition of Ω. Take some x ∈ Ω and let E be a nonempty clopen subset. Find
n such that E is an Fn-set. Then there exists an integer m such that Tmx ∈ E.
This means that T -orbit of x is dense in Ω. �

Theorem 4.6. T ∈ R(1) if and only if T is topologically conjugate to an
odometer. In other words, R(1) = Od.

Proof. Let (F)n be a sequence of T -towers corresponding to a rank 1 home-
omorphism T . Then

Fn =
hn−1⋃
j=0

Dn
j , TDn

j = Dn
j+1, 0 ≤ j ≤ hn − 2.

Since Fn+1 � Fn and every Fn is a clopen partition of Ω, we see that hn divides
hn+1, say hn+1 = λnhn. We have that

Dn
j =

λn−1⋃
k=0

Dn+1
khn+j , j = 0, . . . , hn − 1.

This proves that T is completely defined, up to conjugacy, by a sequence of pos-
itive integers (λn) and therefore T is conjugate to an odometer by Lemma 4.1.�

Let C(T ) denote the centralizer of a homeomorphism T , that is C(T ) = {R ∈
Homeo(Ω) | RT = TR}. Denote by Wcl(T ) the τw-closure of the cyclic group
{Tn | n ∈ Z}. We prove now the weak closure theorem for homeomorphisms of
rank 1.

Theorem 4.7. Let T ∈ Homeo(Ω) be a homeomorphism of rank 1. Then
C(T ) = Wcl(T ).

Proof. To show that C(T ) ⊃ Wcl(T ), it suffices to check that C(T ) is closed
in τw ∼ p. To do this, we take a sequence (Sn) ⊂ C(T ) converging to S. Since
Homeo(Ω) is a topological group in τw, then (Sn, T ) 7→ SnT and (T, Sn) 7→ TSn

are continuous and therefore, taking the limit, we get that ST = TS.
To see that Wcl(T ) ⊃ C(T ), we use the fact that T can be taken as an

odometer by Theorem 4.6. Let R ∈ C(T ) and let ξ = (F, TF, . . . , Tn−1F ) be
a T -tower covering Ω (then TnF = F ). Given δ > 0, we can find sufficiently
large n such that diam(F ) < δ. Denote by ε0 = min(dist(F, T jF )|0 < j < n).
Then given 0 < ε < ε0 find some δ such that d(Rx,Ry) < ε whenever d(x, y) < δ
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where d is a metric on Ω. It follows that RF is a subset of some T iF, 0 ≤ i0 < n.
If we assume that RF is a proper subset of T i0F , then we come to a contradiction
since, in this case, R(T jF ) must be also a proper subset of T i0+jF , 1 ≤ j < n,
where i0 + j is understood by mod 0. In other words, we have shown that
R ∈ W (T i0 ;F, TF, . . . , Tn−1F ). �

We note that J. King proved in [12] the weak closure theorem in the context
of measurable dynamics.

Remark 4.8. Let T be an odometer and ξ = (F, TF, . . . , Tn−1F ) be a T -
tower covering Ω. Then for any S ∈ W (T ;F, . . . , Tn−1F ) we have that Si ∈
W (T i;F, . . . , Tn−1F ), i ∈ Z. More general,

W (T ;F, . . . , Tn−1F )i ⊂ W (T i;F, . . . , Tn−1F ), i ∈ Z.

5. Minimal and mixing homeomorphisms

Let Min denote the set of minimal homeomorphisms and let Mix be the set
of all mixing homeomorphisms of Ω (recall that T is mixing if for any non-empty
clopen sets E and F there exists n ∈ N such that T iE ∩ F 6= ∅, ∀i ≥ n). The
following statement shows that minimality and mixing are not typical properties.

Proposition 5.1. The following properties hold:

(a) Min
τ ⊂ Ap, Mix ∩ Ap

τ ⊂ Ap.
(b) For any neighbourhood W = W (I;F1, . . . , Fn), Min

τw ∩ W = ∅ and
Mix

τw ∩W = ∅.
(c) If R ∈ S is a simple homeomorphism (in particular, R can belong to

Per0), then there exists a neighbourhood W = W (R;F1, . . . , Fn) such
that Min

τw ∩W = ∅, Mix
τw ∩W = ∅.

Proof. (a) The result follows from Theorem 3.1(a).
(b) Obviously, Min and Mix do not meet any neighbourhood W = W (I;F1,

. . . , Fn) of the identity. Since W is a clopen subset in (Homeo(Ω), τw), we get
that Min

τw ⊂ W c and Mix
τw ⊂ W c. In particular, we see that Min

τw and
Mix

τw are proper subsets of Homeo(Ω).
(c) Since R ∈ S, we can find a clopen subset E of Ω such that the sets

RiE, i = 0, 1, . . . , n − 1, are disjoint and RnE = E. Denote Ωn =
⋃n−1

i=0 RiE.
Then if S ∈ W (R;E,RE, . . . , Rn−1E), then S(RiE) = Ri+1E and therefore S

cannot be mixing. Now let F be a non-empty clopen subset of E. The subsets
F,RF, . . . , Rn−1F are still disjoint and if S ∈ W (R;F,RF, . . . , Rn−1F ), then
we have that S(

⋃n−1
i=0 RiF ) =

⋃n−1
i=0 RiF , that is S is not minimal. �

Since the set S of simple homeomorphisms is dense in (Homeo(Ω), τw), we
easily obtain the following result.
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Corollary 5.2. Min
τw and Mix

τw are nowhere dense in (Homeo(Ω), τw).

Theorem 5.3.

(a) Od
τ

= R(1)
τ

= Min
τ
,

(b) Od
τw = R(1)

τw = Min
τw .

Proof. It follows from Theorem 4.6 that we need to prove the relations
Min ⊂ R(1)

τ
and Min ⊂ R(1)

τw only. First consider the closure R(1)
τw . Let

T be a minimal homeomorphism. Take a sequence of clopen subsets (An) such
that An ⊃ An+1 and

⋂
n≥1 An is a singleton. Let ξn be the Kakutani–Rokhlin

partition defined as in Section 3 by T with fixed base An. It is known that
(An) may be chosen in such a way that the refining sequence (ξn) generates the
topology on Ω. Every ξn is a finite union of T -towers ξn(i), i = 1, . . . , kn, where
ξn(i) = {T jAn(i) | j = 0, . . . , hi − 1}. Given ε > 0 choose n sufficiently large so
that diam(An) < ε/2 and diam(T−1An) < ε/2. For n, consider two collections
of clopen subsets: (Th1−1An(1), . . . , Thkn−1An(kn)) and (An(1), . . . , An(kn)).
Let Si be a one-to-one continuous map from Thi−1An(i) onto An(i + 1), i =
1, . . . , kn − 1. Let Y1 = Ω \ Thkn−1An(kn) and Y2 = Ω \An(1). Define a one-to-
one continuous map S from Y1 onto Y2 by

Sx =

 Tx if x /∈
kn⋃
i=1

Thi−1An(i),

Six if x ∈ Thi−1An(i), i = 1, . . . , kn − 1.

We note that d(Tx, Sx)≤diam(T−1An), x ∈ Y1 and d(T−1x, S−1x)≤diam(An),
x ∈ Y2.

This construction defines an S-tower with base An(1) and top Thkn−1An(kn).
Next, by using cutting and stacking, we may extend S to a homeomorphism of Ω
denoted also by S. Clearly, S has rank 1. By our construction,

dw(S, T ) = sup
x∈Ω

d(Sx, Tx) + sup
x∈Ω

d(S−1x, T−1x) < ε.

This proves that T can be approximated in τw by a homeomorphism S of rank 1.
Thus we have shown that Min ⊂ R(1)

τw .
Now we will prove that Min ⊂ R(1)

τ
. Let µ1, . . . , µm be a given collection

of Borel measures and let ε > 0. Take T ∈Min and construct (An) and (ξn) as
in the first part of the proof. It was proved in Theorem 3.5 that n can be chosen
so large that µi(An) < ε/2 and µi(T−1An) < ε/2, i = 1, . . . , m. We apply
the above method to define a homeomorphism S of Ω of rank 1. Obviously,
E(S, T ) ⊂ An ∪ T−1An. Then µi(E(S, T )) < ε for i = 1, . . . , m. Therefore
S ∈ U(T ;µ1, . . . , µm; ε) ∩R(1). �

The next statement can be proved by using the techniques of proof of The-
orem 5.3.
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Corollary 5.4. Let T be a homeomorphism of Ω which has a finite decom-
position into minimal components. Then T ∈ R(1)

τ
and T ∈ R(1)

τw .

It follows from Theorems 4.5 and 5.3 that the following result holds.

Corollary 5.5.

(a) Od is a dense Gδ-set in Min
τw , i.e. Od is a residual set in Min

τw .
(b) Od is a dense Fσδ-set in Min

τ
.

(c) Min is closed neither in τ nor in τw.

It follows from Corollary 5.5 that a typical minimal homeomorphism is sat-
urated (see Remark 3.9).

Theorem 5.6. Mix ∩Min
τw is nowhere dense in (Min

τw
, τw).

Proof. Let T ∈ Min
τw . Take a τw-neighbourhood W (T ;F1, . . . , Fm). We

showed in Theorem 5.3 that there exists an odometer S ∈ W (T ;F1, . . . , Fm). Let
F = (E,SE, . . . , Sn−1E) be an S-tower such that

⋃n−1
i=0 SiE = Ω and SnE = E.

Then W (S;E,SE, . . . , Sn−1E) consists of the homeomorphisms R ∈ Homeo(Ω)
such that R(SiE) = Si+1E, i = 0, . . . , n− 1. Note that, choosing n sufficiently
large, we have that every Fi is an F-set. Therefore W (S;E,SE, . . . , Sn−1E) ⊂
W (T ;F1, . . . , Fm) since SFi = TFi and each Fi is a union of some atoms from F .
Then for any RW (S;E,SE, . . . , Sn−1E), we have {m ∈ Z | RmE∩E 6= ∅} = nZ
and therefore R cannot be mixing. This proves that Mix is nowhere dense
in Min

τw . �

Remark 5.7. Since Mix ∩ Od = ∅, Theorem 5.6 is consistent with the
conclusion of Corollary 5.5 that Od is a set of second category in Min

τw .

We now introduce a concept which will allow us to characterize the closure
of Min in the weak topology τw.

Definition 5.8. We call a homeomorphism T moving if for any non-trivial
clopen set F each of the sets TF \F and F \TF is not empty. A homeomorphism
T is called weakly moving if TF 6= F for every non-trivial F ∈ CO(Ω).

We denote by Mov and w-Mov the sets of moving and weakly moving home-
omorphisms, respectively. Obviously, Mov ⊂ w-Mov and if T ∈ Mov (or T ∈
w-Mov) then also T−1 ∈Mov (or T−1 ∈ w-Mov).

It follows immediately that Min and Mix are subsets of w-Mov. We make
this statement more precise in Theorem 5.9 below.

Note that the set w-Mov is closed in τw. Indeed, it is easily seen that

(5.1) w-Mov =
⋂

F∈CO(Ω)

W (I;F )c.

Another simple observation from (5.1) says that if P ∈ Per0, then P /∈ w-Mov.
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Theorem 5.9. T ∈Mov if and only if T ∈ Od
τw = Min

τw .

Proof. Let T ∈ Od
τw . Consider a neighbourhood W (T ;F ) where F ∈

CO(Ω). Then W (T ;F ) contains an odometer S such that SF = TF . Let ξ be
an S-tower such that F is a ξ-set. Since every atom of ξ is shifted by S to the next
level of the tower, we get that TF \ F = SF \ F 6= ∅ and F \ TF = F \ SF 6= ∅.

Conversely, suppose that T is moving. Let W (T ;F1, . . . , Fn) be a neigh-
bourhood where ζ = (F1, . . . , Fn) is a partition of Ω into clopen sets. We know
that for every i the sets TFi \Fi and Fi \TFi are non-empty. Take the intersec-
tion ζ ∧ T (ζ) of partitions ζ and Tζ consisting of atoms TFi ∩ Fj = Fij where
i, j = 1, . . . , n and some of Fij ’s may be empty.

We first consider a particular case when for every i = 1, . . . , n,

(5.2) |{1 ≤ j ≤ n | TFi ∩ Fj 6= ∅}| = |{1 ≤ j ≤ n | TFj ∩ Fi 6= ∅}|.

Let A = (aij) be an n × n matrix where aij = 1 if TFi ∩ Fj 6= ∅ and aij = 0
otherwise. In other words, we consider the directed graph Γ with the set of
vertices (1, . . . , n) and the set of arrows defined by A: an arrow from i to j

exists if and only if aij = 1. Note that Γ may have loops, i.e. arrows that begin
and end at the same vertex. In other words, relation (5.2) says that the number
of arrows coming to a vertex i equals the number of arrows outgoing from i. We
claim that (Γ, A) is a connected graph. Indeed, let Z(i) be the set of vertices that
can be connected with i by a path. We show that Z(i) = (1, . . . , n) for every i.
If j ∈ Z(i) then there exist j0 = i, j1, . . . , js = j such that TFjk

∩Fjk+1 6= ∅, k =
0, . . . , s−1. Assume that Λ = (1, . . . , n)\Z(i) 6= ∅ and denote by E =

⋃
j∈Λ Fj .

Since T ∈ Mov, we get that TEc \ Ec 6= ∅ or TEc ∩ E 6= ∅ which contradicts
the assumption.

Since we have a connected graph (Γ, A) satisfying (5.2), we can choose an
Euler path L, consisting of arrows, which goes through all vertices and takes
every arrow only once (see [5] for details).

We now construct a homeomorphism S of Ω using the path L. To every
arrow from i to j we associate the set Fij . We start with some vertex i0 and
let S be a homeomorphism from Fi0j onto Fjk if the arrow from j to k follows
that from i0 to j in L. Then we extend the definition of S going along L. Thus,
S is defined on Ω and atoms of T (ζ) ∧ ζ form an S-tower, and since the path
L is annular, the top of the tower is mapped by S onto the base. Moreover,
one can verify that by definition of S, TFi = SFi for all i. Indeed, fix some i

and consider the sets Fji and Fik when j, k run over (1, . . . , n). We see that⋃
j Fji = Fi and

⋃
k Fik = TFi. Hence S maps Fi onto TFi. Therefore we have

found an odometer S which belongs to the neighbourhood W (T ;F1, . . . , Fn).
In general, (5.2) does not hold. But we can slightly modify the above con-

struction to obtain the result. We note that there are positive integers mij such
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that

(5.3)
∑

{j|aij=1}

mij =
∑

{j|aji=1}

mji.

This means that we can consider a new graph (Γ, A′) over the same set of vertices
(1, . . . , n) and with an extended set of arrows: if i and j are such that aij = 1,
then we take exactly mij directed arrows from i to j. Given two connected
vertices i and j, we can assign a number from 1 to mij to each arrow from i to
j. In this way, we see by (5.3) that the connected graph (Γ, A′) has the following
property: the number of arrows arriving at each vertex is the same as the number
of arrows leaving that vertex. Therefore, there exists a closed path L′ that goes
through all vertices (visiting each vertex several times) and includes each arrow
only once.

To construct an odometer S, we divide every non-empty set Fij into mij

non-empty clopen subsets Eij,k, k = 1, . . . , mij . To define S, we start with
a vertex i0 and some outgoing arrow l(i0, i1; k1) from i0 to i1 with the assigned
number 1 ≤ k1 ≤ mi0i1 . Then S is defined by the following rule: if the arrow
l(i1, i2, k2) from i1 to i2 with the number k2 is next to l(i0, i1; k1) in L′ the we
set S:Ei0i1,k1 → Ei1i2,k2 . One can continue this procedure going along L′ until
the last arrow in L′ has been used. This arrow has the largest number min−1i0

amongst those that return to i0. As before, it is easy to check that the sets
(Eij,k, i, j = 1, . . . , n; k = 1, . . . , mij) define an S-tower and SFi = TFi for
all i. �

Let T t denote the set of all topologically transitive homeomorphisms of Ω.

Corollary 5.10.

(a) T t ⊂Mov and T t
τw = Min

τw ;
(b) Min

τ 6= Min
τw .

Proof. It is easily seen that every T ∈ T t satisfies Definition 5.8. Thus, we
have

Mov ⊃ T t ⊃Min,

and the result follows from Theorem 5.9.
On the other hand, if some T from T t has a periodic orbit then such a T

cannot be in Min
τ

in view of Theorem 3.1. �

Corollary 5.11. Min ⊂ Od
τw = Min

τw ⊂ w-Mov and Mix ⊂ Od
τw =

Min
τw ⊂ w-Mov.

Proof. We need only show that if T is either minimal or mixing then T

belongs to Od
τw . For this, assume that it is not true, i.e. T /∈ Od

τw = Mov.
Then there exists a proper clopen subset F such that either

(i) TF = F or
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(ii) TF ⊂ F or
(iii) F ⊂ TF .

If (i) holds then T is neither minimal nor mixing. If (ii) holds, then Tn+1F ⊂
TnF , n ∈ N, and the set

⋂
n≥0 TnF is a closed T -invariant set. Thus, T cannot be

minimal. Denote by E = F \TF . Then E, TE, . . . , TnE, . . . are pairwise disjoint
and therefore T cannot be mixing. Similar arguments are used in case (iii). �

Analyzing the proof of Theorem 5.9 we can immediately deduce the following
consequence.

Theorem 5.12. A homeomorphism T of Ω belongs to Per0
τw if and only if

for each clopen F either TF = F or TF \F 6= ∅ or F \TF 6= ∅. Therefore every
homeomorphism T ∈Min

τw can be approximated by a periodic homeomorphism
P ∈ Per0 in the topology τw, that is Min

τw ⊂ Per0
τw .

Proof. From the proof of Theorem 5.9, we see that if the hypotheses of the
Theorem hold, one can construct a periodic homeomorphism S of Ω using the
Euler path L in the same way as for odometers. �

A simple consequence of Theorem 5.12 is the following fact: Per
τw = Per0

τw .

Remark 5.13. We may also use Theorem 5.9 to show that for a minimal
homeomorphism T ∈ Homeo(Ω), [[T ]]ap ⊂Min

τ
as stated in Theorem 3.7. For

this, we need to prove that if γ ∈ [[T ]]ap, then γ ∈Mov, that is for any clopen E

the sets γE\E, E\γE are non-empty. Assume that there exists F ∈ CO(Ω) such
that γF ⊆ F and deduce from this that γ must have a periodic part. Choose
a Kakutani–Rokhlin partition ξ such that γ ∈ Γ(ξ) and the clopen sets F and
γF are ξ-sets (we use here notation of Section 3). Then F and γF are unions of
some atoms Dj(v) of ξ. We have two possibilities: either every Dj(v) ⊂ F does
not leave the subtower ξ(v) under the action of γ, or there exists Dj0(v0) in F

such that Dj0(v0) belongs to some Lti(J) (or Lbk(J ′)). From the first case we
get that γ must have a periodic part inside of ξ(v). The second case implies that
if Dj0(v0) ⊂ F ∩ Lti(J), then Lti(J) ⊂ F (as well as γ(Lti(J))) is also a subset
in F since the set γF is a ξ-set. Then γ again has a periodic part.

We can strengthen the first statement of Theorem 5.3 by giving a complete
description of closures of various classes of homeomorphisms in the topology τ .

Theorem 5.14. Od
τ

= R(1)
τ

= Min
τ

= T t
τ ∩ Ap = Ap.

Proof. Let T be an aperiodic homeomorphism of Ω and let U(T ) = U(T ;
µ1, . . . , µk; ε) be a τ -neighbourhood of T .

We will apply the following result established in [2] to prove the Rokhlin
lemma.
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Lemma 5.15. Let T be an aperiodic homeomorphism of a Cantor set Ω,
µ1, . . . , µk ∈ M1(Ω), ε > 0. Given a positive integer n ≥ 2, there exists a par-
tition of Ω into a finite number of clopen T -towers (η1, . . . , ηq) such that the
height h(ηi) of every tower is at least n. Moreover, these towers can be chosen
such that

(5.4) µi

( n−1⋃
j=0

T−jB

)
> 1− ε,

where B =
⋃q

i=1 Bi and Bi is the base of ηi.

Sketch of Proof. We begin with a clopen finite disjoint cover (U1, . . . , Uk)
of Ω such that T jUi ∩ Ui = ∅, j = 1, . . . , n − 1, i = 1, . . . , k. Consider ξ1 =
(U1, TU1, . . . , Tn−1U1) and define C1 =

⋃n−1
j=0 T jU1. Let U1

i = U1 − C1, i =
2, . . . , k. Define

U1
2 (i) = {x ∈ U1

2 | T ix ∈ U1, T jx /∈ U1, 0 ≤ j ≤ i− 1}, i = 1, . . . , n− 1,

and
U1

2 (0) = {x ∈ U1
2 | T jx /∈ U1, for all 1 ≤ j ≤ n− 1}.

Each set U1
2 (i) is the base of the T -tower

ξ1
2(i) = {U1

2 (i), TU1
2 (i), . . . , Tn−1+iU1

2 (i)}, for all i = 0, . . . , n− 1.

Take the set

U1
1 = U1 \

n−1⋃
i=1

T iU1
2 (i)

as the base of a subtower ξ1
1 of ξ1. We get the collection of disjoint T -towers

Ξ(1) = {ξ1
1 , ξ1

2(0), ξ1
2(1), . . . , ξ1

2(n − 1)} each of which is of height at least n.
Denote by C1

1 , C1
2 (0), C1

2 (1), . . . , C1
2 (n − 1) the supports of the corresponding

towers from Ξ(1). Note that C1
1 ∪ C1

2 (0) ∪ C1
2 (1) ∪ . . . ∪ C1

2 (n − 1) = C1 ∪ C1
2

where C1
2 =

⋃n−1
s=0 T iU1

2 . Define the sets U2
i = U1

i \ C1
2 , for all i = 3, . . . , k. For

each tower ξ from Ξ(1), denote by U2
3 (ξ) the subset of U2

3 which consists of those
points whose T -orbits meet ξ for at most n−1 iterations. We can now apply the
construction used above to the set U2

3 (ξ) and the tower ξ ∈ Ξ(1). Repeating this
procedure at most k− 1 times we will finally obtain a collection Ξ = (ξ1, . . . , ξs)
of disjoint T -towers which covers Ω such that the height of each tower ξ ∈ Ξ is
at least n.

Choose m ∈ N such that 1/m < ε and let Vj denote the top of ξj . Using
the obvious fact that amongst m pairwise disjoint subsets of Ω at least one must
have µi-measure less than ε, we may choose a clopen set B = T−KV , where
0 ≤ K < n and V =

⋃s
j=1 Vj , such that (5.4) holds. To get the T -towers

η1, . . . , ηq, one refines the existing towers ξ1, . . . , ξs such that the base of each
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ηi is a subset of B and the top is a subset of T−1B. Full details of the proof are
in [2]. �

We now return to the proof of the Theorem. Define a homeomorphism S as
follows. Let Si be a homeomorphism sending the top Th(ξi)−1Bi of ξi onto the
base Bi+1 of ξi+1 (i = 1, . . . , m − 1) and Sn maps Th(ξm)−1Bm onto B1. Take
n = 2 in Lemma 5.15 and define

Sx =

 Tx if x ∈
m⋃

i=1

h(ξi)−2⋃
j=0

T jBj ,

Six if x ∈ Th(ξi)−1Bi for some i = 1, . . . , m.

It follows from (5.4) that the homeomorphism S belongs to U(T ). On the other
hand, there exists a homeomorphism S0 ∈ Od such that S0x 6= Sx only if
x ∈ Th(ξm)−1Bm, hence S0 ∈ U(T ). This proves that Od

τ
= Ap. �
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