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SYMMETRIC SYSTEMS OF VAN DER POL EQUATIONS

Zalman Balanov — Meymanat Farzamirad

Wiesaw Krawcewicz

Abstract. We study the impact of symmetries on the occurrence of peri-
odic solutions in systems of van der Pol equations. We apply the equivari-
ant degree theory to establish existence results for multiple nonconstant
periodic solutions and classify their symmetries. The computations of the
algebraic invariants in the case of dihedral, tetrahedral, octahedral and
icosahedral symmetries for a van der Pol system of equations are included.

1. Introduction

Many important problems in physics, chemistry, biology, engineering, etc.,
can be modelled as dynamical systems with symmetries. Existence of symme-
tries may have an enormous impact on a dynamical process, which can result in
a formation of various patterns exhibiting certain particular symmetric proper-
ties. Let us mention symmetric networks of coupled identical oscillators (i.e. the
systems with an attracting limit cycle, see for example [1]), including the famous
Turing model of a ring of identical oscillators (cf. [27], [10]) with the dihedral
symmetries. Such models are related, for example, to appearance of turbulence
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in fluid dynamics (cf. [2]), fluctuations in transmission lines (see [31]), periodic
reoccurrence of epidemics, travelling waves in neural networks (cf. [28], [30]),
etc. Prediction and classification of the appearing and changing patterns in such
systems constitute a complex problem.

In a recent paper by Hirano and Rybicki, an interesting technique was devel-
oped based on a direct application of the S1-degree theory to study the existence
of periodic solutions for second order systems of van der Pol equations (see [12]).
The equivariant degree theory is a very effective method for analysis of the oc-
currence of the Hopf/steady-state bifurcation in dynamical systems (cf. [4]–[6],
[8], [16], [18]–[20], [31]), but its applications to the existence of periodic solutions
of second order differential equations could not be developed in a standard way.
In their paper (cf. [12]), Hirano and Rybicki showed that in spite of technical
difficulties related to the fact that the usage of the unknown period as an addi-
tional parameter does not always permit to establish a priori bounds needed for
the standard application of the S1-degree theory, it is still possible to use this
method.

In our paper we explore the approach introduced by Hirano and Rybicki
and extend this method to the class of symmetric van der Pol systems, using
the primary G-equivariant degree theory, where G = Γ × S1 and Γ denotes the
symmetry group of the studied system. Following their idea, we show that this
method also works in more general situations allowing the prediction of specific
symmetric solutions for the corresponding van der Pol systems. For this purpose,
we develop algebraic computational formulae for the primary Γ×S1-equivariant
degree, where Γ is the dihedral, tetrahedral, octahedral and icosahedral group.
Since, for these groups the associated system of van der Pol equations can be
explicitly described, it is interesting to observe a tremendous impact of rather
small symmetry group on the existence of multiple periodic solutions. The most
important advantage of this approach is that, based on the symmetric spectral
properties of the linearized system, it is possible to directly detect and classify,
according to their symmetry properties, the occurrence of periodic solutions in
Γ-symmetric dynamical systems. The main goal of this paper is to set up a
standard framework for the van der Pol systems with symmetries.

In Section 2, we introduce several examples of symmetric van der Pol systems
based on the geometric symmetries of regular polygons, tetrahedron, octahedron
and dodecahedron. In Section 7 we present a series of results describing and
classifying the symmetry types of different periodic solutions occurring in these
systems, based on the equivariant spectral properties of the linearized systems.
The necessary algebraic computations for the considered here groups Dn, A4,
S4 and A5 are presented in Section 6. The equivariant fixed-point setting, intro-
duced in [12], is presented in Section 3 and the computational formulae for the
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primary equivariant degree, required for this setting, are discussed in Section 4.
Section 5 contains (following exactly the work [12]) the general existence result
for symmetric van der Pol systems provided the corresponding coefficient in the
equivariant degree is different from zero (Theorem 5.3).

The S1-equivariant degree theory was developed in [7] and applied to study-
ing bifurcation phenomenon in [8], [16], [19], [29]. This theory was extended by
Ize et al. (cf. [13], [14]) to the case of a general G-equivariant degree theory for
an arbitrary compact Lie group G (see also [24], [21] and [22] where important
nonlinear action techniques relevant to the equivariant degree were developed).
The special features of the equivariant degree, which are related to the so-called
primary G-equivariant degree, were developed independently of the work of Ize
et al. in [9]. For the readers convenience we briefly discuss in Appendix the ax-
iomatic approach to the primary equivariant degree theory (see Section 8). For
the equivariant background and jargon used in this paper and for more informa-
tion about properties, usage and applications of the equivariant degree theory,
we refer to the related papers [3]–[6], [17].

The authors would like to express their gratitude to Heinrich Steinlein, who
indicated mistakes and incompletness in several tables and provided us with the
corrections. We are also thankful to Haibo Ruan for her significant assistance
in the preparation of the manuscript for publication, and to Adrian Biglands for
his help in setting up Maple routines.

2. Systems of van der Pol equations with symmetries

The van der Pol equations are related to the so-called self-excited dynamical
systems arising in many models of mechanics, electronics and biology. For more
information on van der Pol oscillators and related results, we refer to [11], [23],
[25], and [26].

We are interested in systems of coupled identical van der Pol equations of
the type

(2.1)


ü1 + ε(u2

1 − a)u̇1 + c11u1 + c12u2 + . . .+ c1nun = 0,

ü2 + ε(u2
2 − a)u̇2 + c21u1 + c22u2 + . . .+ c2nun = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ün + ε(u2
n − a)u̇n + cn1u1 + cn2u2 + . . .+ cnnun = 0,

where a > 0, ε > 0, admitting certain “spatial” symmetries. The system (2.1)
can be reformulated using the vector “multiplication”:

uv =


u1v1

u2v2
...

unvn

 , where u =


u1

u2
...
un

 and v =


v1

v2
...
vn


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in the following form

(2.2) ü+ ε(u2 −−→a )u̇+ Cu = 0

where

−→a =


a

a
...
a

 , u2 =


u2

1

u2
2
...
u2

n

 , C =


c11 c12 c13 . . . c1n

c21 c22 c23 . . . c2n
...

...
...

. . .
...

cn1 cn2 cn3 . . . cnn

 .
In the case of one van der Pol equation (i.e. the case of n = 1) the existence of
a limit cycle follows from the Poincaré–Bendixon theorem. In other words, such
an equation describes a self-exciting oscillator.

There are many possible examples of symmetric van der Pol systems of the
type (2.2), where the matrix C is equivariant with respect to a certain group
acting on u = (u1, . . . , un) by permuting its coordinates. Let us discuss some of
them.

Example 2.1. We consider a ring of n identical van der Pol oscillators where
the interaction takes place only between the neighbouring oscillators (see Fig-
ure 1),

�uj

u3 u2

u1

unun−1

Figure 1. System with dihedral symmetries

i.e. in this case the matrix C is of the type

C =


c d 0 . . . 0 d

d c d . . . 0 0
...

...
...

. . .
...

...
d 0 0 . . . d c

 .
It is clear that the system (2.2) has the dihedral group Dn of symmetries.

In the subsequent examples, we present the concrete systems of van der Pol
equations modelled on three regular polyhedrons: tetrahedron, octahedron and
dodecahedron. In each case, the symmetry group Γ of the system is composed
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of the orthogonal symmetries of the corresponding polyhedron. To simplify the
presentation, we have considered only those orthogonal symmetries T for which
detT = 1. This assumption is not essential, and in the general case, similar
results can be easily derived based on the already obtained computations.

Example 2.2. Let us consider four identical inter-connected van der Pol
oscillators having exactly the same linear interaction with all the other oscillators.

�u2

u3

u1

u4 �u1 u2

u3u4

u6
u7

u5 u8

(a) (b)

Figure 2. (a) System with tetrahedral symmetries, (b) System with
octahedral symmetries

In this case, the matrix C in the system (2.2) can be written as:

(2.3) C =


c d d d

d c d d

d d c d

d d d c

 .

The situation is illustrated on Figure 2(a), where the vertices of the tetrahedron
symbolize the oscillators and its edges correspond to the connections between the
oscillators, indicating the interaction between them. It is clear that this system of
differential equations is symmetric with respect to the tetrahedral group T = A4.

Example 2.3. Suppose that the van der Pol oscillators are arranged in
a configuration corresponding to the vertices of a cube. We assume that the
interaction takes place between those oscillators that are connected by an edge
of the cube (see Figure 2(b)). We assume that all the oscillators are identical.

The eight identical van der Pol oscillators, which are inter-connected like it
is illustrated on Figure 2(b), lead to the system of equations with the matrix C
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of the following type:

(2.4) C =



c d 0 d 0 d 0 0
d c d 0 0 0 d 0
0 d c d 0 0 0 d

d 0 d c d 0 0 0
0 0 0 d c d 0 d

d 0 0 0 d c d 0
0 d 0 0 0 d c d

0 0 d 0 d 0 d c


.

It is clear that the system of van der Pol equations (2.2) is symmetric with re-
spect to the octahedral symmetry group O which is isomorphic to the symmetric
group S4.

Example 2.4. Let us consider an arrangement of van der Pol oscillators
based on the inter-connections given by the edges of a dodecahedron (see Fig-
ure 3).

�u15 u6

u7

u8

u9

u10u11

u12

u13

u14

u4
u5

u1

u2
u3

u17

u16

u20

u19
u18

Figure 3. System with icosahedral symmetries

It is clear that the group of symmetries of the dodecahedron, which is the
icosahedral group I, is the symmetry group of the system (2.2). Let us point out
that the icosahedral group I is isomorphic to the alternating group A5. In this
case we have the system (2.2) composed of 20 equations, where the matrix C is
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given by:

(2.5) C =



c d 0 0 d 0 0 d 0 0 0 0 0 0 0 0 0 0 0 0

d c d 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 0 0

0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 0

0 0 d c d 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0

d 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0 0

0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0 0 0

d 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 d 0 0

0 d 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 d 0

0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0 d

0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0 0 0 0

0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 d c d 0 0 d

0 0 0 0 0 0 d 0 0 0 0 0 0 0 0 d c d 0 0

0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0 d c d 0

0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 0 d c d

0 0 0 0 0 0 0 0 0 0 0 0 d 0 0 d 0 0 d c



.

Of course, other configurations of the van der Pol oscillators could also be
considered, for example based on octahedron, icosahedron or other higher di-
mensional polyhedra.

�L=100 mH
C0=10 nf

I(V )

Figure 4. The circuit for one van der Pol oscillator

In order to test the obtained in this work results, we believe that it is pos-
sible to build an electronic circuit modelling the indicated above systems of van
der Pol oscillators. For example, one can use an oscillator which is a parallel
inductor-capacitor-resistor (LCR) network. On Figure 4 we show a diagram of
such an electronic circuit modelling one van der Pol oscillator. Such a model
was studied in [2] to analyze a configuration of three identical van der Pol oscil-
lators, so a similar system with the tetrahedral symmetry group could be also
built. However, there may be some technical problems with constructing elec-
tronic models for the systems with dihedral, octahedral or icosahedral symmetry
groups.
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3. Reformulation of the problem
as an equivariant fixed-point problem with one parameter

In this section we discuss a general strategy based on the application of the
equivariant degree allowing to study symmetric periodic solutions to (2.2). The
technique presented here was developped in [12].

3.1. Preliminaries. Notice that in all the examples discussed above, the
space V := Rn was an orthogonal representation of a certain finite group Γ, act-
ing on vectors u ∈ Rn by permuting their components, the matrix C commuted
with the action of Γ on V , and det(C) �= 0. In addition C was symmetric, i.e.

Cu • v = u • Cv, u, v ∈ Rn,

where u • v denotes the usual inner product in Rn.
By replacing the independent variable t by pτ/2π, the equation (2.2) can be

rewritten as

(3.1) ü+
p

2π
ε(u2 −−→a )u̇+

p2

4π2
Cu = 0.

Since, we are looking for a periodic solution, the boundary conditions for the
system (3.1) are

(3.2) u(0) = u(2π) and u̇(0) = u̇(2π).

Let us put α := p/(2π), so the equation (3.1) can be rewritten as

(3.3) ü+ αε(u2 −−→a )u̇+ α2Cu = 0.

Set

(3.4) F (u) =
(

1
3
u3 −−→a u

)
.

Then the equation (3.3) becomes

(3.5) ü+ αε
d

dt
F (u) + α2Cu = 0.

The equation (3.5), together with the periodic boundary conditions (3.2), can
be reformulated as a non-linear operator equation in an appropriate Hilbert
representation of the group G = Γ × S1, where Γ denotes the symmetry group
of the system (3.3).

We will need another technical assumption, which is used later to establish
a priori bounds for the periodic solutions. We will restrict our analysis to the
solutions u of (2.2) satisfying the following additional condition:

(3.6) u(t+ π) = −u(t), for all t ∈ R.
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Clearly, this technical requirement (originally introduced in [12]) limits the gen-
erality of the obtained results, but it seems to be unavoidable under the Hirano–
Rybicki treatment of system (2.2). In this way, we transform (2.2) into the
following system

(3.7)

{ −ü = αε(u2 −−→a )u̇+ α2Cu, u(t) ∈ V,

u(t) = u(t+ 2π), u̇(t) = u̇(t+ 2π), u(t+ π) = −u(t).

3.2. Setting in functional spaces. Let us introduce the functional spaces,
which are appropriate for studying (3.7). First we define the subspace Ho of the
Sobolev spaceH2

2π(R, V ) of 2π-periodic, twice-differentiable, V -valued functions,
defined as

Ho = {u ∈ H2
2π(R, V ) : u(t+ π) = −u(t) for all t ∈ R}.

We will also identify V with the space of all constant V -valued functions. The
space Ho can be equipped with an inner product, given by

〈u, v〉Ho =
∫ 2π

0

u(t) • v(t) dt +
∫ 2π

0

u̇(t) • v̇(t) dt+
∫ 2π

0

ü(t) • v̈(t) dt.

In addition, we define the subspace Lo ⊂ L2([0, 2π];V ) by Lo := L(Ho), where
Lu = −ü. It is clear that L: Ho → Lo is an isomorphism. Let us define

H := V ⊕ Ho, L := V ⊕ Lo.

We put

K: H → L, Ku =
1
2π

∫ 2π

0

u(t) dt.

It is clear that the operator K is an orthogonal projection on the subspace V of
constant functions and L+K: H → L is an isomorphism such that (L+K)|V = id
and (L + K)|Ho

= L|Ho
. Given u ∈ H, denote by u (resp. uo) its orthogonal

projection on V (resp. Ho).
The space H2

2π(R;V ) is a Hilbert representation of the group G = Γ × S1,
where the element (γ, eiτ ) ∈ Γ × S1 acts on a function u ∈ H2

2π(R;V ) by the
formula

(3.8) (γ, eiτ )u(t) = γ(u(t+ τ)), for all t ∈ R, γ ∈ Γ, eiτ ∈ S1.

The S1-isotypical components of the space H2
2π(R;V ) are the subspaces V c

l ,
l = 1, 2, . . . , and the subspace of constant functions V (which is the S1-fixed-
point subspace), where

V c
l = {cos lt · al + sin lt · bl; al, bl ∈ V }.

A function u ∈ V c
l , u(t) = cos lt · al + sin lt · bl, can be identified with

u(t) = eilt(xl + iyl)
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where xl = (al + bl)/2 and yl = (al − bl)/2, so the action of eiτ ∈ S1 on u(t) is
simply the complex multiplication by eilτ , i.e. eiτ · u(t) = eil(t+τ)(xl + iyl). It is
clear that V c

l areG-invariant subspaces ofH2
2π(R;V ); in addition, V c

1 (considered
as the complex linear space) is S1-isomorphic to the complexification of V . Let
D(u)(t) = u̇(t), then for u(t) = eilt(xl + iyl) we have

(3.9) D(u) = ilu, and L(u) = l2u,

so L and D preserve V c
l , l = 1, 2, . . . .

Notice that V c
l , l = 1, 3, 5, . . . , are the S1-isotypical components of Ho.

3.3. Operator reformulation of the problem (3.6): setting for the
equivariant degree treatment. Let us now reformulate the problem (3.6)
as a parameterized G-equivariant fixed point problem in the space H, where
G = Γ × S1. We consider the following (infinite dimensional) representation of
the group G:

Co := {u: R → V : u|[0,2π] ∈ C1([0, 2π], V ), u(t+ 2π) = u(t),

u̇(t+ 2π) = u̇(t), u(t+ π) = −u(t) for all t ∈ R},

and C := V ⊕ Co, where V is identified with the subspace of constant functions.
Notice that u̇ ∈ L for every function u ∈ C, in particular, u̇(t + π) = −u̇(t) for
all t ∈ R, therefore the map N : C → L2([0, 2π];V ) defined by

N(u, u̇)(t) = (u2(t) −−→a )u̇(t), t ∈ R,

satisfies

N(u, u̇)(t+ π) = −N(u, u̇)(t),

thus N : C → L. It is clear that N is a continuous map.
We also define the operators:

j: H ↪→ C, j(u) = u, a.e.

C: C → L, (Cu)(t) = C(u(t)).

(3.10)

H
L+K

�
��

j
��
��

��
��

� L

C

D

N,C

���������

The relations between the operators L, j, N and C are illustrated in a diagram
(3.10). Notice that the linear operator j is compact, and C is a bounded linear
operator. In addition, all the above operators are G-equivariant, where the G-
action on all the above functional spaces is defined by (3.8). The equation (3.7)
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can be written in the following operator form:

(3.11) L(u) = αεN(j(u), D(j(u))) + α2C(j(u)), u ∈ H.

Remark 3.1. The idea behind a typical usage of the Leray–Schauder de-
gree is based on introducing additional parameters to the original system of
differential equations, and allowing its deformation to a linear system. Then,
by applying a priori bounds to parameterized systems, the existence result can
be obtained using the homotopy property (cf. Appendix, Theorem 8.3(P3)) of
the degree provided that the deformation is admissible, i.e. with no zeros on
the boundary of the region in question. There is a principal difference between
the usage of the Leray–Schauder degree and the equivariant degree (in the set-
ting relevant to one free parameter). Namely, given an equivariant (admissible)
map, there is no way to deform it into a linear equivariant one by means of an
admissible equivariant deformation — simply equivariant linear maps are never
admissible. To overcome this obstacle, Hirano and Rybicki (cf. [12]) used two
equivariant deformations: (i) one to connect the original system with a system
being “linear up to a cut-off function factor” (the equivariant degree of the cor-
responding “almost” linear map turns out to be non-zero); (ii) another one to
connect the original system with a system giving rise to a non-linear equivari-
ant map of zero equivariant degree. Gluing the two deformations and using the
homotopy invariance of the equivariant degree yields the existence of a singular
point for the resulting deformation on a boundary of the considered region. Com-
bining the last observation with a priori bounds and standard cut-off function
techniques provides the existence of a periodic solution of the original system.

3.4. Hirano–Rybicki approach: reduction to a computation of the
equivariant degree. Below we give an exposition of the Hirano–Rybicki idea
(see [12]) in the context relevant to our discussion (recall that, in contrasr to [12],
where the existence problem was studied, our main goal is to study symmetries
of periodic solutions to (3.7)). Following [12], introduce additional parameters
δ ∈ [0, 1] and λ ∈ R to the equation (3.7):

(3.12)

{ −ü = δαε(u2 −−→a )u̇ + α2Cu − λαρu̇, u(t) ∈ V

u(t) = u(t+ 2π), u̇(t) = u̇(t+ 2π), u(t+ π) = −u(t)

where ρ > 0 is a constant to be specified (see (5.14)).
Assume for a moment that there exists an increasing positive function m: R+

→ R+ such that every solution uo of the system (3.12) for λ = 0, which by the
imposed conditions belongs to Ho, satisfies the inequality

‖uo‖Ho ≤ m(α)

(cf. Lemma 5.1).
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Given α > 0, take M > m(α), and choose m < m(α) to be small enough (cf.
proof of Theorem 5.3).

We define θ: R → [0, 1] by

η(t) =


0 if t < m,
t−m

M −m
if m ≤ t ≤M,

1 if t > M,

and put θ(uo) = η(‖uo‖Ho), where uo ∈ Ho. We modify the problem (3.12) as
follows:

(3.13)

{ −üo = δαε(u2
o −−→a )u̇o + α2θ(uo)Cuo − λαρu̇o, uo(t) ∈ V,

uo(t) = uo(t+ 2π), u̇o(t) = u̇o(t+ 2π), uo(t+ π) = −uo(t).

The problem (3.13) can be reformulated as the following parameterized equa-
tion in the functional space H = Ho ⊕ V

(3.14)

{
Luo = δαεN(j(uo), D(j(uo))) + α2θ(uo)C(j(uo)) − λαρD(j(uo)),

0 = α2θ(uo)Cu.

Notice that the equation (3.14) can be written as

(L+K)u = δαεN(j(uo), D(j(uo))) + α2θ(uo)C(j(uo))(3.15)

+ α2θ(uo)Cu − λαρD(j(uo)) +K(u),

and since L+K is a G-equivariant isomorphism, (3.15) is equivalent to

(3.16) u = (L +K)−1[δαεN(j(uo), D(j(uo)))

+ α2θ(uo)C(j(uo)) + α2θ(uo)Cu − λαρD(j(uo)) +K(u)].

Consequently, the equation (3.16) can be represented as the system of equations

(3.17)


uo = δαεL−1N(j(uo), D(j(uo)))

+α2θ(uo)L−1C(j(uo)) − λαρL−1D(j(uo)),

u = α2θ(uo)Cu + u.

We define G̃(α, δ, · , · ): R × Ho → Ho, by

(3.18) G̃(α, δ, λ, uo) := δαεL−1N(j(uo), D(j(uo)))

+ α2θ(uo)L−1C(j(uo)) − λαρL−1D(j(uo),

and G(α, δ, · , · ): R × H → H, by

(3.19) G(α, δ, λ, u) = (u+ α2θ(uo)C(u), G̃(α, δ, λ, uo)),

where u = u + uo, u ∈ V , uo ∈ Ho. Clearly, G(α, δ, λ, u) is a completely
continuous G-equivariant map.
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Remark 3.2. Notice that, the original van der Pol equation (3.7) corre-
sponds to the case λ = 0 and δ = 1, except for the nonlinear factor θ(uo)
in (3.14). However, if ||uo||Ho ≥ M , then θ(uo) = 1 so the solution uo of (3.14)
is also a solution of (3.7).

Remark 3.3. In the case of one free parameter, the simplest equivariant
maps (needed for the computations of the equivariant degree) turn out to be the
so-called basic maps (see Sections 4 and 6), which on the isotypical components
have a form

(3.20) f(λ, v) = (1 − ‖v‖ + iβλ)v, λ ∈ R, β > 0.

In Section 4, we will show that the term −λαρD(j(uo)) in the system (3.17)
corresponds to the term iβλv in (3.20), while (1 − ‖v‖)v corresponds to uo −
α2θ(uo)L−1C(j(uo)), i.e. the basic maps (3.20) “emerge” from the “linearized
system” (3.27). However, the “linearized system” can not be connected by an
admissible homotopy to the original van der Pol system! The idea of Hirano
and Rybicki was based on an observation, that the “breaking” of the homotopy
occurs for those solutions uo with ||uo||Ho = M , which are in fact the solutions of
the original van der Pol system, thus the existence results still can be obtained
(see Section 5).

We define

(3.21) Ω := {(λ, u) ∈ R × H : λ ∈ (−λo, λo), m < ‖uo‖Ho < M, ‖u‖ < 1},
Ωo := {(λ, uo) ∈ R × Ho : λ ∈ (−λo, λo), m < ‖uo‖Ho < M},(3.22)

B(0, 1) := {v ∈ V : ‖v‖ < 1},(3.23)

where u = u + uo, uo ∈ Ho, u ∈ V and the constant λo > 0 is a fixed number,
which will be specified later. Notice that the set Ω is a product of Ωo ⊂ R × Ho

and B(0, 1) ⊂ V . The boundary ∂Ωo is composed of three parts:

∂m := {(λ, uo) ∈ Ω : ‖uo‖Ho = m},(3.24)

∂M := {(λ, uo) ∈ Ω : ‖uo‖Ho = M},(3.25)

∂o := {(λ, uo) ∈ Ω : |λ| = λo}.(3.26)

Following [12] it is possible to show that for appropriate values of α, M (see
Section 5 for more details) the homotopy G̃(α, δ, λ, uo) (see (3.18)) with respect
to δ ∈ [0, δo] (where δo will be chosen to be large enough) has no fixed points in
∂m ∪ ∂o. Notice that for δ = 0 the equation (3.13) can be written as

(3.27) uo = α2θ(uo)L−1C(j(uo)) − λαρL−1D(j(uo)), uo ∈ Ho.
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In addition, the equation (3.27) has no solutions in ∂M . Let us put

(3.28) F(λ, u, uo) := (u+ α2θ(uo)C(u), α2θ(uo)L−1C(j(uo))

− λαρL−1D(j(uo))) ∈ V × Ho.

It is possible to show (cf. Proposition 4.1 and [12, Lemma 3.6]) that the primary
equivariant degree

(3.29) G-Deg(id −F ,Ω) =
∑
(H)

nH (H),

is different from zero. In the next section we will reduce the computations of
(3.29) to studying the equivariant degrees of the basic maps related to irreducible
Γ- and G-representations.

On the other hand, it is possible to apply a G-equivariant homotopy id −
Ψ(s, λ, u), s ∈ [0, 1], to the map id −G(α, δo, λ, u), where

u− Ψ(0, λ, u) = u−G(α, δo, λ, u) for (λ, u) ∈ Ω,

u− Ψ(s, λ, u) �= 0, for (λ, u) ∈ ∂Ω,

and the map id − Ψ(1, · , · ) satisfies

G-Deg(id − Ψ(1, · , · ),Ω) = 0.

By using the standard argument, it will follow that for every orbit type (Ho) in
Ω for which nHo is different from zero, there exist δ > 0 and u ∈ ∂M satisfying{ −üo = δαε(u2

o −−→a )u̇o + α2θ(uo)Cuo − λαρu̇o, uo(t) ∈ V,

uo(t) = uo(t+ 2π), u̇o(t) = u̇o(t+ 2π), uo(t+ π) = −uo(t),

and having a symmetry at least Ho. Since uo ∈ ∂M , we have θ(uo) = 1, so uo is
a solution of the equation{ −üo = δαε(u2

o −−→a )u̇o + α2Cuo − λαρu̇o, uo(t) ∈ V,

u(t) = u(t+ 2π), u̇(t) = u̇(t+ 2π), u(t+ π) = −u(t).

3.5. Equivariant degree, dominating orbit types and symmetries of
periodic solutions. Let us recall that the primary equivariant degree (3.29) is
an element of the free Z-module A1(Γ × S1) generated by the conjugacy classes
(Kϕ,l) of the so-called l-folded ϕ-twisted subgroups

Kϕ,l := {(γ, z) ∈ K × S1 : ψ(γ) = zl}
of Γ × S1, where K is a subgroup of Γ and ϕ:K → S1 is a homomorphism.
In the case of an 1-folded ψ-twisted subgroup Kϕ,1, we will denote it by Kϕ

and call it simply a twisted subgroup of Γ × S1. Let us consider an orthogonal
representation of G = Γ×S1 and denote by Uo the orthogonal complement of the
subspace US1

= {u ∈ U : zu = u for all z ∈ S1}. The S1-action on Uo induces a
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complex structure on Uo, which implies that Uo is a complex Γ-representation.
Thus, the isotropy groups Gu of non-zero vectors u in Uo are l-folded ϕ-twisted
subgroups of Γ × S1.

We will denote by A(Γ) the Burnside ring of Γ (cf. Subsection 6.1). It was
established (see [5] and [16]) that A1(Γ × S1) has a natural structure of an
A(Γ)-module.

Definition 3.4. An orbit type (H) in H is called dominating, if (H) is
maximal in the class of all ϕ-twisted one-folded orbit types in H with respect to
the usual order relation (see Subsection 6.1).

Remark 3.5. Let (H) be a dominating orbit type in H. Using the maximal-
ity property of (H) it is easy to see that there exists an irreducible subrepresen-
tation V ⊂ H and a non-zero vector u ∈ V such that Gu = H . Consequently, the
dominating orbit types in H can be easily recognized from the isotypical decom-
position of H and lattices of isotropies of the corresponding to this decomposition
irreducible G-representations.

In what follows, the dominating orbit types will be used to estimate the
minimal number of different periodic solutions (as well as their symmetries) for
the system (2.2) (cf. Theorem 5.3).

Remark 3.6. Assume that the van der Pol system (2.2) admits a non-zero
periodic (say, p-periodic) solution uo (for a certain value ε > 0) such that Guo ⊃
Ho, where (Ho) is a dominating orbit type in H with Ho = Kϕ for some K ⊂ Γ
and ϕ:K → S1. Then, by the maximality condition, (Guo) = (Kϕ,l) with l ≥ 1,
and the corresponding orbit G(uo), uo ∈ Ho, is composed of exactly |G/Guo |S1

different periodic functions (where |Y |S1 denotes the number of S1-orbits in Y ).
It is easy to check that the number of S1-orbits in G/Guo is |Γ/K| (where
|X | stands for the number of elements in X). In addition, it follows from the
definition of l-folding and the Γ × S1-action on H that uo is also a p/l-periodic
function corresponding to another element u′o in the space H with Gu′

o
= Ho.

Since u′o is also a solution to (2.2), we obtain that (2.2) has at least |Γ/K|
different periodic solutions with the orbit type exactly (Ho).

Let us point out that the indicated above connections between the equivariant
degree (3.29) and the existence of multiple symmetric solutions of the van der
Pol equations provide a formal way to establish a topological classification of
periodic solutions of the system (2.2) according to their symmetries.

In fact, G-Deg(id−F ,Ω) =
∑

(H) nH(H) can be used as a topological invari-
ant containing the information about the structure of the periodic solutions for
the equation (2.2). Since the subspace V was included as a part of the functional
space H, it permits to “measure” the additional impact of the positive spectrum
of the matrix C on symmetries of periodic solutions of the system (2.2). We refer
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to Section 7, where concrete examples of such classifications are presented for Γ
being the dihedral, tetrahedral, octahedral and icosahedral groups. Notice that
G-Deg(id−F ,Ω) provides an instant list of possible symmetries of solutions and
(at least for dominating orbit types) the minimal number of different periodic
solutions.

4. Computations of the equivariant degree:
reduction to basic maps

In this section we reduce the computations of the G-equivariant degreeG-Deg
(id −F ,Ω), where F is defined by (3.28), to the computations of the degrees of
basic maps.

4.1. Finite-dimensional reduction. We, first, study the solution set for
the equation

(4.1) uo = Fo(λ, uo)
def.⇐⇒ uo = α2θ(uo)L−1C(j(uo)) − λαρL−1D(j(uo)),

uo ∈ Ho (in particular, we will show that the solution set is finite-dimensional).
The above equation (4.1) can be rewritten as follows:

(4.2)

{
üo + α2θ(uo)Cuo − λαρu̇o = 0, uo(t) ∈ V,

uo(t) = uo(t+ 2π), u̇o(t) = u̇o(t+ 2π), uo(t+ π) = −uo(t).

Since the matrix C is nonsingular, symmetric and Γ-equivariant, it is diagonal-
izable and every eigenspace is a Γ-invariant subspace. Let σ(C) = {µs} denote
the spectrum of C and assume that for every v ∈ V we have a decomposition
v =

∑
s vs, where vs is an eigenvector corresponding to the eigenvalue µs. Then,

we can split the system (4.2) into

(4.3)

{
üs + α2θ(uo)µsus − λαρu̇s = 0, uo =

∑
s us,

us(t) = us(t+ 2π), u̇s(t) = u̇s(t+ 2π), us(t+ π) = −us(t).

Since (4.3) is the system with constant coefficients, it follows that (4.3) has
2π-periodic solutions us satisfying us(t+ π) = −us(t) if and only if

(4.4) α2θ(uo)µs = (2r − 1)2 and λ = 0

for some r = 1, 2, . . . . By construction, the function uo lives in Ωo (see (3.22)),
therefore θ(uo) ∈ (0, 1) (see the definition of θ( · ) and requirements on Ωo). From
this it follows that (4.4) can be satisfied only if

(4.5) µs >
1
α2

> 0.

By the same argument, the requirement for possible values of α should be

(4.6) α �= (2r − 1)√
µs

for all µs, r = 1, 2, . . . .
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Bearing in mind the isotypical decomposition of Ho, formulae (3.9), (4.4) and
(4.5), the solution set to (4.3) satisfies the following equations in Ho:

(4.7) us,r − θ(uo)µsα
2

(2r − 1)2
us,r = 0,

where r = 1, 2, . . . and us,r(t) = e(2r−1)it(xr + iyr), for some µs-eigenvectors xr

and yr of C. Thus (4.4) and (4.7) give rise to a non-zero solution for (4.3) if
(4.5) and (4.6) are satisfied. In particular, since there are only finitely many such
r > 0, the solution set to (4.7) (and respectively, to (4.3)), is finite-dimensional.
Combining the above argument with the suspension property of the equivariant
degree (see Appendix, Theorem 8.3(P4), and Remark 8.5) one obtains (see (4.1))
that G-Deg(id −Fo,Ωo) = G-Deg(id − Fo,Ω1), where

Fo(λ, v) = α2θ(‖v‖)Av − λTv, (λ, v) ∈ R × U,

U is a finite-dimensional G-representation such that US1
= {0}, Ω1 = Ω0∩

(R × U) (see Figure 5 and (3.22)), A:U → U is a G-equivariant nonsingular
linear operator with spectrum (cf. (3.9))

(4.8) σ(A) =
{

µs

(2r − 1)2
: r = 1, . . . , k, µs >

1
α2

}
.

The linear operator T :U → U is diagonal with respect to the eigenvectors of A,
with all its diagonal entries being positive multiples of i (cf. (3.9)). Notice that
since A is G-equivariant, one may consider A as a complex linear operator. In
particular, the set (id − Fo)−1(0) ∩ Ω1 is composed of finitely many S1-orbits
S1(v0), . . . , S1(vR).

�
R

U

Figure 5. The set Ω1
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4.2. Isotypical decomposition and basic maps. In order to compute
the G-degree G-Deg(id−Fo,Ω1), we need to consider the following S1-isotypical
decomposition U = U1 ⊕ . . . ⊕ Uk of the space U , where Ul denotes the iso-
typical S1-component of U with the S1-action given by the complex multi-
plication (γ, v) �→ γl · v, (γ, v) ∈ S1 × Ul, and the product “ · ” denotes a
complex multiplication. Every subspace Ul is invariant with respect to the Γ-
action. We can consider the Γ-isotypical decomposition of Ul, which we denote by
Ul = U0,l⊕. . .⊕Us,l, where each of the components Uj,l, j = 0, . . . , s, l = 1, . . . , k,
is modelled on the complex irreducible Γ-representation Vc

j , j = 1, . . . , s, and Vc
0

being the trivial representation of Γ. It is clear that the space Vc
j equipped with

the above Γ×S1-action is a real irreducible representation of G = Γ×S1, which
we denote by Vj,l. Consequently, we obtain the following isotypical decomposi-
tion of the space U with respect to the G-action:

U =
⊕
j,l

Uj,l, Uj,l modelled on Vj,l.

For an orthogonal irreducible representation Vj,l of G = Γ × S1 such that
Vj,l

S1
= {0}, we put

O = {(λ, v) ∈ R × Vj,l : 1/2 < ‖v‖ < 2, −1 < λ < 1}
and define the map f:O → Vj,l, by

f(λ, v) = (1 − ‖v‖ + iλ) · v,
where (λ, v) ∈ R × Vj,l. Notice that f(λ, v) = 0 if and only if 1 − ‖v‖ + iλ = 0,
i.e. λ = 0, ‖v‖ = 1. The map f will be called a basic map of the second type.
In what follows, for every G-irreducible representation Vj,l, on which S1 acts
non-trivially, we denote by (f,O) the so-called a Vj,l-basic pair, and we define

degVj,l
= G-Deg(f,O) ∈ A1(Γ × S1).

Similarly, let Vj be an irreducible representation of Γ and Bj be the unit ball in
Vj . The simplest (in some sense) non-trivial Bj-admissible map is −id : Vj → Vj ,
which we call a basic map of the first type. We put

degVj
:= Γ-Deg (−id,Bj) ∈ A(Γ).

4.3. Product formula. Return to the computations of G-Deg(id−Fo,Ω1)
and, respectively, G-Deg(id −F ,Ω) (see (3.28)). Let ξ ∈ σ(A) be an eigenvalue
of the G-equivariant linear operator A:U → U . Then the eigenspace E(ξ) =
{v ∈ U : Av = ξv} is a G-invariant subspace of U . Clearly, the subspace E(ξ)
can be represented as the direct sum of its G-isotypical components

E(ξ) =
⊕
j,l

Ej,l(ξ), Ej,l(ξ) modelled on Vj,l.
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We will call the number

mj,l = mj,l(ξ) := dimEj,l(ξ)/ dimVj,l,

the Vj,l-multiplicity of the eigenvalue ξ. Consider the Γ-equivariant map id −
F :V → V , (id − F )(v) = −α2θ(vo)C(v), v ∈ V (cf. the second equation in
system (3.17)). Let B = B(0, 1) (cf. (3.23)). Then the Γ-equivariant degree
Γ-deg (id − F ,B) ∈ A(Γ) can be computed as follows: for every eigenvalue µo ∈
σ(C) such that µo > 1/α2, we consider the Γ-isotypical decomposition of the
associated with µo eigenspace E(µo) =

⊕
j Ej(µo). We put

nj(µo) = dim Ej(µo)/ dim Vj .

Then we have
Γ-deg (id − F ,B) =

∏
j,s

(degVj
)nj(µs),

where the product is taken in the Burnside ring A(Γ) and we assume that
(degVj

)0 = (Γ).1

Define id − F : R × V × U → V × U by

(id−F )(λ, v, v) = (−α2θ(vo)C(v), v−α2θ(‖v‖)Av+λTv), (λ, v, v) ∈ R×V ×U,
and put Ω2 = Ω ∩ (R × V × U). By the argument given in Subsection 4.1,
G-Deg(id − F ,Ω) = G-Deg(id − F,Ω2). In the statement following below, we
present the result for the computation of G-Deg(id − F,Ω2).

Proposition 4.1. Under the notations of this and previous subsections we
have

G-Deg(id − F,Ω2) =
∏
j,s

(degVj
)nj(µs) ·

[ ∑
ξ∈σ(A)

∑
j,l

mj,l(ξ) degVj,l

]
where the product “ · ” denotes the A(Γ) multiplication on the Z-module A1(Γ ×
S1) generated by the twisted conjugacy classes (H) in Γ × S1 (cf. [5]).

Proof. Using the homotopy invariance (see Appendix, Theorem 8.3(P3)),
we can modify the operator A (using a small perturbation) in such a way that
each eigenvalue ξ ∈ σ(A) is “simple”, i.e. there exists exactly one (j, l) such
that mj,l(ξ) = 1. Let us consider an eigenvalue ξ ∈ σ(A) and suppose that
E(ξ) = Ej,l(ξ) for some isotypical component Uj,l. By (4.4) and (4.7), for
every eigenvector v ∈ Ej,l(ξ) we have that (id − Fo)(λ, v) = 0 if λ = 0 and
α2θ(v)ξ = 1. Put Kj,l(ξ) = (id − Fo)−1(0) ∩ Ω1 ∩ Ej,l(ξ). The sets Kj,l(ξ) are
compact and it is possible to separate them by choosing small open G-invariant
neighbourhoods Ωj,l(ξ) in U . Notice that for every neighbourhood Ωj,l(ξ) the
map id− Fo is G-homotopic to a map, which is normal in directions orthogonal

1Notice that we always have (degVj
)2 = (Γ).
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to Ej,l(ξ) (see Definition 8.1 and Theorem 8.2 for more details related to the
notion of normality). Consequently, by the additivity and suspension properties
of the G-equivariant degree (see Appendix, Theorem 8.3, properties (P2), (P4))
we obtain

G-Deg(id − Fo,Ω1) =
∑
ξ,j,l

G-Deg(id − Fo,Ωj,l(ξ))

=
∑
ξ,j,l

G-Deg((id − Fo)|Ej,l(ξ),Ωj,l(ξ) ∩ Ej,l(ξ)).

On the other hand, it can be easily verified that the map (id−Fo)|Ej,l(ξ)∩Ωj,l(ξ)

is G-homotopic to a basic map on Vj,l. This reduction to basic maps is funda-
mental for the computations of the primary degree. Consequently (cf. Appendix,
Theorem 8.3(P3)),

G-Deg((id − Fo)|Ej,l(ξ),Ωj,l(ξ) ∩Ej,l(ξ)) = degVj,l
.

Therefore, by applying the homotopy and additivity properties again (see Ap-
pendix, Theorem 8.3, properties (P3) and (P2)), we get

G-Deg(id − Fo,Ω1) =
∑

ξ∈σ(A)

∑
j,l

nj,l(ξ) degVj,l
.

On the other hand, since id − F is a product of two maps id − F :V → V

(Γ-equivariant) and id − Fo: R × U → U (G-equivariant), it follows from the
multiplicativity property (see Appendix, Proposition 8.4) that

G-Deg(id − F,Ω2) = Γ-deg (id − F ,B) ·G-Deg(id − Fo,Ω1).

Finally, since the map id−F = −α2θ(vo)C:V → V (notice that since θ(vo) > 0,
we can simply consider it to be equal to 1) can be represented by a diagonal-block
matrix on the eigenspaces of C, one has

Γ-deg (id − F ,B) =
∏
j,s

(degVj
)nj(µs),

and the result follows. �

5. Existence of symmetric periodic solutions
to Van Der Pol systems

Let us recall that we consider the space V = Rn, a group Γ ⊂ Sn, and an
n × n non-singular matrix C commuting with the Γ-action on V . Throughout
this section we continue to keep the same notations as in Section 3. We consider
a solution to (3.7) as a function living in the G-space H = Ho × V , where
G = Γ × S1, V is identified with the Γ-space of constant functions.
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As it was indicated in Section 3, in order to provide the equivariant degree
treatment to system (3.5) (see also (3.7)), one needs to obtain a priori estimates
for the solutions.

5.1. A priori estimates. The required a priori estimates are provided by
the two lemmas following below. These statements are parallel to Lemmas 2.2
and 2.3 from [12], where the two-dimensional case was considered (without the
symmetry assumption on C). Observe that the proofs of Lemmas 5.1 and 5.2
are slight modifications of the arguments presented in [12].

Lemma 5.1. There exists an increasing function m: R+ → R+ such that for
each δ ∈ (0, 1], α ∈ R+ and for each solution u ∈ Ho of the system

(5.1) ü+ δαε
d

dt
F (u) + α2Cu = 0,

where F is given by (3.4), we have ‖u‖
Ho

≤ m(α).

Proof. Let us fix α ∈ R+ and δ ∈ (0, 1] and assume that u is a solution
to (5.1). Bearing in mind that C is symmetric and using integration by parts we
have

(5.2)
∫ 2π

0

ü(t) • u̇(t) dt = 0 and
∫ 2π

0

Cu(t) • u̇(t) dt = 0.

Thus, by multiplying (5.1) by u̇ and integrating over [0, 2π] we obtain that

0 =
∫ 2π

0

(
ü+ δαε

d

dt
F (u) + α2Cu

)
• u̇ dt

= δαε

∫ 2π

0

(u2 −−→a )u̇ • u̇ dt = δαε

∫ 2π

0

(u2 • u̇2 − au̇ • u̇) dt.

Therefore,

(5.3)
∫ 2π

0

u2 • u̇2 dt =
∫ 2π

0

au̇ • u̇ dt = a‖u̇‖2
2.

Since for u ∈ Ho, u(t) = −u(π+ t), for each component uk(t) of u(t), there exists
sk ∈ [0, 2π] such that uk(sk) = 0. Consequently, using integration by parts one
easily obtains for every t ∈ [0, 2π] satisfying t > sk:

(5.4) u2
k(t) ≤ 2

∫ t

sk

|uku̇k| dt ≤ 2
∫ 2π

0

|uku̇k| dt.

Using (5.3) and (5.4) one obtains (by the Cauchy–Schwartz inequality)

‖u‖2
2 =

∫ 2π

0

u • u dt ≤ 4π
n∑

k=1

∫ 2π

0

|uku̇k| dt(5.5)

≤ 4π
√

2nπ
(∫ 2π

0

u2 • u̇2

)1/2

dt = 25/2π3/2√na‖u̇‖2.
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On the other hand, if we multiply (5.1) by u and again integrate over [0, 2π], we
get

0 =
∫ 2π

0

(
ü+ δαε

d

dt
F (u) + α2Cu

)
• u dt

= −
∫ 2π

0

u̇ • u̇ dt− δαε

∫ 2π

0

(
1
3
u3 −−→a u

)
• u̇ dt+ α2

∫ 2π

0

Cu • u dt

≤ −‖u̇‖2
2 + α2‖C‖ ‖u‖2

2,

where ‖C‖ denotes the operator norm of C. So, we obtain

(5.6) ‖u̇‖2
2 ≤ α2‖C‖ ‖u‖2

2.

Then, by (5.5) and (5.6), we get

‖u‖2
2 ≤ 25/2π3/2

√
an‖u̇‖2 ≤ 25/2π3/2

√
anα

√
‖C‖ ‖u‖2

so

(5.7) ‖u‖2 ≤ 25/2π3/2α
√
na‖C‖ and ‖u̇‖2 ≤ 25/2π3/2α2‖C‖√na.

Notice that if u ∈ Ho is a (classical) solution to (5.1), then it is clearly of class
C2. By multiplying the equation (5.1) by ü and integrating it from 0 to 2π we
obtain by (5.2) and (5.4)

‖ü‖2
2 ≤ δαε

∫ 2π

0

u2(t)u̇(t) • ü(t) dt + α2‖C‖‖u̇‖2
2(5.8)

≤ 2δαε‖u‖2‖u̇‖2
2‖ü‖2 + α2‖C‖ ‖u̇‖2

2,

so

‖ü‖2 ≤ δαε‖u‖2‖u̇‖2
2 +

√
(δαε‖u‖2‖u̇‖2

2)2 + α2‖C‖‖u̇‖2
2

≤ 2δαε‖u‖2‖u̇‖2
2 + α

√
‖C‖‖u̇‖2.

Since the norms ‖u‖2 and ‖u̇‖2 are bounded, it follows from (5.7) that

‖ü‖2 ≤ 217/2π9/2δα6ε‖C‖5/2(na)3/2 + 25/2π3/2α3√na‖C‖3/2.

Therefore, it is to observe that ‖u‖Ho ≤ m(α), where

m(α) := 25/2π3/2α
√
na‖C‖1/2

√
1 + (α‖C‖1/2)2 + (26πδα5ε‖C‖2na+ α2‖C‖)2.

Notice that m(α) is clearly increasing. �
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Lemma 5.2. For every α̃ > 0 there exists δ1(α̃) > 0 such that the equation
(5.1) has no non-zero solution in Ho for all α ∈ (0, α̃) and δ > δ1(α̃).

Proof. Fix α̃ > 0 and take α ∈ (0, α̃). Let m( · ) be a function provided by
Lemma 5.1. Let u ∈ Ho be a solution to (5.1). By multiplying (5.1) by u̇ and
integrating it over [0, 2π], we get

(5.9) 0 = δαε

∫ 2π

0

(u2 −−→a )u̇ • u̇ dt.

Combining (5.9) with the condition u(t + π) = −u(t) for all t, and using the
standard continuity argument, one can find t0 ∈ [0, 2π] and k ∈ {1, . . . , n} such
that uk(t0) =

√
a and u̇k(t0) ≤ 0. Notice, in particular, that ‖u‖∞ ≥ √

a. Since
u(t) = −u(t− π), u̇(t) = −u̇(t− π), and F (u) is an odd function, we have

0 =
∫ t0

t0−π

(
ü+ δαε

d

dt
F (u) + α2Cu

)
dt

= u̇(t0) − u̇(t0 − π) + δαεF (u)|t0t0−π + α2

∫ t0

t0−π

Cudt

= 2u̇(t0) + 2δαεF (u(t0)) + α2

∫ t0

t0−π

Cudt.

Consequently,

0 ≥ u̇k(t0) = −δαε
(
a3/2

3
− a3/2

)
− α2

2

∫ t0

t0−π

(Cu)k dt

≥ α

(
2
3
δεa2/3 − α̃

2

∫ t0

t0−π

‖C‖‖u(t)‖∞ dt

)
≥ α

(
2
3
δεa3/2 − α̃

2
√
π‖C‖‖u‖

Ho

)
≥ α

(
2
3
δεa3/2 − α̃

2
√
π‖C‖m(α̃)

)
,

where ‖u(t)‖∞ stands for max{|u1(t)|, . . . , |un(t)|}. Therefore, it is sufficient to
take

δ1 =
3α̃

√
π‖C‖m(α̃)
4εa3/2

. �

5.2. Existence result: formulation. Assume that

(5.10) Σ(C) := {µ ∈ σ(C) : µ > 0} �= ∅.
Take a function m : R+ → R+ provided by Lemma 5.1 and choose α > 0 such
that

(5.11) α2 �= (2r − 1)2

µ
for all r = 1, . . . , k, µ ∈ Σ(C)

(cf. (4.8)) and

(5.12) µ >
1
α2

for all µ ∈ Σ(C).
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Let J : Ho → C(S1;V ) be the natural injection. We choose m > 0 such that
m <

√
a/‖J‖. Then for every u ∈ Ho such that ‖u‖Ho ≤ m we have

‖u‖∞ = ‖J(u)‖∞ ≤ ‖J‖ ‖u‖Ho ≤ ‖J‖m <
√
a.

Notice that for any solution u of the equation (3.7) we have ‖u‖∞ >
√
a (see the

proof of Lemma 5.2), thus there is no solution u such that ‖u‖Ho = m. Next,
we choose M > m(α) and the numbers λo and δo to be large enough in order to
have

λo − δo > δ1(α), [0, λo] ⊂ {λ : λ ≥ δ1(α)} ∪
{
λ : 0 ≤ λ ≤ δom

2

m(α)2

}
.

Next, we define Ω, Ωo, ∂m, ∂M and ∂o according to formulae (3.21), (3.22) and
(3.24)–(3.26).

We are now in a position to formulate the existence theorem providing a
general framework for the classification of periodic solutions to (2.1) according
to their symmetries.

Theorem 5.3. Assume (5.10) is satisfied and choose α > 0 satisfying (5.11)
and (5.12).

(a) Suppose that for a certain orbit type (Ho) in Ω (see (3.21)), the coef-
ficient nHo of the equivariant degree (3.29) is non-zero. Then the van
der Pol system of equations (2.2) has a periodic solution u such that
Gu ⊃ Ho.

(b) If in addition, the orbit type (Ho) is dominating in H (see Definition
3.4), then the system (2.2) has at least |G/Ho|S1 different periodic solu-
tions with symmetries exactly (Ho), where |X |S1 stands for the number
of different S1-orbits in X.

Proof. (a) The idea of the proof of the first part of Theorem 5.3 is based
on the following fact: Let id−F t be a homotopy of two equivariant maps id−F0

and id − F1 such that G-Deg(id − F j ,Ω) =
∑
nj

H(H), j = 0, 1. If n0
Ho

�= n1
Ho

,
then there exists t ∈ (0, 1) such that the map F t has a fixed point in ∂ΩHo . As
the arguments used in this proof are very close to the ones given in [12], we
present only a sketch of the proof.

Let

So := {(λ, u) : u = G̃(α, δ, λ, u) for some δ ∈ [0, δo]},
where G̃(α, δ, · , · ): R×Ho → Ho is defined by (3.18). By using exactly the same
arguments as in [12] we can show that

So ∩ (∂o ∪ ∂m) = ∅.
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Notice that if (λ, u) ∈ So ∩ ∂M , then θ(u) = 1 and δ+λ > 0 and (by Lemma 3.5
in [12]) the function w =

√
δ/(δ + λ)u satisfies the equation

(5.13) ẅ + (δ + λ)αε(w2 −−→a )ẇ + α2Cw = 0.

In particular, that means the function w is a 2π-periodic solution of equation
(3.7) with ε replaced by (δ + λ)ε.

Following [12], define the parameterized nonlinear operators Fs:V → V by

Fs(u) :=
(

1
3
u3 − (1 − s)−→a u

)
, s ∈ [0, 1],

and consider the following family of parameterized differential equations

(5.14)

{
−ü = δoαε

d

dt
Fs(u) + α2θ(uo)Cu − λαεau̇, u(t) ∈ V,

u(t) = u(t+ 2π), u̇(t) = u̇(t+ 2π), u(t+ π) = −u(t).

Again, we can reformulate the above system using the setting in the functional
space Ho. We define H̃(α, s, · , · ): R × Ho → Ho by

H̃(α, s, λ, u) := δoαεL
−1Ns(j(u), D(j(u)))

+ α2θ(uo)L−1C(j(u)) − λαεaL−1D(j(u)),

and H(α, s, · , · ): R × H → H, by

H(α, s, λ, u) = (u + α2θ(uo)C(u), H̃(α, s, λ, uo)), u = u+ uo, u ∈ V, uo ∈ Ho,

where

Ns(u, u̇) =
d

dt
Fs(u) =

d

dt

(
1
3
u3 − (1 − s)−→a u

)
= (u2 − (1 − s)−→a )u̇, u ∈ Ho.

The map id−H(α, s, · , · ) is a G-equivariant homotopy. Using Lemmas 5.1 and
5.2 and the same argument as in [12], one can show that:

• the homotopy id − H̃(α, s, · , · ) has no zeros in the set ∂o ∪ ∂m;
• the map id − H̃(α, 1, · , · ) has no zeros in Ωo (in particular, by the

existence property of the G-equivariant degree (see Appendix, Theo-
rem 8.3(P1)), G-Deg(id −H(α, 1, · , · ),Ω) = 0.

Next, we can define the following G-equivariant homotopy id−Ψ(τ, · , · ) by

Ψ(τ, λ, u) :=

{
G(α, 2τδo, λ, u) for (λ, u) ∈ Ω, τ ∈ [0, 1/2],

H(α, 2τ − 1, λ, u) for (λ, u) ∈ Ω, τ ∈ [1/2, 1].

As it was explained in Section 4, the solution set to the equation (4.7) is non-
empty only if conditions (4.5) and (4.6) are satisfied (cf. the formulation of
Theorem 5.3). Therefore, these conditions are necessary for the equivariant
degree (3.29) to be different from zero. Assume (according to the Theorem 5.3
conditions) that nH0 �= 0. Suppose that u − Ψ(τ, λ, u) �= 0 for all (λ, u) ∈ ∂Ω.
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Then, by the homotopy property of the G-equivariant degree (see Appendix,
Theorem 8.3(P3)), we would also have that the (Ho)-coefficient of G-Deg(id −
H(α, 1, · , · ),Ωo) is non-zero, what is impossible.

Since for u = u + uo ∈ V × Ho, the equation u = Ψ(τ, λ, u) implies that
−α2θ(uo)C(u) = 0, thus u = 0, therefore, there exists (λ, u) = (λ, uo) ∈
∂Ωo such that u = Ψ(τ, λ, u) for some τ ∈ [0, 1]. However, the equation
u − Ψ(τ, λ, u) = 0 has no solution (λ, u) in ∂o ∪ ∂m. Consequently, it has a
solution u in ∂M . By applying a standard transformation, we obtain a solution
for the equation (3.7), for the value of ε replaced by another (appropriate) value,
with the period equal to 2π.

(b) Assume now that (Ho) is a dominating orbit type in H (cf. Definition 3.4).
Then, by applying the arguments that were explained in Remark 3.6, we obtain
the existence of at least |G/Ho|S1 different periodic solutions to the equation
(3.5), which means that there are at least |G/Ho|S1 different periodic solutions
(with symmetries (Ho)) to the equation (2.2). �

6. Computations for special cases of group Γ

In this section we consider several particular cases of the group Γ, for which
we present the computations of the A(Γ)-module structure of A1(Γ × S1) (in-
cluding the multiplication tables), the isotropy lattices for the irreducible rep-
resentations of Γ × S1, and in addition, the computations of the Γ × S1-degree
of the related basic maps (see [5], [6] and [15], [16] for the corresponding back-
ground). These computations are used in Section 7 to classify the symmetry
types of the periodic solutions of the van der Pol systems with Γ-symmetries. In
fact, the information contained in Section 6 is more general than it is needed for
the applications in Section 7 and may be used for further investigation of the
van der Pol systems as well as for other nonlinear problems with symmeteries.

6.1. Preliminaries. Let us explain shortly, how to obtain an explicit mul-
tiplication table for the Burnside ring A(Γ) of a finite2 group Γ. For a subgroup
H of Γ we denote by (H) the conjugacy class of H , and for two subgroups H
and K of Γ, we write (H) ≤ (K) if H ⊂ g−1Kg for some g ∈ Γ. The relation ≤
defines a partial order on the set Φ(Γ) of all the conjugacy classes (H) in Γ. The
Burnside ring A(Γ) is the Z-module generated by Φ(Γ) with the multiplication
defined on the generators by the following formula:

(6.1) (H) · (K) =
∑

(L)∈Φ(Γ)

nL(H,K) · (L),

2In this paper, to simplify our presentation, we consider only the case of a finite group Γ,
but this technique can also be applied in a similar way to any compact Lie group by adopting
the concept of so-called “bi-orientable” groups (cf. [5], [6], [9], [24]).
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where nL(H,K) is an integer representing the number of (L)-orbits in the set
Γ/H × Γ/K. The numbers nL := nL(H,K) can be computed using a simple
recurrence formula. For two subgroups H and L, such that (H) ≥ (L), we define
the set

N(L,H) = {g ∈ Γ : gLg−1 ⊂ H}
and the number (see [10], [21])

n(L,H) =
∣∣∣∣N(L,H)
N(H)

∣∣∣∣,
where |X | denotes the number of elements in the set X . In the case (H) and
(L) are not comparable, we will simply put n(L,H) = 0. The partial order on
the set Φ(Γ) can be extended to a total order, which we will also denote by ≤.
Then we have

(6.2) nL =
1

|W (L)|
[
n(L,H)|W (H)|n(L,K)|W (K)|−

∑
(�L)>(L)

n(L, L̃)n
�L|W (L̃)|

]
,

where W (L) = N(L)/L denotes the Weyl group of L in Γ.
Recall that the Z-module A1(Γ×S1) is generated by all the conjugacy classes

of twisted subgroups (Hϕ,l) in Γ×S1. The A(Γ)-multiplication on the generators
(K) ∈ A(Γ) and (Hϕ,l) ∈ A1(Γ × S1), is defined by the formula

(K) · (Hϕ,l) =
∑
(L)

nL · (Lϕ,l),

where the numbers nL are computed using the recurrence formula

(6.3) nL =
1

|W (Lϕ,l)/S1|
[
n(L,K)|W (K)|n(Lϕ,l, Hϕ,l)

∣∣∣∣W (Hϕ,l)
S1

∣∣∣∣
−

∑
(�L)>(L)

n(Lϕ,l, L̃ϕ,l)n
�L

∣∣∣∣W (L̃ϕ,l)
S1

∣∣∣∣].
Let Vj be an irreducible representation of the group Γ, Bj the unit ball in

Vj , and −id : Vj → Vj the basic map of the first type corresponding to the
representation Vj . Then the equivariant degree degVj

= Γ-deg(−id, Bj) can be
computed using a recurrence formula. More precisely, suppose that the partial
order of the orbit types (L) in Vj is extended to a total order. It is clear that
(Γ) is the maximal element. Then degVj

=
∑

(L) nL · (L), where

(6.4) nL =
1

|W (L)|
[
(−1)kL −

∑
(�L)>(L)

n(L, L̃)n
�L|W (L̃)|

]
,

kL = dimVL
j and nΓ = 1.

Recall that if Vc
j is a complex irreducible representation of Γ, then by using

the complex structure on Vc
j , we define the action of S1, by (z, v) �→ zl ·v, where
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z ∈ S1, v ∈ Vc
j , l is a positive integer and ‘·′ denotes the complex multiplication.

In this way, we obtain an irreducible representation Vj,l of the group G := Γ×S1.
We consider the space R × Vj,l, the set Oj,l := {(λ, v) ∈ R × Vj,l : 1/2 < ‖v‖ <
2, −1 < λ < 1} and the basic map

fj,l(λ, v) = (1 − ‖v‖ + iλ) · v, (λ, v) ∈ R × Vj,l.

The primary equivariant degree degVj,l
= G-Deg(fj,l,Oj,l) can also be computed

by applying a recurrence formula. First, we extend the partial order of the orbit
types (L) (where L is a twisted subgroup) to a total order. Then degVj,l

=∑
(L) nL · (L), where

(6.5) nL =
1

|W (L)/S1|
[
kL

2
−

∑
(�L)>(L)

n(L, L̃)n
�L

∣∣∣∣W (L̃)
S1

∣∣∣∣],
and kL = dimVL

j,l. Notice that it is sufficient to compute the basic degree
degVj,1

=
∑

(L) nL · (L) for the irreducible representation Vj,1. In the general
case of the representation Vj,l we have that

(6.6) degVj,l
=
∑
(L)

nLΨ−1
l (L),

where Ψl: Γ × S1 → Γ × S1 is the homomorphism Ψl(g, z) = (g, zl) for g ∈ Γ,
z ∈ S1.

In the remaining parts of this section, we present the computations of the
multiplication tables and the basic degrees for the dihedral, tetrahedral, octahe-
dral and icosahedral groups.

6.2. Computations for dihedral group DN . Let us illustrate the com-
putations of the G-equivariant degree of basic pairs in the case of the group
Γ = DN of order 2N (see [16] for more information) composed of the rotations
1, ξ, . . . , ξN−1 of the complex plane (ξ is the multiplication by e2πi/N ) and the
reflections κ, κξ, . . . , κξN−1, with κ =

[
1 0

0 −1

]
.

We start with a list of the subgroups of DN :

Zk := {1, γ, . . . , γk−1},
Dk,j := {1, γ, γ2, . . . , γk−1, κξj , κξjγ, . . . , κξjγk−1},

where k ∈ Z+ is such that k|N , γ := e2πi/k and j = 0, . . . , N/k − 1.
Notice that (Dk,j) = (Dk,j′ ) for j ≡ j′(mod 2), and (Dk,0) = (Dk,1) if and

only if N/k is odd. We denote Dk := Dk,0 for all k with k|N , and D̃k′ := Dk′,1

for k′ such that N/k′ is even (i.e. 2k′|N). Thus, the Burnside ring A(DN ) is
generated by (Zk), (Dk) and (D̃k′) for all k and k′ with k|N and 2k′|N .
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On the other hand, the twisted subgroups in DN × S1 (besides those we
mentioned above), can be classified (up to conjugacy classes) as follows:

Ztr

k := {(1, 1), (γ, γr), . . . , (γk−1, γ(k−1)r)}, r = 1, . . . , k − 1,

Dz
k,j := {(1, 1), (γ, 1), . . . , (γk−1, 1), (κξj ,−1), (κξjγ,−1), . . . , (κξjγk−1,−1)},

where k|N and j = 0, . . . , N/k− 1. Since (Ztr

k ) = (Ztk−r

k ), we will consider (Ztr

k )
only for r < k/2. Observe that (Dz

k,j) = (Dz
k,j′ ) if and only if (Dk,j) = (Dk,j′ ),

therefore we will employ similar notations as before, Dz
k := Dz

k,0 for all k|Nand
D̃z

k′ := Dz
k′,1 for 2k′|N .

In addition, we have

Zd
2m := {(1, 1), (γ,−1), (γ2, 1), . . . , (γ2m−2, 1), (γ2m−1,−1)},

Dd
2m,s := {(1, 1), (γ,−1), (γ2, 1), . . . , (γ2m−1,−1),

(κξs, 1), (κξsγ,−1), . . . , (κξsγ2m−1,−1)};
where 2m|N and s = 0, . . . , N/(2m) − 1, N/(2m).

Here, we notice that (Dd
2m,s) = (Dd

2m,s′) if and only if s ≡ s′ (mod 2).

We denote Dd
2m := Dd

2m,0 for all 2m|N , D̃d
2m := Dd

2m,1 for 4m|N and D
�d
2m :=

Dd
2m,N/(2m) for 2m|N but 4m � N . That is,

Dd
2m := {(1, 1), (γ,−1), (γ2, 1), . . . , (γ2m−1,−1),

(κ, 1), (κγ,−1), . . . , (κγ2m−1,−1)};
D̃d

2m := {(1, 1), (γ,−1), (γ2, 1), . . . , (γ2m−1,−1),

(κξ, 1), (κξγ,−1), . . . , (κξγ2m−1,−1)};
D

�d
2m := {(1, 1), (γ,−1), (γ2, 1), . . . , (γ2m−1,−1),

(κ,−1), (κγ, 1), . . . , (κγ2m−1, 1)}.
Therefore, A1(DN ×S1) is generated by (besides the generators of A(DN )) (Ztr

k )
(for k|N , r = 1, 2, . . . , and r < k/2), (Dz

k) (for k|N), (D̃z
k′) (for 2k′|N), (Zd

2m)
(for 2m|N), (Dd

2m) (for 2m|N), (D̃d
2m′) (for 4m′|N) and (D �d

2m) (for 2m′|N but
4m′ � N).

The Weyl groups of all the conjugacy classes representatives are listed in
Table 1 and the numbers n(L,H) in Table 2.

By applying the numbers n(L,H) and the formula (6.3) it is easy to establish
the complete A(DN )-module multiplication table for A1(DN × S1), in the case
N is odd. As an example, we present in Table 3 the multiplication formulae for
the A(DN )-module A1(DN × S1) in the cases N = 3 and 5.3 In Table 4 we
present a multiplication table4 for the A(D4)-module A1(D4 × S1).

3We use here the notation Z
t
3 := Z

t1
3 .

4We use there the notation Z
−
2 instead of Z

t1
2 and Z

t
4 instead of Z

t1
4 .
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H N(H) W (H) Conditions # of Conjug.

Zk DN × S1 DN/k × S1 k|N 1

Ztr

k ZN × S1 ZN/k × S1 k|N , 0 < r < k/2 2

Zd
2m DN × S1 DN/(2m) × S1 2m|N 1

Dk D2k × S1 Z2 × S1 2k|N N/(2k)

D̃k D2k × S1 Z2 × S1 2k|N N/(2k)

Dk Dk × S1 Z1 × S1 k|N , 2k � |N N/k

Dz
k D2k × S1 Z2 × S1 2k|N N/(2k)

D̃z
k D2k × S1 Z2 × S1 2k|N N/(2k)

Dz
k Dk × S1 Z1 × S1 k|N , 2k � |N N/k

Dd
2m D2m × S1 Z1 × S1 4m|N N/(2m)

D̃d
2m D2m × S1 Z1 × S1 4m|N N/(2m)

Dd
2m D2m × S1 Z1 × S1 2m|N , 4m � |N N/2m

D
�d
2m D2m × S1 Z1 × S1 2m|N , 4m � |N N/(2m)

Table 1. Representatives of conjugacy classes of twisted subgroups

in DN × S1

L H n(L,H) Conditions L H n(L,H) Conditions

Zk Zl 1 k|l|N Zd
2m Dd

2n N/(2n) 2m|2n|N , 2m� |n, 4n� |N
Zk Ztr

l 2 k|l|N , k|r, 0 < r < l/2 Zd
2m D

�d
2n N/(2n) 2m|2n|N , 2m� |n, 4n� |N

Zk Zd
2n 1 k|n, 2n|N Dk Dl 1 k|l|N

Zts

k Ztr

l 1 k|l|N , k � |r, 0 < r < l/2, Dk Dd
2n 1 k|n, 2n|N

0 < s < k, s ≡ r (mod k), 2s�= k

Zd
2m Ztr

l 2 2m|l|N , m|r, 2m� |r, 0 < r < l/2 D̃k Dl 1 2k|l|N , 2l � |N
Zd

2m Zd
2n 1 2m|2n|N , 2m� |n D̃k D̃l 1 2k|2l|N

Zk Dl N/(2l) k|l|N , 2l|N D̃k D̃d
2n 1 k|n, 4n|N

Zk D̃l N/(2l) k|l|N , 2l|N D̃k D
�d
2n 1 k|n, 2n|N , 4n� |N

Zk Dl N/l k|l|N , 2l � |N Dz
k Dz

l 1 k|l|N
Zk Dz

l N/(2l) k|l|N , 2l|N Dz
k Dd

2n 1 k|n, 4n|N
Zk D̃z

l N/(2l) k|l|N , 2l|N Dz
k D

�d
2n 1 k|n|N , 2n|N , 4n� |N

Zk Dz
l N/l k|l|N , 2l � |N D̃z

k Dz
l 1 2k|l|N , 2l � |N

Zk Dd
2n N/(2n) k|n|N , 4n|N D̃z

k D̃z
l 1 k|l|N , 2l|N

Zk D̃d
2n N/(2n) k|n|N , 4n|N D̃z

k Dd
2n 1 k|n, 2n|N , 4n� |N

Zk Dd
2n N/(2n) k|n|N , 2n|N , 4n� |N D̃z

k D̃d
2n 1 k|n, 4n|N

Zk D
�d
2n N/(2n) k|n|N , 2n|N , 4n� |N Dd

2m Dd
2n 1 m|n|N , 2m� |n, 2n|N

Zd
2m Dd

2n N/(2n) 2m|2n|N , 2m� |n, 4n|N D̃d
2m D̃d

2n 1 m|n|N , 2m� |n, 4n|N
Zd

2m D̃d
2n N/(2n) 2m|2n|N , 2m� |n, 4n|N D

�d
2m D

�d
2n 1 m|n|N , 2m� |n, 2n|N , 4n� |N

Table 2. Numbers n(L, H) for twisted subgroups in DN × S1
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(D3) (D1) (Z3) (Z1) N = 3

(D3) (D1) (Z3) (Z1) (D3)

(D1) (D1) + (Z1) (Z1) 3(Z1) (D1)

(Z3) (Z1) 2(Z3) 2(Z1) (Z3)

(Z1) 3(Z1) 2(Z1) 6(Z1) (Z1)

(Zt
3) (Z1) 2(Zt

3) 2(Z1) (Zt
3)

(Dz
3) (Dz

1) + (Z1) (Z3) 3(Z1) (Dz
3)

(Dz
1) (Dz

1) + (Z1) (Z1) 3(Z1) (Dz
1)

(D5) (D1) (Z5) (Z1) N = 5

(D5) (D1) (Z5) (Z1) (D5)

(D1) (D1) + 2(Z1) (Z1) 5(Z1) (D1)

(Z5) (Z1) 2(Z5) 2(Z1) (Z5)

(Z1) 5(Z1) 2(Z1) 10(Z1) (Z1)

(Zt1
5 ) (Z1) 2(Zt1

5 ) 2(Z1) (Zt1
5 )

(Zt2
5 ) (Z1) 2(Zt2

5 ) 2(Z1) (Zt2
5 )

(Dz
5) (Dz

1) (Z5) (Z1) (Dz
5)

(Dz
1) (Dz

1) + 2(Z1) (Z1) 5(Z1) (Dz
1)

Table 3. A(DN )-multiplication table for A1(DN × S1) for N = 3, 5

(D4) (D2) (D̃2) (D1) (D̃1) (Z4) (Z2) (Z1) N = 4

(D4) (D2) (D̃2) (D1) (D̃1) (Z4) (Z2) (Z1) (Z4)

(D2) 2(D2) (Z2) 2(D1) (Z1) (Z2) 2(Z2) 2(Z1) (D2)

(D̃2) (Z2) 2(D̃2) (Z1) 2(D̃1) (Z2) 2(Z2) 2(Z1) (D̃2)

(D1) 2(D1) (Z1) 2(D1) + (Z1) 2(Z1) (Z1) 2(Z1) 4(Z1) (D1)

(D̃1) (Z1) 2(D̃1) 2(Z1) 2(D̃1) + (Z1) (Z1) 2(Z1) 4(Z1) (D̃1)

(Z4) (Z2) (Z2) (Z1) (Z1) 2(Z4) 2(Z2) 2(Z1) (Z4)

(Z2) 2(Z2) 2(Z2) 2(Z1) 2(Z1) 2(Z2) 4(Z2) 4(Z1) (Z2)

(Z1) 2(Z1) 2(Z1) 4(Z1) 4(Z1) 2(Z1) 4(Z1) 8(Z1) (Z1)

(Dz
4) (Dz

2) (D̃z
2) (Dz

1) (D̃z
1) (Z4) (Z2) (Z1) (Dz

4)

(D �d
4) (Dz

2) (D̃2) (Dz
1) (D̃1) (Zd

4) (Z2) (Z1) (D �d
4)

(Dd
4) (D2) (Dz

2) (D1) (D̃z
1) (Zd

4) (Z2) (Z1) (Dd
4)

(Dd
2) 2(Dd

2) (Z−
2 ) (Dz

1) + (D1) (Z1) 2(Z−
2 ) 2(Z−

2 ) 2(Z1) (Dd
2)

(D̃d
2) (Z−

2 ) 2(D̃d
2) (Z1) (D̃z

1) + (D̃1) 2(Z−
2 ) 2(Z−

2 ) 2(Z1) (D̃d
2)

(Dz
2) 2(Dz

2) (Z2) 2(Dz
1) (Z1) (Z2) 2(Z2) 2(Z1) (Dz

2)

(D̃z
2) (Z2) 2(D̃z

2) (Z1) 2(D̃z
1) (Z2) 2(Z2) 2(Z1) (D̃z

2)

(Dz
1) 2(Dz

1) (Z1) 2(Dz
1) + (Z1) 2(Z1) (Z1) 2(Z1) 4(Z1) (Dz

1)

(D̃z
1) (Z1) 2(D̃z

1) 2(Z1) 2(D̃z
1) + (Z1) (Z1) 2(Z1) 4(Z1) (D̃z

1)

(Zt
4) (Z−

2 ) (Z−
2 ) (Z1) (Z1) 2(Zt

4) 2(Z−
2 ) 2(Z1) (Zt

4)

(Zd
4) (Z−

2 ) (Z−
2 ) (Z1) (Z1) 2(Zd

4) 2(Z2) 2(Z1) (Zd
4)

(Z−
2 ) 2(Z−

2 ) 2(Z−
2 ) 2(Z1) 2(Z1) 2(Z−

2 ) 4(Z−
2 ) 4(Z1) (Z−

2 )

Table 4. Multiplication table for the A(D4)-module A1(D4 × S1)

Let us point out that general multiplication tables for A(DN )-module A1(DN

×S1) can be established, however because of a large number of different cases
being involved, it may be difficult to use it practically. For example, we have
such a (partial) information presented in Table 5, which was taken from [16].
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(Dz
k) (Dz

k) (D̃z
k) (D̃z

k) (Zd
k)

2k � N 2k|N 2k � N 2k|N 2|k
(Dr) (Dz

l ) + Nl−kr
2kr (Zl) (Dz

l ) + Nl−kr
2kr (Zl) Nl

2rk (Zl) Nl
2rk (Zl) Nl

rk (Zd
l )

2r � N

(Dr) (Dz
l ) + Nl−kr

2kr (Zl) (Dz
l ) + Nl−2kr

2kr (Zl) Nl
2rk (Zl) Nl

2rk (Zl) Nl
rk (Zd

l )

2r|N
(D̃r) Nl

2rk (Zl) Nl
2rk (Zl) (D̃z

l ) + Nl−kr
2kr (Zl) (D̃z

l ) + Nl−kr
2kr (Zl) Nl

rk (Zd
l )

2r � |N
(D̃r) Nl

2rk (Zl) Nl
2rk (Zl) (D̃z

l ) + Nl−kr
2kr (Zl) (D̃z

l ) + Nl−2kr
2kr (Zl) Nl

rk (Zd
l )

2r|N
(Zr) Nl

rk (Zl) Nl
rk (Zl) Nl

rk (Zl) Nl
rk (Zl) Nl

2rk (Zd
l )

Table 5. Partial multiplication table for A(DN )-module A1(DN × S1)
(l = gcd(k, l), r|N and k|N)

Now, let us describe all the real irreducible representations of DN and com-
pute the degrees of the corresponding basic maps of the first type.

(a0) Clearly, there is a one-dimensional trivial representation V0. In this case
we have degV0

= −(DN).
(a1) For every integer number 1 ≤ j < N/2, there is an orthogonal represen-

tation Vj of DN on C given by

γz := γj · z, for γ ∈ ZN and z ∈ C;

κz := z,

where γj ·z denotes the usual complex multiplication. Put h = gcd(j,N)
and m = N/h. In this case we have the following degrees of the basic
maps:

degVj
= (DN ) − 2(Dh) + (Zh) if m is odd,

degVj
= (DN ) − (Dh) − (D̃h) + (Zh) if m is even.

Put jN := [(N + 1)/2].

(a2) There is a representation VjN given by the homomorphism c:DN →
Z2 ⊂ O(1), such that ker c = ZN . The corresponding degree of the
basic map is degVjN

= (DN ) − (ZN ).
(a3) For N even, there is an irreducible representation VjN +1 given by d:DN

→ Z2 ⊂ O(1) such that ker d = DN/2, for which the degree of the
corresponding basic map is degVjN+1

= (DN ) − (DN/2).
(a4) For N divisible by 4, there is an irreducible representation VjN +2 asso-

ciated with d̂:DN → Z2 ⊂ O(1) such that ker d̂ = D̃N/2. The degree
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of the basic map corresponding to this representation is degVjN+2
=

(DN ) − (D̃N/2).

Next, we will discuss orthogonal irreducible DN × S1-representations and
degrees of the corresponding basic maps of the second type. Denote by Vc

j ,
j = 0, . . . , jN + 2, the complexification of Vj (when defined). Since all Vj are of
real type, we have the following possibilities for Vc

j :

(b0) The representation Vc
0 defined on C;

(b1) The representations Vc
j for 1 ≤ j < jN , defined on C ⊕ C by

γ(z1, z2) := (γj · z1, γ−j · z2), for γ ∈ ZN , and z1, z2 ∈ C,

κ(z1, z2) := (z2, z1);

(b2) The representation Vc
jN

defined by c:DN → Z2 ⊂ U(1), such that
ker c = ZN ;

(b3) In the case when N is even, the representation Vc
jN +1 given by d:DN →

Z2 ⊂ U(1), such that ker d = DN/2;
(b4) In the case when N is divisible by 4, the representation Vc

jN +2 given by
d̂:DN → Z2 ⊂ U(1), such that ker d̂ = D̃N/2.

For l = 1, 2, . . . , we define the action of S1 on Vc
j by zv = zl · v, for z ∈ S1 and

v ∈ Vc
j , where the product “ · ” is the usual complex multiplication. Obtained in

this way a real representation of DN ×S1, which we denote by Vj,l, is irreducible.
For each of the representations Vj,1 of DN × S1, we can compute the degrees
degVj,1

of the associated basic maps of the second type on Vj,1. The equivariant
degrees degVj,l

, for any arbitrary l, can be determined from the degrees degVj,1

in a standard way (cf. (6.6)).
We have the following cases (the numbers located on the right side of the

isotropy lattice denote the (real) dimension of the corresponding fixed-point
space).

(i1) The case m is odd:

(DN × S1)

��
��
��
��

��
��

��
��

[0]

(Ztj

N ) (Dh) (Dz
h) [2]

(Zh)

��������

��������
[4]

degVj,1
= (Ztj

N ) + (Dh) + (Dz
h) − (Zh), 0 < j < N/2.
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(i2) The case m ≡ 2 (mod 4):

(DN × S1)

��
��
��
��

��
��

��
��

[0]

(Ztj

N ) (Dd
2h) (D �d

2h) [2]

(Zd
2h)

��������

��������
[4]

degVj,1
= (Ztj

N ) + (Dd
2h) + (D �d

2h) − (Zd
2h), 0 < j < N/2.

(i3) The case m ≡ 0 (mod 4):

(DN × S1)

��
��
��
��

��
��

��
��

[0]

(Ztj

N ) (Dd
2h) (D̃d

2h) [2]

(Zd
2h)

��������

��������
[4]

degVj,1
= (Ztj

N ) + (Dd
2h) + (D̃d

2h) − (Zd
2h), 0 < j < N/2.

(i4) In the case of irreducible two-dimensional representations VjN ,1, VjN +1,1

and VjN +2,1, we have the following lattices of the isotropy groups and
the corresponding basic map degrees:

(DN × S1) (DN × S1) (DN × S1) [0]

(Dz
N ) (Dd

N ) (D �d
N ) [2]

VjN ,1 VjN+1,1 VjN +2,1

degVjN ,1
= (Dz

N ), degVjN+1,1
= (Dd

N ), degVjN+2,1
= (D �d

N ).

6.3. Computations for the tetrahedral group T. Let us consider the
tetrahedral group T, which denotes the group of symmetries of a regular tetra-
hedron in the Euclidean space R3. It is easy to notice that T is isomorphic to
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(A4)

���
� 			

	

(V4) (Z3)
















(Z2)
			

	

(Z1)

Diagram 1

the alternating group A4 of order 12 with the lattice of the conjugacy classes
shown on the Diagram 1.

There are four conjugate subgroups isomorphic to Z3, which correspond to
the rotations of each of the four sides of the tetrahedron, which are: {(1), (123),
(132)}; {(1), (124), (142)}; {(1), (134), (143)}; and {(1), (234), (243)}. There is
also the Klein subgroup V4, which is isomorphic to Z2 ⊕ Z2. It is composed of
the identity transformation and the elements (12)(34), (13)(24) and (14)(23),
corresponding to the transposition of two pairs of vertices of the tetrahedron
(there is only one subgroup in the conjugacy class of (V4)). Each of these three
non-trivial transformations generates a subgroup of order 2, i.e. isomorphic to Z2.
All these three subgroups belong to the same conjugacy class (Z2). Finally, there
is the trivial subgroup (Z1). In addition, we have that N(V4) = A4, N(Z3) = Z3,
N(Z2) = V4, so W (V4) = Z3, W (Z3) = Z1 and W (Z2) = Z2.

H = Kϕ K ϕ(K) Kerϕ N(H) W (H) Comments

A4 A4 Z1 A4 A4 × S1 S1

V4 V4 Z1 V4 A4 × S1 Z3 × S1

Z3 Z3 Z1 Z3 Z3 × S1 S1

Z2 Z2 Z1 Z2 V4 × S1 Z2 × S1

Z1 Z1 Z1 Z1 A4 × S1 A4 × S1

Atk
4 , k = 1, 2 A4 Z3 V4 A4 × S1 S1

V −
4 V4 Z2 Z2 V4 × S1 S1

Z−
2 Z2 Z2 Z1 V4 × S1 Z2 × S1

Ztk
3 , k = 1, 2 Z3 Z3 Z1 Z3 × S1 S1 ϕ(g) = gk

Table 6. Twisted subgroups of A4 × S1

All the one-folded twisted subgroups of the group A4×S1, i.e. the subgroups
of the type Kϕ, are described in Table 6. The lattice of the conjugacy classes
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for the twisted subgroups in A4 × S1 and the A(A4)-multiplication table for the
generators of A1(A4 × S1) is shown in Table 7.

(A4 × S1)

���
���

���
���

�

���
���

���
���

�

(Atk
4 )




























(A4)

��
��
��
�

��
��

��
� (V −

4 )

��
��
��
��
��
��
��
��
�

(Ztk
3 )

��
��

��
��

��
��

��
��

��
��

(Z3)

��
��
��
��
��
��
��

(V4) (Z−
2 )

��
��
��
��
��
��
��
��
��
��

(Z2)

��
��
��
�

(Z1)

Diagram 2

(A4) (V4) (Z3) (Z2) (Z1)

(A4) (V4) (Z3) (Z2) (Z1) (A4)

(V4) 3(V4) (Z1) 3(Z2) 3(Z1) (V4)

(Z3) (Z1) (Z3) + (Z1) 2(Z1) 4(Z1) (Z3)

(Z2) 3(Z2) 2(Z1) 2(Z2) + 2(Z1) 6(Z1) (Z2)

(Z1) 3(Z1) 4(Z1) 6(Z1) 12(Z1) (Z1)

(Atk
4 ) (V4) (Ztk

3 ) (Z2) (Z1) (Atk
4 )

(V −
4 ) 3(V −

4 ) (Z1) 2(Z−
2 ) + 2(Z2) 3(Z1) (V −

4 )

(Ztk
3 ) (Z1) (Ztk

3 ) + (Z1) 2(Z1) 4(Z1) (Ztk
3 )

(Z−
2 ) 3(Z−

2 ) 2(Z1) 2(Z−
2 ) + 2(Z1) 6(Z1) (Z−

2 )

Table 7. Conjugacy classes of twisted subgroups in A4 × S1 and
A(A4)-module ultiplication table for A1(A4 × S1)

L H n(L,H) L H n(L,H) L H n(L,H) L H n(L,H)

Z1 A4 1 Z1 V4 1 Z1 Atk
4 1 Z1 V −

4 3

Z2 A4 1 Z2 V4 1 V4 Atk
4 1 Z2 V −

4 1

Z3 A4 1 Z1 Z3 4 Z2 Atk
4 1 Z−

2 V −
4 2

V4 A4 1 Z1 Z2 3 Ztk
3 Atk

4 1 Z1 Ztk
3 4

Z1 Z−
2 3

Table 8. Numbers n(L, H) for twisted subgroups in A4 × S1 (k = 1, 2)
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To compute basic degrees of the first type, we describe real irreducible A4-
representations. We have the one-dimensional trivial representation V0. Using
the homomorphisms ϕ:A4 → A4/V4 � Z3, we obtain the two-dimensional repre-
sentations V1, V2 (associated with the Z3-actions on R2 � C given by γz = γk ·z,
k = 1, 2), which, in fact, are equivalent. There is also one three-dimensional nat-
ural representation V3 of A4 (see the Diagrams 3 and 4).

(A4)

��
��
��
�

��
��

��
�

[0]

(Z3) (Z2) [1]

(Z1)

�������

�������
[3]

Diagram 3. Representation V3

(A4 × S1)

���
���

���
���

�

��
��
��
��

��
��

��
�

���
���

���
��

[0]

(Zt1
3 ) (V −

4 )

��
��
��

(Z3) (Zt2
3 ) [2]

(Z−
2 ) [4]

(Z1)

��������������������

������

���������������

������������������
[6]

Diagram 4. Representation V3,1

The computation of the first type basic degrees, related to the representations
V0, V1, V2 and V3 is a straightforward application of the formula (6.4).

degV0
= −(A4), degV1

= degV2
= (A4), degV3

= (A4) − 2(Z3) − (Z2) + (Z1).

For the complexifications Vc
j of the representations Vj , j = 0, . . . , 3, we define

the l-th action of S1, l = 1, 2, . . . , by zv := zl · v, where z ∈ S1 ⊂ C, v ∈ Vj , and
“ · ” is the complex multiplication, which leads to the irreducible real represen-
tation Vj,l of A4×S1. Let us discuss the isotropy lattices for the representations
Vj,1, j = 0, 1, 2, 3 (computations for the general case of an arbitrary l ≥ 1 are
standard — see (6.6)). Here, it should be pointed out that although V1

∼= V2,



66 Z. Balanov — M. Farzamirad — W. Krawcewicz

the representations V1,1 and V2,1 are not equivalent. Of course, the only twisted
orbit type for V0,1 is (A4). There is also only one twisted isotropy class (At2

4 ) in
V1,1 and for V2,1, the only twisted isotropy class is (At1

4 ), which are, in both cases,

determined by the homomorphism ϕj :A4
ϕ−→ A4/V4 � Z3

γ→γj

−→ Z3, j = 1, 2.
To obtain the lattice for V3,1, consider the action of A4 on C4 permuting

the coordinates of the vectors −→z = 〈z1, z2, z3, z4〉 and let S1 act by the complex
multiplication. The subspace {〈z, z, z, z〉 : z ∈ C} is the fixed-point subspace
for the action of A4, and its complement is equivalent to the representation Vc

3 .
Let us choose the following basis in this subspace: −→v1 = 〈1,−1, 1,−1〉, −→v2 =
〈1, 1,−1,−1〉, and −→v3 = 〈−1, 1, 1,−1〉. Notice that the vectors −→v1 , −→v2 , and
−→v3 have the isotropy groups (with respect to G = A4 × S1) belonging to the
class (V −

4 ). Indeed:

G−→v1 = {((1), 1), ((13)(24), 1), ((12)(34),−1), ((14)(23),−1)},
G−→v2

= {((1), 1), ((12)(34), 1), ((13)(24),−1), ((14)(23),−1)},
G−→v3

= {((1), 1), ((14)(23), 1), ((12)(34),−1), ((13)(24),−1)}.

Next, notice that the vectors −→x = −→v1 + −→v2 = 〈0, 2, 0,−2〉 and −→y = v1 −
−→v2 = 〈2, 0,−2, 0〉 have the isotropy group H = {((1), 1), ((13)(24),−1)}, which
belongs to the class (Z−

2 ). The vectors −→v1 + −→v2 + −→v3 , −→v1 + −→v2 − −→v3 , −→v1 −
−→v2 − −→v3 , and −−→v1 + −→v2 − −→v3 have the isotropy group belonging to the class
of the subgroup (Z3). Let ω = e2πi/3. Then the vectors −→w 1

1 = 〈1, ω, ω2, 0〉,
−→w 1

2 = 〈1, ω, 0, ω2〉, −→w 1
3 = 〈1, 0, ω, ω2〉, and −→w 1

4 = 〈0, 1, ω, ω2〉 have the isotropy
groups belonging to the class (Zt1

3 ), and −→w 2
1 = 〈1, ω2, ω, 0〉, −→w 2

2 = 〈1, ω2, 0, ω〉,
−→w 2

3 = 〈1, 0, ω2, ω〉, and −→w 2
4 = 〈0, 1, ω2, ω〉 have the isotropy groups belonging to

the class (Zt2
3 ). The isotropy lattices for V3 (as the representation of A4) and

V3,1 (as the representation of A4 × S1) are shown on the diagram above.
Finally, we can list all the A4 × S1-degrees of the basic mappings of the

second type associated with these representations:

degV0,1
= (A4), degV1,1

= (At2
4 ),

degV2,1
= (At1

4 ), degV3,1
= (Zt1

3 ) + (Zt2
3 ) + (V −

4 ) + (Z3) − (Z1).

6.4. Computations for the octahedral group O. Let us consider the
octahedral group O of symmetries of the cube. Since the group O is isomorphic
to S4, it is easy to classify the conjugacy classes of the subgroups in S4. First
of all, we have the subgroup A4 and all its subgroups are also subgroups of S4,
including V4, Z3, Z2 and Z1. In addition, there are other subgroups: D4, Z4,
D3, D2 and D1. The conjugacy classes of these subgroups are illustrated by
Diagram 5.
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Diagram 5. Lattice of conjugacy classes in S4

Let us notice that the subgroup D4, which is composed of the elements
{(1), (1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24)} has the normalizer
N(D4) = D4. The conjugacy class (D4) contains three elements, corresponding
to the symmetry subgroups of the three pairs of parallel faces of the cube. The
normalizer of the subgroup A4 is N(A4) = S4. The group D3 consists of the
elements {(1), (123), (132), (12), (23), (13)}. The conjugacy class (D3) contains
four subgroups corresponding to the symmetries of the cube around each of four
pairs of opposite vertices of the cube. In addition N(D3) = D3. The subgroup
Z4 consisting of the rotations belonging to D4, has the normalizer N(Z4) = D4.
There are three subgroups in the conjugacy class (Z4), which correspond to the
rotations of the three pairs of the parallel faces of the cube. The normalizer of
V4 is N(V4) = S4, the subgroup D2 has the normalizer N(D2) = D4, and the
subgroup D1 has the normalizer N(D1) = D2. Finally, the subgroup Z2 has the
normalizer N(Z2) = D4. Notice that D3 is isomorphic to S3 and that the two
dihedral subgroups of D4 of order 4 are V4 and D2.

The twisted subgroups Kϕ of S4 × S1 are listed in Table 9 (notice that the
original subgroups H of S4 can be easily “read” from the first column of Table 9,
and the numbers n(L,H) for the twisted subgroups are given in Table 10. The
multiplication table for the A(S4)-module A1(S4 × S1) (and implicitly for the
Burnside ring A(S4)) is given in Table 11.

There are exactly five real (and also complex) irreducible representations
of S4: the trivial representation V0, the one-dimensional representation V1 cor-
responding to the homomorphism ϕ:S4 → Z2 ⊂ O(1), where ker ϕ = A4, the
two-dimensional representation V2 corresponding to the homomorphism ψ:S4 →
S4/V4 = S3 � D3 ⊂ O(2), and two different three-dimensional representations
of S4, one of them being the natural representation V3 of S4, while the other V4



68 Z. Balanov — M. Farzamirad — W. Krawcewicz

H = Kϕ Kerϕ ϕ(K) N(H) W (H) Comments

S−
4 A4 Z2 S4 × S4 S1

Dz
4 Z4 Z2 D4 × S1 S1

Dd
4 D2 Z2 D4 × S1 S1

D
�d
4 V4 Z2 D4 × S1 S1

At
4 V4 Z3 A4 × S1 S1

Dz
3 Z3 Z2 D3 × S1 S1

Dz
2 Z2 Z2 D4 × S1 Z2 × S1

Dd
2 D1 Z2 D2 × S1 S1

V −
4 Z2 Z2 D4 × S1 Z2 × S1

Dz
1 Z1 Z2 D2 × S1 Z2 × S1

Z−
4 Z2 Z2 D4 × S1 Z2 × S1

Zc
4 Z1 Z4 Z4 × S1 S1 ϕ(g) = g

Zt
3 Z1 Z3 Z3 × S1 S1 ϕ(g) = g

Z−
2 Z1 Z2 D4 × S1 Z2 ⊕ Z2 × S1

Table 9. Twisted subgroups in S4 × S1

L H n(L,H) L H n(L,H) L H n(L,H) L H n(L,H)

A4 S−
4 1 Z−

2 Zc
4 2 Dz

2 D
�d
4 1 Dz

2 Dz
4 1

V4 S−
4 1 Z1 Zc

4 6 Z−
4 D

�d
4 1 D2 Dz

4 1

Z3 S−
4 1 Z−

4 Dd
4 1 V4 D

�d
4 3 Z4 Dz

4 1

Z2 S−
4 1 V −

4 Dd
4 1 Z2 D

�d
4 3 V −

4 Dz
4 1

Z1 S−
4 1 Z−

2 Dd
4 2 Dz

1 D
�d
4 1 Z−

2 Dz
4 2

D
�d
4 S−

4 1 D2 Dd
4 1 Z1 D

�d
4 3 Dz

1 Dz
4 1

Z−
4 S−

4 1 D1 Dd
4 1 V4 At

4 2 Z1 Dz
4 3

V −
4 S−

4 1 Z2 Dd
4 1 Zt

3 At
4 1 Z2 Z−

4 2

Z−
2 S−

4 1 Z1 Dd
4 3 Z2 At

4 2 Z1 Z−
4 3

Z−
2 V −

4 2 Z3 Dz
3 1 Z1 At

4 1 Z−
2 Dd

2 2

Z2 V −
4 1 Dz

1 Dz
3 2 Dz

1 Dz
2 1 Dz

1 Dd
2 1

Z1 Zt
3 8 Z1 Dz

3 4 Z2 Dz
2 1 D1 Dd

2 1

V4 A4 1 V4 D4 3 Z3 D3 1 Z2 Z4 1

Z3 A4 1 Z4 D4 1 D1 D3 2 Z1 Z4 3

Z2 A4 1 D2 D4 1 Z1 D3 4 Z1 Z3 4

Z1 A4 1 D1 D4 1 Z2 V4 1 D1 D2 1

Z1 Zt
3 1 Z2 D4 3 Z1 V4 3 Z2 D2 1

Z1 Dz
1 6 Z1 D4 3 Z1 D1 6 Z1 D2 1

Z1 Z−
2 1 Z1 Z2 3

Table 10. Numbers n(L, H) for twisted subgroups in S4 × S1
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Table 11. A(S4)-multiplication table for A1(S4 × S1)
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being the tensor product V1⊗V3 of the natural three-dimensional representation
with the non-trivial one-dimensional representation.

It is easy to notice that the representation V0 contains the orbit type (S4),
the representation V1 (where S4 acts as Z2) has only the orbit types (S4) (with
the dimension 0 of fixed-point space) and (A4) (with dimVA4

1 = 1), and the
representation V2 (where S4 acts as D3 on R2) contains the orbit types (S4)
(with zero-dimensional fixed-point space), (D4) (with dimVD4

2 = 1) and (V4)
(with dimVV4

2 = 2).
In order to describe the orbit types in the natural representation, it is con-

venient to describe this representation exactly in the same way, as it was done
for the group A4. Namely, we consider the representation R4 of the group S4,
where the group S4 acts by permuting the coordinates of the vectors −→v =
〈x1, x2, x3, x4〉. In the space R4 we choose the orthogonal basis −→v0 = 〈1, 1, 1, 1〉,
−→v1 = 〈1,−1, 1,−1〉, −→v2 = 〈1, 1,−1,−1〉, and −→v3 = 〈−1, 1, 1,−1〉. It is easy to
observe that the subspace span{−→v 1,

−→v2 ,−→v3} is equivalent to the representation
V3. Let us notice that the isotropy of the vector −→x = −→v1 + −→v2 + −→v3 is the sub-
group D3, The vector −→v2 has the isotropy group D2 = {(1), (12)(34), (12), (34)},
and the vector −→v1 + −→v2 has the isotropy group D1 = {(1), (23)}. Finally, the
vector −→v1 + 2−→v2 + 3−→v3 has the isotropy group Z1. By considering the isotropy
groups of the elements α−→v1 + β−→v2 + γ−→v3 we conclude that there are only the
following orbit types in the representation V3: (S4), (D3), (D2), (D1) and (Z1).
The representation V4 can be described in a similar way as the representation
V3. Namely, we consider again the space R4 where the group A4 acts as before,
i.e. it permutes the coordinates of the vectors −→x in R4. In the case σ ∈ S4 is an
odd permutation, we define σ〈x1, x2, x3, x4〉 = −〈xσ(1), xσ(2), xσ(3), xσ(4)〉. Then
again, the subspace spanned by the vectors −→v1 , −→v2 and −→v3 is equivalent to the
representation V4. Notice that the isotropy group of the vector −→v2 is Z4 = {(1),
(1324), (12)(34), (1423)}. The vector −→v1 + −→v2 + −→v3 has the isotropy group Z3,
and the vector −→v1 + −→v2 = 〈2, 0, 0,−2〉 has the isotropy group D1 = {(1), (14)}.
For each of the representations V0, V1, V2, V3, and V4, we compute the element
degVj

∈ A(S4), j = 0, . . . , 4:

degV0
= −(S4), degV1

= (S4) − 2(D4), degV2
= (S4) − 2(D4) + (V4),

degV3
= (S4) − 2(D3) − (D2) + 3(D1) − (Z1),

degV4
= (S4) − (Z4) − (D1) − (Z3) + (Z1).

Now, we can describe the irreducible representations of the group S4 × S1.
We consider the complexifications Vc

j of the representations Vj , j = 0, . . . , 4,
and define the S1-action on Vc

j by γ−→v = γl · −→v , where l = 0, 1, . . . ; γ ∈ S1,
−→v ∈ Vc

j . We will denote the obtained irreducible S4 ×S1-representation by Vj,l,
j = 0, . . . , 4 and l = 0, 1, . . . .
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The representation V0,1 contains two orbit types: (S4 × S1) and (S4), so we
have degV0,1

= (S4). For the representations V1,1 there are also two classes of
the isotropy groups: (S4 × S1) and (S−

4 ), so we have degV1,1
= (S−

4 ). In the
case of the representations V2,1, we have the lattice of the isotropy groups (see
Diagram 6).

(S4 × S1)

���
���    

   
[0]

(At
4) (D4) (D �d

4) [2]

(V4)

      
!!!!!!

[4]

Diagram 6. Isotropy lattice for V2,1

For the representation V2,1 we obtain that the corresponding S4 ×S1-degree
of the basic map is

degV2,1
= (At

4) + (D4) + (D �d
4) − (V4).

Now, let us consider the representation V3,1 of S4 × S1, which is obtained by
taking the complexification of V3 and defining the action of S1 by complex mul-
tiplication. The isotropy lattice for the natural representation V3,1 of S4 × S1 is
shown in the Diagram 7.

(S4 × S1)

"""
"""

"""
"""

""

��
��
��
�

##
##

##
#

���
���

���
��

[0]

(Dd
4)

��
��

��
(Dd

2)

##
##

##
#











(Zc
4) (D3)

$$$$
$$$$

$$$$
$$$$

$$
(Zt

3)

��
��
��
��
��
��
��
��
��

[2]

(D1)

   
   

   
 (Z−

2 ) [4]

(Z1) [6]

Diagram 7. Isotropy lattice for V3,1

Notice that the isotropy group Gx of x = −→v 1 is represented by Dd
4 , for x =

−→v 1 +−→v 2 it is Dd
2 , for x = −→v 1+−→v 2 +−→v 3 it is D3, for x = (1+i)−→v 1−(1−i)−→v 3

it is Zc
4, for x = −→v 1 + 2−→v 2 it is Z−

2 , for x = −→v 1 + γ−→v 2 + γ2−→v 3, where γ ∈ S1

is the third root of 1, it is Zt
3, and finally for x = −→v 1 + 2−→v 2 + 3−→v 3, it is Z1.
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By applying the standard computational formulae, we obtain the following
value of the G-equivariant degree for the basic map on the representation V3,1:

degV3,1
= (Dd

4) + (Dd
2) + (D3) + Zc

4) + (Zt
3) − (Z−

2 ) − (D1).

Taking the complexification of V4 and defining the action of z ∈ S1 by the
complex multiplication, we obtain the irreducible representation V4,1 of the group
S4 × S1 (see Diagram 8).
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Diagram 8. Isotropy lattice for V4,1

Notice that the isotropy group Gx of x = −→v 1 is represented by Dz
4 , for x =

−→v 1 +−→v 2 it is Dd
2 , for x = −→v 1+−→v 2+−→v 3 it is Dz

3 , for x = (1−i)−→v 1−(1+i)−→v 3

it is Zc
4, for x = −→v 1 + 2−→v 2 it is Z−

2 , for x = −→v 1 + γ−→v 2 + γ2−→v 3, where γ ∈ S1

is the third root of 1, it is Zt
3, for x = 2−→v 1 + −→v 2 + 2−→v 3 it is Dz

1 , and finally
for x = −→v 1 + 2−→v 2 + 3−→v 3, it is Z1. By applying the standard computational
formulas, we obtain the following value of the G-equivariant degree for the basic
map on the representation V4,1

degV4,1
= (Dz

4) + (Dd
2) + (Zc

4) + (Dz
3) + (Zt

3) − (Z−
2 ) − (Dz

1).

6.5. Computations for the icosahedral group I. Let us consider the
icosahedral group I, which is isomorphic to the alternating group of five ele-
ments A5. The group A5 has 60 elements. The conjugacy classes of the sub-
groups of A5 can be classified as follows: there are 15 elements in the conjugacy
class of the subgroup Z2 := {(1), (12)(34)}, 10 elements in the conjugacy class of
the subgroup Z3 := {(1), (123), (132)}, 5 elements in the conjugacy class of the
subgroup V4 := {(1), (12)(34), (13)(24), (23)(14)}, 6 elements in the conjugacy
class of Z5 := {(1), (12345), (13524), (14253), (15324)}, 10 elements in the conju-
gacy class of D3 := {(1), (123), (132), (12)(45), (13)(45), (23)(45)}, 5 elements in
the conjugacy class of A4 := {(1), (12)(34), (123), (132), (13)(24), (14)(23), (124),
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(142), (134), (143), (234), (243)}, and 6 elements in the conjugacy class of the sub-
group D5 := {(1), (12345), (13524), (15432), (14253), (12)(35), (13)(54), (14)(23),
(15)(24), (25)(34)}.

The lattice of the conjugacy classes of subgroups in A5 is shown in the Dia-
gram 9.
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(Z1)

Diagram 9. Lattice of the conjugacy classes for A5

Let us list, up to conjugacy class, the twisted subgroups Kϕ of A5 × S1.
There are 15 elements in the conjugacy class of the subgroup Z−

2 := {((1), 1),
((12)(34),−1)}, 15 elements in the conjugacy class of V −

4 := {((1), 1), ((12)(34),
−1), ((13)(24),−1), (23)(14), 1)}, 12 elements in the conjugacy class of Ztk

5 :=
{((1), 1), ((12345), ξ2k), ((13524), ξ3k), ((14253), ξ4k), ((15324), ξk)}, where k =
1, 2 and ξ = e2πi/5, 20 elements in the conjugacy classes of Zt

3 := {((1), 1),
((123), γ), ((132), γ2)}, where γ = e2πi/3, 10 elements in the conjugacy class of
Dz

3 := {((1), 1), ((123), 1), ((132), 1), ((12)(45)), ((13)(45),−1), ((23)(45),−1)},
5 elements in the conjugacy classes of At1

4 := {((1),1),((12)(34),1), ((123), γ),
((132),γ2), ((13)(24), 1), ((14)(23), 1), ((124), γ2), ((142), γ), ((134), γ), ((143),γ2),
((234), γ2), ((243), γ)} and At2

4 := {((1), 1), ((12)(34), 1), ((123), γ2), ((132), γ),
((13)(24), 1), ((14)(23), 1), ((124), γ), ((142), γ2), ((134), γ2), ((143), γ), ((234), γ),

((243), γ2)}, 6 elements in the conjugacy class of Dz
5 := {((1), 1), ((12345), 1),

((13524), 1), ((154323), 1), (14253), 1), ((12)(35),−1), ((13)(54),−1), ((14)(23),

−1), ((15)(24),−1), ((25)(34),−1)}.
All the twisted one-folded subgroups of A5×S1 (up to their conjugacy class),

their normalizers and Weyl groups, are listed in Table 12. The lattice of the
conjugacy classes of the twisted subgroups in A5×S1 is shown in the Diagram 10.
The numbers n(L,H) for twisted subgroups in A5 × S1 are listed in Table 13.
These numbers are used for the computations of the multiplication table (see
Table 14) and the equivariant degrees of basic maps.
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Diagram 10. Conjugacy classes of twisted subgroups in A5 × S1

By applying the standard techniques, one can verify that there are exactly 4
irreducible representations of A5: V0 — the trivial representation, V1 — the nat-
ural 4-dimensional representation of A5, V2 — the 5-dimensional representation
of A5, and one 3-dimensional representations V3. In order to compute degrees
of the basic maps of the first type, we need to analyze the isotropy groups for
these representations. Clearly, for the representation V0 we have the basic degree
degV0

= −(A5).
Based on the isotropy lattices for the representation V1, V2, and V3 (see the

Diagrams 11), we compute the basic degrees:

degV1
= (A5) − 2(A4) − 2(D3) + 3(Z2) + 3(Z3) − 2(Z1),

degV2
= (A5) − 2(D5) − 2(D3) + 3(Z2) − (Z1),

degV3
= (A5) − (Z5) − (Z3) − (Z2) + (Z1).
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Isotropy lattice for V1 Isotropy lattice for V2 Isotropy lattice for V3

Diagrams 11
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H = Kϕ Imϕ Kerϕ N(H) W (H) Comments

A5 Z1 A5 A5 × S1 S1

D5 Z1 D5 D5 × S1 S1

A4 Z1 A4 A4 × S1 S1

D3 Z1 D3 D3 × S1 S1

Z5 Z1 Z5 D5 × S1 Z2 × S1

V4 Z1 V4 A4 × S1 Z3 × S1

Z3 Z1 Z3 D3 × S1 Z2 × S1

Z2 Z1 Z2 V4 × S1 Z2 × S1

Z1 Z1 Z1 A5 × S1 A5 × S1

V −
4 Z2 Z2 V4 × S1 S1

Dz
5 Z2 Z5 D5 × S1 S1

Atk
4 Z3 V4 A4 × S1 S1 k = 1, 2

Dz
3 Z2 Z3 D3 × S1 S1

Zt
3 Z3 Z1 Z3 × S1 S1

Zk
5 Z5 Z1 Z5 × S1 S1 k = 1, 2

Z−
2 Z2 Z1 V4 × S1 Z2 × S1

Table 12. Twisted subgroups H in A5 × S1

L H n(L,H) L H n(L,H) L H n(L,H) L H n(L,H)

Z5 Dz
5 1 Z2 At2

4 1 Z3 A5 1 Z1 Dz
3 10

Z−
2 Dz

5 2 Z1 At2
4 5 Z2 A5 1 Z1 Ztk

5 12

Z1 Dz
5 6 Zt

3 At1
4 1 Z1 A5 1 Z1 Z−

2 15

Z5 D5 1 V4 At1
4 1 Z−

2 V −
4 2 V4 A4 1

Z2 D5 2 Z2 At1
4 1 Z2 V −

4 1 Z3 A4 2

Z1 D5 6 Z1 At1
4 5 Z1 V −

4 15 Z2 A4 1

Zt
3 At2

4 1 A4 A5 1 Z3 D3 1 Z1 A4 1

V4 At2
4 1 V4 A5 1 Z2 D3 2 Z1 Zt

3 20

Z1 D3 10 Z1 Z5 6 Z3 Dz
3 1 Z1 Z3 10

Z−
2 Dz

3 2 Z2 V4 1 Z1 V4 5 Z1 Z2 15

Table 13. Numbers n(L, H) for twisted subgroups in A5 × S1
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Table 14. A(A5)-module multiplication table for A1(A5×S1). The upper
half of the table describes the multiplication in the Burnside ring A(A5)
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Finally, let us present the computations of the basic A5 × S1-degrees for the
representations V1,1, V2,1, V3,1 and V4,1. In the case of the representations V1,1

and V2,1 we have the lattices of twisted subgroups given in Diagrams 12 and 13.
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Diagram 12. Twisted isotropy lattice for V1,1
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Diagram 13. Twisted isotropy lattice for V2,1

The basic degrees for these representations are given by:

degV1,1
= (A4) + (D3) + (Dz

3) + (V −
4 )

+ (Zt
3) + (Zt1

5 ) + (Zt2
5 ) − (Z2) − (Z3) − (Z−

2 ),

degV2,1
= (D5) + (D3) + (At1

4 ) + (At2
4 ) + (V −

4 ) + (Zt1
5 ) + (Zt2

5 ) − 2(Z2).

For the representations V3,1 and V4,1, we have the isotropy lattice of twisted
subgroups given in Diagrams 14 and 15:
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Diagram 15. Twisted isotropy lattice for V4,1

The basic degrees for these two representations are equal to:

degV3,1
= (Dz

5) + (V −
4 ) + (Dz

3) + (Zt1
5 ) + (Zt

3) − 2(Z−
2 ),

degV4,1
= (Dz

5) + (V −
4 ) + (Dz

3) + (Zt2
5 ) + (Zt

3) − 2(Z−
2 ).

7. Conclusions and applications

In this section we will show how the existence Theorem 5.3 in compliance
with the computations related to the basic maps presented in Section 6, and the
equivariant degree product formula provided by Proposition 4.1, allow to study
symmetric periodic solutions to concrete van der Pol equations. In particular,
we will discuss the Examples 2.1–2.4.

Let us recall that for each of the discussed systems of van der Pol equations,
we have the following associated G-equivariant degree (G = Γ × S1):

G-Deg(id −F(0, · , · ),Ω) =
∑

(Lϕ,l)

nLϕ,l(Lϕ,l),
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where (Lϕ,l) are the generators of A1(Γ × S1), L ⊂ Γ, and F is given in (3.28).
Although the entire value of the degree G-Deg(id − F(0, · , · ),Ω) should be
considered as the complete equivariant invariant classifying the solutions of the
corresponding equations, in order to simplify our exposition, we will restrict our
computations to the coefficients nLϕ,1 , which will be called first coefficients and
the corresponding part of the eqivariant degree will be denoted by G-Deg(id −
F(0, · , · ),Ω)1. As it follows from Theorem 5.3(a), if nLϕ,1 �= 0, then system (3.7)
has at least one periodic solution u with symmetry Gu ⊃ Lϕ,1. However (see
Theorem 5.3(b)), only dominating orbit types occuring in eigenspaces relevant
to suitable eigenvalus of C give a possibility to estimate a precise number of
periodic solutions with the corresponding symmetry (see Remarks 3.5 and 3.6).

In addition, we will assume here, that the value of the parameter α was
always chosen in the most favorable way, i.e. the conditions (5.11) and (5.12) are
satisfied.

7.1. Conclusions for the dihedral group DN . Let us consider again
the system describing the ring of identical van der Pol oscillators, which was
discussed in Example 2.1. This system has the group of symmetries Γ = DN .
Let us describe explicitly the DN -action on V = RN , its isotypical decomposition
and the spectrum of the linear operator C. We denote by ξ := e2πi/N the
generator of ZN . Notice that ξ acts on a vector −→x = (x0, x1, . . . , xN−1) by
sending the k-th coordinate of −→x to the k + 1 (modN) coordinate. As we are
dealing with first coefficients only, take U := V c = CN — the complexification of
the above DN -representation V . Notice that we have the following ZN -isotypical
decomposition of U

U = Ũ0 ⊕ Ũ1 ⊕ . . .⊕ ŨN−1,

where Ũj = span(〈1, ξj , ξ2j , . . . , ξ(N−1)j〉). Since κ sends Ũj onto Ũ−j (where −j
is taken (modN)), the DN -isotypical components of U are

U0 = Ũ0, Uj := Ũj ⊕ Ũ−j , 0 < j < N/2,

and, in addition, if N is even there is also the component UN/2 := ŨN/2.
It is easy to check that the isotypical component Uj , 0 ≤ j < N/2, is equiv-

alent to the irreducible representation Vc
j of DN , and UN/2 (for N even) is

equivalent to Vc
jN +1. The subspace Uj is also an eigenspace of the matrix C

corresponding to the eigenvalue λj := c + 2d cos(2πj/N) (where we consider C
acting on CN ). Then, by Proposition 4.1, we have:

(7.1) G-Deg(id −F(0, · , · ),Ω)1 =
∏

λj∈Σ(C)

degVj
·
[ ∑

λj∈Σ(C)

degVj,1

]
,

where Σ(C) is defined in (5.10). Moreover, for an eigenvalue λj > 0 the values
of degVj

and degVj,1
are listed in Table 15, where h = gcd(j,N).
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λj > 0 degVj
degVj,1

j = 0 −(DN) (DN )

0 < j < N/2 (DN ) − 2(Dh) + (Zh) (Ztj

N ) + (Dh) + (Dz
h) − (Zh)

m is odd

0 < j < N/2

N is even (DN ) − (Dh) − (D̃h) + (Zh) (Ztj

N ) + (Dd
2h) + (D̃d

2h) − (Zd
2h)

and m ≡ 0 (mod 4)

0 < j < N/2

N is even (DN ) − (Dh) − (D̃h) + (Zh) (Ztj

N ) + (Dd
2h) + (D �d

2h) − (Zd
2h)

and m ≡ 2 (mod 4)

j = jN + 1 (DN ) − (DN/2) (Dd
N )

N is even

Table 15. Values of degVj
and degVj,1

corresponding to λj > 0, where

jN = [(N + 1)/2], h = gcd(N, j) and m = N/h

Let us illustrate these results for the particular cases N = 3, 4 and 5.
In the case N = 3, the spectrum σ(C) of the matrix C is {λ0 = c+ 2d, λ1 =

c− d} and the dominating orbit types (occuring in V c) are (Zt
3), (D3) and (Dz

1)
(see Remark 3.5). If a coefficient nL �= 0 is standing by a dominating orbit
type, then there is an orbit of periodic solutions of the system (2.2) composed of
exactly |G/L|S1 periodic solutions (see Remark 3.6). In particular, for the orbit
type (Zt

3) there are 2 distinct periodic solutions, for (Dz
1) there are 3 periodic

solutions, and 1 periodic solution for (D3). If nD3 = 0, then still one more
periodic solution can be detected as long as nL �= 0 for some (L) < (D3). The
lower estimates for the number of periodic solutions for the equation (2.2) in the
case N = 3 are summarized in the Table 16.

Σ(C) G-Deg(id −F(0, · , · ),Ω)1 Minimal # of solutions

∅ 0 0

{c− d} (Zt
3) − (Dz

1) − (D1) + 3(Z1) 6

{c+ 2d} −(D3) 1

{c+ 2d, c− d} −(Zt
3) + (Dz

1) − (D3) + 3(D1) − 2(Z1) 6

Table 16. Possible cases for N = 3

In the case N = 4, the spectrum σ(C) of the matrix C is {λ0 = c+ 2d, λ1 =
c, λ2 = c− 2d} and the dominating orbit types (occuring in V c) are (Zt

4), (Dd
4),

(Dd
2), (D̃d

2) and (D4). For the orbit type (Zt
4) there are 2 distinct periodic



Symmetric Systems of Van Der Pol Equations 81

solutions, for (Dd
4) there is 1 periodic solutions, for (Dd

2) and (D̃d
2) there are

2 periodic solutions, and there is 1 periodic solution for (D4). We also have5

degV0
= −(D4), degV1

= (D4) − (D1) − (D̃1) + (Z1),

degV3
= (D4) − (D2), degV0,1

= (D4),

degV1,1
= (Zt

4) + (Dd
2) + (D̃d

2) − (Z−
2 ), degV3,1

= (Dd
4).

The lower estimnates for the number of periodic solutions for the equation (2.2)
in the case N = 4 are summarized in the Table 17.

Σ(C) G-Deg(id −F(0, · , · ),Ω)1
Minimal #
of Solutions

{c+ 2d} −(D4) 1

{c− 2d} (Dd
4) 1

{c+ 2d, c} −(Zt
4) − (D̃d

2) − (Dd
2) − (D4) + (Z−

2 )
+(Dz

1) + (D̃z
1) + 2(D1) + 2(D̃1) − 3(Z1) 7

{c− 2d, c} (Dd
4) + (Dd

2) + (D̃d
2) + (Zt

4) − (Z−
2 )

−(Dz
1) − 2(D̃z

1) − 2(D1) − (D̃1) + 3(Z1) 8

{c+ 2d, c− 2d, c} −(D4) − (Dd
4) − (Dd

2) − (D̃d
2) − (Zt

4) + (Z−
2 )

+(Dz
1) + 2(D̃z

1) + 3(D1) + 2(D̃1) − 4(Z1) 8

Table 17. Possible cases for N = 4

Σ(C) G-Deg(id −F(0, · , · ),Ω)1
Minimal #
of solutions

∅ 0 0

{c+ 2d} −(D5) 1{
c− 2d

√
5+1
4

}
(Zt2

5 ) − (Dz
1) − (D1) + (Z1) 8{

c+ 2d
√

5−1
4 , c− 2d

√
5+1
4

}
(Zt1

5 ) + (Zt2
5 ) + 2(Dz

1) + 2(D1) − 2(Z1) 10{
c+ 2d

√
5−1
4 , c+ 2d

}
−(Zt1

5 ) + (Dz
1) − (D5) + 3(D1) − 6(Z1) 8{

c+ 2d, c+ 2d
√

5−1
4 , c− 2d

√
5+1
4

}
−(Zt1

5 ) − (Zt2
5 ) − (D5) − 2(Dz

1) − 2(D1) + 2(Z1) 10

Table 18. Possible cases for N = 5

In the case N = 5, the spectrum σ(C) of the matrix C is {λ0 = c+ 2d, λ1 =
c + 2d(

√
5 − 1)/4, λ3 = c − 2d(

√
5 + 1)/4} and the dominating orbit types are

(Zt1
5 ), (Zt2

5 ), (D5) and (Dz
1). We have the following equivariant degrees of the

5Notice that for N = 4 we have �Dd
2 = D�d

2 (cf. Table 15).
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basic maps related to the eigenspaces of C

degV0
= −(D5), degV1

= (D5) − 2(D1) + (Z1),

degV2
= (D5) − 2(D1) + (Z1) degV0,1

= (D5),

degV1,1
= (Zt1

5 ) + (Dz
1) + (D1) − (Z1), degV2,1

= (Zt2
5 ) + (Dz

1) + (D1) − (Z1).

For the orbit types (Zt1
5 ) and (Zt2

5 ) there are 2 distinct periodic solutions, for
(Dz

1) there are 5 periodic solutions, and 1 periodic solution for (D5). The lower
estimates for the number of periodic solutions for the equation (2.2) in the case
N = 5 are summarized in the Table 18.

7.2. Conclusions for the tetrahedral group T. Let us consider the sys-
tem of van der Pol oscillators with the tetrahedral symmetry group, which was
studied in Example 2.2. Here, the tetrahedral groupA4 acts on the space V = R4

by permuting the coordinates of vectors. The subspace V0 of the fixed-points of
this action is spanned by the vector 〈1, 1, 1, 1〉, and its orthogonal complement
V3 is the natural three-dimensional representation of A4, which was in Section 6
denoted by V3. These two subspaces are the eigenspaces of the matrix C: the
subspace V0 corresponds to the eigenvalue c+ 3d and V3 to the eigenvalue c− d.
The dominating orbit types in V c are (A4), (Zt1

3 ), (Zt2
3 ), and (V −

4 ). For non-zero
first coefficient corresponding to the orbit type (A4) there is at least one periodic
solution, for (Zt1

3 ) or (Zt2
3 ) — at least 4 periodic solutions, and for (V −

4 ) there
exist at least 3 periodic solutions.

In order to compute the equivariant degree A4 ×S1-Deg(id−F(0, · , · ),Ω)1,
we apply the computational formula similar to (7.1). Depending on the set Σ(C),
we need the basic degrees: degV0

∈ A(A4) (if c+ 3d > 0), degree degV3
∈ A(A4)

(if c − d > 0), degV0,1
∈ A1(A4 × S1) (if c+ 3d > 0), degV3,1

∈ A1(A4 × S1) (if
c− d > 0). The related to this formula basic degrees are presented in Table 19.

Rep. Basic Degrees degVj
or degVj,1

Eigenvalue of C

V0 −(A4) c+ 3d > 0

V3 (A4) − 2(Z3) − (Z2) + (Z1) c− d > 0

V0,1 (A4) c+ 3d > 0

V3,1 (Zt1
3 ) + (Zt2

3 ) + (V −
4 ) + (Z3) + (Z1) c− d > 0

Table 19

By using the established multiplication tables for the A(A4)-module A1(A4×S1),
and applying the computational formula similar to (7.1), we obtain first coeffi-
cients of the equivariant degrees A4 × S1-Deg(id −F(0, · , · ),Ω) (see Table 20).
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Σ(C) A4 × S1-Deg(id − Ψ(0, · , · ),Ω)1 # Solutions

c+ 3d −(A4) 1

c− d −(Zt1
3 ) − (Zt2

3 ) + (V −
4 ) − (Z3) − (Z2) + 2(Z1) 12

c+ 3d, c− d

(Zt1
3 ) + (Zt2

3 ) − (A4) − (V −
4 )

+3(Z3) + 2(Z−
2 ) + 2(Z2) − 3(Z1) 12

Table 20

7.3. Conclusions for the octahedral group O. Let us discuss the system
of van der Pol equations described in Example 2.3. Here we have the group S4

is acting on the eight-dimensional space V := R8 by permuting the coordinates
of the vectors in the same way as the symmetries of the cube in R3 permutes
the eight vertices of the cube. It can be easily verified, that the representation
V can be decomposed into a direct sum of four subspaces:

V = V0 ⊕ V1 ⊕ V 1
3 ⊕ V 2

3 ,

where

V0 =span{〈1, 1, 1, 1, 1, 1, 1, 1〉},
V1 =span{〈1,−1, 1,−1, 1,−1, 1,−1〉},
V 1

3 =span{〈1, 1,−1,−1, 1,−1,−1, 1〉,
〈1,−1, 1,−1,−1, 1,−1, 1〉, 〈−1, 1, 1,−1, 1, 1,−1,−1〉},

V 2
3 =span{〈1,−1,−1, 1, 1, 1,−1,−1〉,

〈1, 1, 1, 1,−1,−1,−1,−1〉, 〈−1,−1, 1, 1, 1,−1,−1, 1〉}.

Notice that these subspaces are irreducible representations of S4, where V 1
3 is

equivalent to the natural three-dimensional representation V3 of S4, and V 2
3 is

equivalent to the another three-dimensional irreducible representation V4 of S4.
The subspace V0 is the fixed-point space of the action of S4. The subspaces V0,
V1, V 1

3 and V 2
3 are eigenspaces for the matrix C. Indeed, it is easy to check that:

Subspace Eigenvalue of C Type of representation Dimension

V0 c+ 3d trivial 1

V1 c− 3d representation V1 1

V 1
3 c+ d natural V3 3

V 2
3 c− d representation V4 3

Table 21
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Rep. Basic degree degVj
or degVj,1

Eigenvalue of C

V0 −(S4) c+ 3d > 0

V1 (S4) − 2(D4) c− 3d > 0

V3 (S4) − 2(D3) − (D2) + 3(D1) − (Z1) c+ d > 0

V4 (S4) − (Z4) − (D1) − (Z3) + (Z1) c− d > 0

V0,1 (S4) c+ 3d > 0

V1,1 (S−
4 ) c− 3d > 0

V3,1 (Dd
4) + (Dd

2) + (D3) + (Zc
4) + (Zt

3) − (Z−
2 ) − (D1) c+ d > 0

V4,1 (Dz
4) + (Dd

2) + (Dz
3) + (Zc

4) + (Zt
3) − (Z−

2 ) − (D1) c− d > 0

Table 22

In order to compute the equivariant degree S4 × S1-Deg(id − Ψ(0, · , · ),Ω),
we will apply the computational formula similar to (7.1). All the related to this
formula degrees of the basic maps are presented in the Table 22.

Let us list the dominating orbit types: (S4) (orbit contains one periodic solu-
tion), (S−

4 ) (orbit contains one periodic solution), (Dd
4) (orbit contains 3 periodic

solutions), (D �d
4) (orbit contains 3 periodic solutions), (Dd

2) (orbit contains 6 pe-
riodic solutions), (Zc

4) (orbit contains 6 periodic solutions), (Z−
4 ) (orbit contains

6 periodic solutions), (Zt
3) (orbit contains 8 periodic solutions), and (Dz

4) (orbit
contains 3 periodic solutions).

By using the above equivariant degrees of the basic maps, as well as the
multiplications table for the A(S4)-module A1(S4 × S1) we obtain the following
values of S4×S1-Deg(id−Ψ(0, · , · ),Ω)1, for all the possible distributions of the
eigenvalues of the matrix C.

7.4. Conclusions for the icosahedral group I. Finally we consider the
system of van der Pol equations with icosahedral symmetry group described in
Example 2.4. Here we have the group A5 acting on the twenty-dimensional space
V := R20 by permuting the coordinates of the vectors in the same way as the
symmetries in R3 permutes the vertices of the dodecahedron. It can be verified,
that the matrix C, defined by (2.5) in Example 2.5 has the following eigenvalues:

σ(C) := {λ0 = c+ 3d, λ1 = c− 2d, λ2 = c+ d, λ3 = c+
√

5d}

and there is the following decomposition of V into the eigenspaces of C:

V = V0 ⊕ V1 ⊕ V2 ⊕ V3,
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Σ(C) S4 × S1-Deg(id −F(0, · , · ),Ω)1 # Sol.

c+ 3d −(S4) 1

c− 3d (S−
4 ) − 2(D �d

4) 4

c+ d, c+ 3d −(S4) − 4(Dd
4) − 4(D3) − 4(Dd

2) − 4(Zc
4) − 4(Zt

3) + 4(D1) + 4(Z−
2 ) 18

c− d, c− 3d (S−
4 ) − 2(D �d

4) − (Dz
4) + (Dz

3) − (Dd
2) + (Zc

4) + (Z−
4 ) + (Z4)

−2(V −
4 ) − (Zt

3) − 2(Z3) + 2(Dz
1) + (D1) + 5(Z−

2 ) + 4(Z2) − 4(Z1) 34

c− d, c+ d, c+ 3d −(S4) − (Dd
4) − (Dz

4) + (Dz
3) + 3(D3) + 2(Dd

2)
+(Dz

2) + 2(D2) + 2(Zc
4) + (Z−

4 ) + 2(Z4) − 2(Zt
3)

−3(Z3) − (Dz
1) − 3(D1) − 2(Z−

2 ) − 3(Z2) + 3(Z1) 33

c+ d, c− d, c− 3d (S−
4 ) − 2(D �d

4) − (Dd
4) − (Dz

4) − 3(Dz
3) − (D3) + 2(Dd

2)
+2(Dz

2) + (D2) + 2(Zc
4) + 2(Z−

4 ) + (Z4) − 4(V −
4 ) + 2(Zt

3)
+3(Z3) + 3(Dz

1) + (D1) − 2(Z−
2 ) − 3(Z2) − 3(Z1) 36

c− 3d, c− d, c+ d, c+ 3d −(S−
4 ) − (S4) + 2(D �d

4) + (Dd
4) + (Dz

4) + 2(D4) + 3(Dz
3) + 3(D3)

−2(Dd
2) − 2(Dz

2) − 2(D2) − 2(Zc
4) − 2(Z−

4 ) − 2(Z4) + 4(V −
4 )

−2(Zt
3) − 4(Z3) − 3(Dz

1) − 3(D1) + 2(Z−
2 ) + 4(Z2) + 4(Z1) 37

Table 23

where V0 is a one dimensional subspace of V , with a trivial action of A5 (i.e.
V0 = V A5), and V1 � V1 ⊕ V1, V2 � V2, V3 � V3 ⊕ V3, where V1, V2 and V3 are
irreducible representations of A5, which were discussed in Section 6.

In order to compute the equivariant degree A5 ×S1-Deg(id−Ψ(0, · , · ),Ω)1,
we will apply the computational formula:

(7.2) G-Deg(id − Ψ(0, · , · ),Ω)1 =
∏

λj∈Σ(C)

degmj

Vj
·
[ ∑

λj∈Σ(C)

mj,1 degVj,1

]
,

where mj,1 denotes the Vj,1-multiplicity of the eigenvalue λj , which is 2 in the
case of λ1 and λ3.

We need the basic degrees degVj
∈ A(A5) and degVj,1

∈ A1(A5 × S1) (in
the case the eigenvalue corresponding to the irreducible representation Vj is
positive). All the related to this formula degrees of the basic maps are presented
in the following table:

Rep. Basic degree degVj
or degVj,1

Eigenvalue of C

V0 −(A5) c+ 3d > 0

V1 (A5) − 2(A4) − 2(D3) + 3(Z2) + 3(Z3) − 2(Z1) c− 2d > 0

V2 (A5) − 2(D5) − 2(D3) + 3(Z2) − (Z1) c+ d > 0

V3 (A5) − (Z5) − (Z3) − (Z2) + (Z1) c+
√

5d > 0

V0,1 (A5) c+ 3d > 0

V1,1 (A4) + (D3) + (Dz
3) + (V −

4 ) + (Zt
3) + (Zt1

5 ) + (Zt2
5 ) − (Z2) − (Z3) − (Z−

2 ) c− 2d > 0

V2,1 (D5) + (D3) + (At1
4 ) + (At2

4 ) + (Zt1
5 ) + (Zt2

5 ) + (V −
4 ) − 2(Z2) c+ d > 0

V3,1 (Dz
5) + (V −

4 ) + (Dz
3) + (Zt1

5 ) + (Zt
3) − 2(Z−

2 ) c+
√

5d > 0

Table 24
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Let us list the dominating orbit types: (At1
4 ) and (At2

4 ) (orbit contains 5
periodic solutions), (A5) (orbit contains 1 periodic solution), (V −

4 ) (orbit con-
tains 15 periodic solutions), (Dz

5) (orbit contains 6 periodic solutions), (Dz
3)

(orbit contains 10 periodic solutions), (Zt1
5 ) and (Zt2

5 ) (orbit contains 12 periodic
solutions).

By using the above equivariant degrees of the basic maps, as well as the
multiplications table for the A(A5)-module A1(A5 ×S1) we obtain the following
values of A5 × S1-Deg(id − F(0, · , · ),Ω)1, for the possible distributions of the
eigenvalues of the matrix C.

Σ(C) A5 × S1-Deg(id −F(0, · , · ),Ω)1 # Sol.

c+ 3d −(A5) 1

c− 2d 2(A4) + 2(Dz
3) + 2(D3) + 2(Zt1

5 ) + 2(Zt2
5 )

+2(V −
4 ) + 2(Zt

3) − 2(Z3) − 2(Z−
2 ) − 2(Z2) 45

c+ 3d, c+
√

5d −(A5) − 2(Dz
5) − 2(Dz

3) − 2(Zt1
5 ) − 2(V −

4 )
−2(Zt

3) + 4(Z−
2 ) 29

c− 2d, c+ d (At1
4 ) + (At2

4 ) + 2(A4) − (D5) − 2(Dz
3) − 3(D3)

−3(Zt1
5 ) − 3(Zt2

5 ) + 3(V −
4 ) − 6(Zt

3) − 2(Z3)
−4(Z−

2 ) − 3(Z2) + 7(Z1) 45

c+
√

5d, c+ 3d, c+ d −(A5) − (At1
4 ) − (At2

4 ) + 2(Dz
5) + 3(D5)

+2(Dz
3) + 3(D3) + 3(Zt1

5 ) + (Zt2
5 ) − 3(V −

4 )
+6(Zt

3) + 2(Z−
2 ) − 4(Z1) 51

c+ d, c− 2d, c+
√

5d (At1
4 ) + (At2

4 ) + 2(A4) − (Dz
5) − (D5) − 3(Dz

3)
−3(D3) + 4(Zt1

5 ) + 3(Zt2
5 ) + 2(Z5) + 4(V −

4 )
+3(Zt

3) + 4(Z3) + 4(Z−
2 ) + 4(Z2) − 8(Z1) 51

c+ 3d, c− 2d, c+
√

5d, c+ d −(A5) − (At1
4 ) − (At2

4 ) − 2(A4) + 2(Dz
5) + 3(D5)

+4(Dz
3) + 5(D3) + 5(Zt1

5 ) + 3(Zt2
5 ) − 5(V −

4 )
+8(Zt

3) + 2(Z3) + 4(Z−
2 ) + 2(Z2) − 8(Z1) 51

Table 25

Remarks. Computations of the equivariant degrees, which were applied to
estimate of the number of periodic solutions of the above systems of van der Pol
equations, were done based using Maple 8. The Maple worksheets, containing
the complete multiplication tables and the equivariant degrees of the basic maps
for the groupsD3×S1, D4×S1, D5×S1, A4×S1, S4×S1 and A5×S1, are avail-
able at the web site at: http://www.math.ualberta.ca/∼wkrawcew/degree or
http://krawcewicz.net/degree.
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8. Appendix. Primary equivariant degree with one free parameter

For simplicity, we assume that Γ is a finite group.6 Let V be an orthogonal
representation of G = Γ× S1, Ω an open bounded G-invariant subset of R × V ,
and f : R×V → V an Ω-admissible map, i.e. f is a continuous G-equivariant and
f(x) �= 0 for all x ∈ ∂Ω. We will call such a pair (f,Ω) an admissible pair.

Definition 8.1. Let (f,Ω) be an admissible pair. Then f is said to be
normal in Ω, if for every α = (H) such that H = Gxo for a certain xo ∈
f−1(0) ∩ Ω, the following condition is satisfied:

• for all x ∈ f−1(0)∩ΩH there exists δx > 0 such that for all w ∈ νx(Ω(H)

if ‖w‖ < δx then f(x+ w) = f(x) + w = w,

where ν(Ω(H)) denotes the normal bundle to the submanifold Ω(H)

in R × V .

We say that f is regular normal if:

(a) f is of class C1,
(b) f is normal in Ω,
(c) for every orbit type (H) in Ω zero is a regular value of

fH := f|ΩH
: ΩH → V H .

Theorem 8.2 (Regular Normal Approximation Theorem). Let (f,Ω) be an
admissible pair. Then, for every η > 0 there exists a regular normal (in Ω)
G-equivariant map f̃ :V → W such that

sup
x∈Ω

‖f̃(x) − f(x)‖ < η.

We consider the set Φ1(G) := {(H) : H ⊂ G, dimW (H) = 1} (obvi-
ously, Φ1(G) consists of conjugacy classes of twisted subgroups) and denote by
A1(G) the free Z-module generated by the symbols (H) ∈ Φ1(G), i.e. A1(G) =
Z[Φ1(G)]. An element α ∈ A1(G) will be written as a finite sum

α =
∑

(H)∈Φ1(G)

nH(H) = nH1(H1) + . . .+ nHr (Hr).

The statement following below provides an axiomatic approach to the pri-
mary G-equivariant degree.

6The equivariant degree as well as its part — the primary equivariant degree, is defined
for any compact Lie group. For more information and precise definitions we refer to [3], [9],
[13], [14], [16], [24].
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Theorem 8.3. There exists a unique function, denoted by G-Deg, assigning
to each admissible pair (f,Ω) an element G-Deg(f,Ω) ∈ A1(G) satisfying the
following properties:

(P1) (Existence) If G-Deg (f,Ω) =
∑

(H) nH(H) is such that nH �= 0 for
some (H) ∈ Φ1(G), then there exists x ∈ Ω with f(x) = 0 and Gx ⊃ H.

(P2) (Additivity) Assume that Ω1 and Ω2 are two G-invariant open disjoint
subsets of Ω such that f−1(0) ∩ Ω ⊂ Ω1 ∪ Ω2. Then

G-Deg(f,Ω) = G-Deg (f,Ω1) +G-Deg(f,Ω2).

(P3) (Homotopy) Suppose that f : [0, 1] × R × V → V is an Ω-admissible G-
equivariant homotopy (i.e. ft := f(t, · , · ) is Ω-admissible for t ∈ [0, 1]).
Then

G-Deg(ft,Ω) = constant.

(P4) (Suspension) Suppose that W is another orthogonal G-representation
and let U be an open, bounded G-invariant neighborhood of 0 in W .
Then

G-Deg(f × id,Ω × U) = G-Deg(f,Ω).

(P5) (Normalization) Suppose f is regular normal and f(xo) = 0 for some
xo ∈ Ω with (Gxo) = (H) ∈ Φ1(G). Let UG(xo) be an invariant tube
around the orbit G(xo), Sxo a positively oriented slice to W (H)(xo) in
R ⊕ V H and f−1(0) ∩ UG(xo) = G(xo). Then

G-Deg(f,UG(xo)) = (sign det(Df(xo)|Sxo
)) · (H).

(P6) (Elimination) Suppose f is normal in Ω and ΩH ∩ f−1(0) = ∅ for every
(H) ∈ Φ1(G). Then G-Deg(f,Ω) = 0.

The following multiplicativity property of the primary degree is very useful.

Proposition 8.4. The Z-module A1(G) admits a natural structure of an
A(Γ)-module, where A(Γ) denotes the Burnside ring. Assume, in addition, that
(f,Ω) is an admissible pair in V , W is an orthogonal representation of Γ, U is
an open Γ-invariant subset of W and g:W → W is a Γ-equivariant map such
that g(v) �= 0 for all v ∈ ∂Ω. Then we have:

(P7) (Multiplicativity) The product map f × g: R × V × W → V × W is
Ω × U -admissible, and

G-Deg(f × g,Ω × U) = Γ-Deg(g, U) ·G-Deg (f,Ω),

where Γ-Deg(g, U) ∈ A(Γ) denotes the Γ-equivariant degree (without
free parameters, cf. [19]) of g in U and the multiplication “ · ” is the
A(Γ)-module multiplication.
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The computational formulae (6.2)–(6.5), used in Section 6, were derived us-
ing the regular normal approximations of equivariant maps and the recurrence
formula for the primary degree with one free parameter (see [16]).

Remark 8.5. In a standard way using the suspension property one can
extend the above equivariant degree theory to the case of maps id − F , where
F : R × E → E is a completely continuous map and E stands for a Banach G-
representation (see, for instance, [13]–[15] and [19]).
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