
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 35, 2010, 339–365

GENERICITY OF NONDEGENERATE GEODESICS
WITH GENERAL BOUNDARY CONDITIONS

Renato G. Bettiol — Roberto Giambò

Abstract. Let M be a possibly noncompact manifold. We prove, gener-

ically in the Ck-topology (2 ≤ k ≤ ∞), that semi-Riemannian metrics of

a given index on M do not possess any degenerate geodesics satisfying suit-
able boundary conditions. This extends a result of L. Biliotti, M. A. Javal-

oyes and P. Piccione [6] for geodesics with fixed endpoints to the case where

endpoints lie on a compact submanifold P ⊂ M×M that satisfies an admis-
sibility condition. Such condition holds, for example, when P is transversal

to the diagonal ∆ ⊂ M × M . Further aspects of these boundary con-
ditions are discussed and general conditions under which metrics without

degenerate geodesics are Ck-generic are given.

1. Introduction

Genericity of properties of flows is a widely explored topic in dynamical
systems, particularly regarding geodesic flows. A well known example is the so-
called bumpy metric theorem (first stated by R. Abraham [3], with a complete
proof by D. V. Anosov [4]). This asserts that Riemannian metrics on a compact
manifold M without degenerate periodic geodesics are generic relatively to the
Ck-topology (2 ≤ k ≤ ∞).
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Counterexamples by K. R. Meyer and J. Palmore [14] point out that abstract
Hamiltonian systems cannot be considered for generalizations of the bumpy the-
orem to a more comprehensive class of dynamical flows. Basically, the dynamics
of solutions differ in distinct energy levels, and hence the nondegeneracy property
fails to be generic. On the other hand, it is interesting to extend results on geo-
desic flows to a more general semi-Riemannian setting. Motivation for studying
generic properties of semi-Riemannian geodesic flows also comes from Morse the-
ory. Indeed, a crucial assumption for developing a Morse theory for geodesics
between fixed points is that the two arbitrarily fixed distinct points must be
nonconjugate. Recent works by A. Abbondandolo and P. Majer [1], [2] connect
Morse relations for critical points of the semi-Riemannian energy functional to
the homology of a doubly infinite chain complex, the Morse–Witten complex.
They also prove stability of this homology with respect to small perturbations of
the metric structure. Thus, it is important to ask whether it is possible to per-
turb a metric in such a way that the nonconjugacy property between two points
is preserved. A positive answer to this question is given by a recent work of
L. Biliotti, M. A. Javaloyes and P. Piccione [6], which proves genericity of semi-
Riemannian metrics on a (possibly noncompact) manifold M without degenerate
geodesics joining two arbitrarily fixed distinct points p, q ∈ M .

The goal of this paper is to extend this result when more general boundary
conditions on geodesics are considered. Our main result asserts that such non-
degeneracy property is also generic considering geodesics with endpoints in an
admissible general boundary condition. More precisely, consider (M, g) a n-
dimensional semi-Riemannian manifold of index ν. A general boundary condition
for the geodesic variational problem on M is an arbitrary compact submanifold
P of the product M × M that does not have a particular ν-topological ob-
struction (1). Geodesics considered are affinely parametrized g-geodesics whose
endpoints lie in P and whose tangent vectors are orthogonal to P at these points.
Such geodesics will be called (g,P)-geodesics. We find suitable admissibility con-
ditions on P (see Definition 4.5) under which the set of metrics g of index ν such
that all (g,P)-geodesics are nondegenerate is Ck-generic in some appropriate
space of semi-Riemannian metric structures on M . This is the content of our
main result, Theorem 5.10.

The case studied in [6] corresponds to P = {p} × {q}, with the hypothesis
that p 6= q. Therefore, the case of nonconstant geodesic loops at a point p

is left open, and it is conjectured that the same genericity statement holds.
Theorem 5.10 answers positively this conjecture, once P = {p} × {p} satisfies

(1) This obstruction is explained in detail in Remark 2.7. Our assumption on the sub-

manifold P ⊂ M ×M is that it admits semi-Riemannian metrics of index n that are given as
restrictions of product metrics g ⊕ (−g) on M ×M , where g is a metric of index ν on M .
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the mentioned admissibility conditions (Definition 4.5). Such conditions hold,
for instance, when P does not intersect the diagonal ∆ ⊂ M × M , or, more
generally, when it intersects ∆ transversally (Proposition 4.7).

Nevertheless, these admissibility conditions mentioned trivially fail for bumpy
boundary conditions P = ∆. In this particular case, that corresponds to peri-
odic geodesics, a similar nondegeneracy genericity statement holds due to the
recent proof of the semi-Riemannian version of the bumpy metric theorem. This
is a result of L. Biliotti, M. A. Javaloyes and P. Piccione [7], using equivariant
variational techniques, rather than dynamical. Such result is used in a nontriv-
ial way in the proof of Theorem 5.10 if P ∩∆ 6= ∅. In addition, it is important
to stress that the genericity results of [6], [7] combined do not automatically
imply genericity of metrics without degenerate geodesics under general bound-
ary conditions. Essentially, the degeneracy notions considered are different (see
Remark 5.4). Suppose P ∩ ∆ 6= ∅. Then there may be nontrivial Jacobi fields
that degenerate a periodic geodesic as a periodic geodesic, but not as a (g,P)-
geodesic. Therefore, a more involved argument is required. In general lines,
this is done using the semi-Riemannian bumpy metric theorem to ensure that
one may first restrict to metrics without degenerate periodic geodesics, which
are generic. Only then an abstract criterion (Proposition 3.1) is used to prove
genericity of metrics without degenerate geodesics with boundary conditions P.
For this, a particularly degenerate class of geodesics is studied (Subsection 5.2)
and the admissibility property is used in a crucial form.

Several geometric interpretations of this result are possible. For instance,
consider P ⊂ M a fixed compact submanifold without ν-topological obstruc-
tions (Remark 2.7) and q ∈ M a fixed point. Since P = P × {q} satisfies
the admissibility conditions mentioned above (Example 4.9), our result can be
applied. In this setting, it asserts that q is not focal to P in a Ck-generic semi-
Riemannian metric. It extends the genericity of the nonconjugacy property for
two fixed distinct points, that corresponds to the fixed endpoints case treated
in [6].

We now provide a short overview of the paper topics. A few preliminaries and
notations are established in Section 2. We recall the definition of Ck-Whitney
type Banach space of tensor fields over a manifold and explore some elementary
aspects of semi-Riemannian geodesics. In Section 3, we reproduce an abstract ge-
nericity criterion (Proposition 3.1) used in the proof of several genericity results.
This theorem is present in both [6] and [8] and was successfully used to establish
the genericity results of [6] mentioned before. It follows the lines of a standard
transversality argument by B. White [18], that uses the Sard–Smale theorem
[17] for a family of nonlinear Fredholm functionals fx on a Hilbert manifold,
parametrized in a Banach manifold. Briefly, it asserts that the values of x such
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that fx has only nondegenerate critical points is generic, under suitable regularity
conditions. This abstract genericity criterion is also used in the proof of the semi-
Riemannian bumpy metric theorem [7], and in other contexts such as [10]. In
Section 4, we introduce the concept of admissible general boundary condition,
and explore a few particular cases. Furthermore, the admissibility of a large
class of boundary conditions is established in Proposition 4.7. In Section 5, we
prove our main result, Theorem 5.10. Finally, in Subsection 5.4 it is improved
to the weak C∞-topology, although in principle the arguments used in the proof
do not apply directly, due to lack of regularity of the metric tensors space.

Acknowledgements. The authors gratefully thank Paolo Piccione (Uni-
versidade de São Paulo, Brazil) for the enormous support during several fruitful
conversations.

2. Preliminaries and notations

Throughout the text M will denote a smooth manifold of finite dimension
n, and by smooth we will always mean of class C∞. Regarding differentiability
of tensors, particularly metric tensors, which will usually be of class Ck, we
will implicitly consider k ≥ 2. Furthermore, gR will denote a fixed complete
Riemannian metric on M .

2.1. Banach spaces of sections. Let p:E → M a vector bundle. Then
Γk(E) is the space of Ck sections of E, and in the case E = TM∗ ⊗ TM∗, we
denote by Γk

sym(TM∗⊗TM∗) the set of Ck sections s such that sx:TxM×TxM →
R is symmetric for all x. Given another smooth manifold N and a smooth
map f :N → M , the pull-back by f of vector bundle E will be denoted f∗E.
Finally, Metk

ν(M) is the set of all semi-Riemannian Ck metric tensors of index
ν ∈ {0, . . . , n}, which is a subset of Γk

sym(TM∗ ⊗ TM∗).

If M is compact, Γk
sym(TM∗ ⊗ TM∗) has a natural Banach space structure,

and Metk
ν(M) is an open subset. Adopting the approach in [6, Subsection 4.1] to

endow the space of tensors over a noncompact manifold M with a Banach space
structure, consider the following.

Definition 2.1. A vector subspace E of Γk
sym(TM∗⊗TM∗) is called a Ck-

Whitney type Banach space of tensor fields over M if

(a) E contains all tensor fields in Γk
sym(TM∗ ⊗ TM∗) having compact sup-

port;
(b) E is endowed with a Banach space norm ‖ · ‖E with the property that

‖ · ‖E -convergence of a sequence implies convergence in the weak Whit-
ney Ck-topology.
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The second condition means that given any sequence {bα} and an element
b∞ ∈ E such that limα→∞ ‖bα − b∞‖E = 0, for each compact set K ⊂ M , the
restriction bα|K tends to b∞|K in the Ck-topology as α tends to ∞.

Remark 2.2. Using the auxiliary Riemannian metric gR on M it is possible
to construct a Ck-Whitney type Banach space of tensors on M as follows. First,
we observe that the Levi–Civita connection ∇R of gR induces a connection on all
vector bundles over M obtained with functorial constructions from the tangent
bundle TM . Furthermore, for each r, s ∈ N, gR induces canonical Hilbert space
norms on each tensor bundle TxM∗(r) ⊗ TxM (s), which will be denoted ‖ · ‖R.
Finally, we define Γk

sym(TM∗ ⊗ TM∗; gR) as the subset of Γk
sym(TM∗ ⊗ TM∗)

consisting of all sections b such that

‖b‖k = max
0≤i≤k

[
sup
x∈M

‖(∇R)ib(x)‖R
]

tends to zero at infinity. When M is compact, Γk
sym(TM∗ ⊗ TM∗; gR) =

Γk
sym(TM∗⊗TM∗). The norm ‖ ·‖k defined above turns Γk

sym(TM∗⊗TM∗; gR)
into a separable normed space, which is complete if the Riemannian metric gR

is complete. It is then easy to see that Γk
sym(TM∗ ⊗ TM∗; gR) is a Ck-Whitney

type Banach space of tensors.

We will use the following result proved in [6, Lemma 2.4], concerning the ex-
istence of a global section of a vector bundle with prescribed value and covariant
derivative along a sufficiently small curve.

Lemma 2.3. Let p:E → B be a smooth vector bundle endowed with a con-
nection ∇, γ: [a, b] → M a smooth curve and v ∈ Γ(γ∗TM) a smooth vector
field along γ, such that v(t0) is not parallel to γ̇(t0) for some t0 ∈ ]a, b[. Then
there exists an open interval I ⊂ [a, b] containing t0 with the property that, given
smooth sections H and K of γ∗E with compact support in I and given any open
set U containing γ(I), there exists h ∈ Γ(E) with compact support contained
in U , such that hγ(t) = Ht and ∇v(t)h = Kt for all t ∈ I.

2.2. Semi-Riemannian basics. We now recall some elementary concepts
of semi-Riemannian geometry and make a few conventions. Given any symmetric
(0, 2)-tensor b on M , for instance a semi-Riemannian metric, for all x ∈ M , the
bilinear map b(x) will be identified with the linear operator b(x):TxM → TxM∗.

Let ∇ be an arbitrary symmetric connection on TM . Given another con-
nection ∇′, the difference Γ = ∇′ − ∇ is a (1, 2)-tensor called the Christoffel
tensor of ∇′ relatively to ∇, which can be computed using Koszul’s formula.
The connection ∇ induces a covariant derivative of vector fields along curves
on M , which will be denoted D. In case ∇g is the Levi–Civita connection of
g ∈ Metk

ν(M), the corresponding operator of covariant derivative for vector fields
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along curves will be denoted Dg; and for the fixed Riemannian metric gR, it will
be simply denoted DR. The Riemannian length of a curve γ: [a, b] → M with
respect to gR will be denoted

LR(γ) =
∫ b

a

‖γ̇(t)‖R dt.

The sign convention adopted for the curvature tensor of ∇g is

Rg(X, Y ) = [∇g
X ,∇g

Y ]−∇g
[X,Y ].

Let γ be a solution of the g-geodesic equation on M . Then γ will be called
a g-geodesic only if it is affinely parametrized. A Jacobi field along a g-geodesic
γ is a smooth section J ∈ Γk(γ∗TM) satisfying the Jacobi equation

(Dg)2J = Rg(γ̇, J)γ̇.

The endpoints of γ are said to be conjugate along γ if there exists a nontrivial
Jacobi field along γ that vanishes at both endpoints of γ. Affine multiples of the
tangent field γ̇ are trivially Jacobi fields, and conversely, the only Jacobi fields
along γ that are everywhere parallel to γ̇ are its affine multiples. In addition,
Jacobi fields are only parallel to γ̇ at isolated points.

Lemma 2.4. Let γ: [a, b] → M be a g-geodesic and J a nontrivial Jacobi field
along γ, that is not everywhere parallel to γ̇. Then D = {t ∈ [a, b]:J(t) is parallel
to γ̇} consists only of isolated points, hence is finite.

Proof. Consider a basis of Tγ(a)M given by (γ̇(a), e2, . . . , en) and its paral-
lel transport along γ creating a frame (e1(t), . . . , en(t)), with e1(t) = γ̇(t). Then,
writing J =

∑n
i=1 Ji(t)ei(t), J is parallel to γ̇ at time t if and only if Ji(t) = 0,

for i ≥ 2. Suppose that there exists a limit t∞ ∈ [a, b] of a sequence {tα} of
different elements of D. From continuity of J it follows that t∞ ∈ D. Thus
for each i ≥ 2, the coordinate function Ji(t) has a convergent sequence of zeros
{tα} and hence J ′i(t∞) = 0. Therefore, the covariant derivative DgJ(t∞) is also
parallel to γ̇.

It is then possible to find c1, c2 ∈ R such that J̃ = (c1 + c2t)γ̇(t) satisfies
J̃(t∞) = J(t∞) and DgJ̃(t∞) = DgJ(t∞). Since the Jacobi equation is a second
order linear ODE, J̃ = J . Hence J is always parallel to γ̇, a contradiction. �

2.3. Geodesics self intersections. The following elementary results will
be used later to deal with geodesic self intersection problems.

Lemma 2.5. Let γi: [ai, bi] → M two g-geodesics. Then the set of points
where these geodesics intersect is finite, unless one is an affine reparametrization
of the other.
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Proof. Since the images of γ1 and γ2 are compact, if there were infinitely
many intersection points, there would be an accumulation intersection point
p = γ1(t) = γ2(s). Consider U a normal neighbourhood of p. If γ̇1(t) and γ̇2(s)
are linearly independent, since there are infinitely many points near p such that
γ1 and γ2 coincide in U , there is an obvious contradiction to injectivity of the
exponential map on U . Otherwise, if γ̇1(t) and γ̇2(s) are linearly dependent,
then γ1 and γ2 are affine reparametrizations of each other. �

Proposition 2.6. Let γ: [0, 1] → M be a g-geodesic in M . If the set

I = {(t, s) ∈ [0, 1]× [0, 1] : t 6= s, γ(t) = γ(s)}

is infinite, then γ is periodic with period ω < 1.

Proof. If I is infinite, there exists an accumulation point (t, s) ∈ I. The
local injectivity of γ implies that t 6= s, suppose t < s. Take ε > 0 small, and
define γ1 = γε|[t−ε,t+ε] and γ2 = γε|[s−ε,s+ε], where γε is the extension of γ

to [−ε, 1 + ε]. Since γ1 and γ2 are defined on compact intervals and intersect
infinitely many times, from Lemma 2.5, one is an affine reparametrization of the
other. Moreover, both are restrictions of the same geodesic γε, hence γ1(t+ω) =
γ2(t) for t ∈ [t − ε, t + ε], where ω = s − t ≤ 1. Therefore γ̇1(t) = γ̇2(s), hence
γ is periodic with period ω ≤ 1. If t = 0 and s = 1, one can easily derive
a contradiction with local injectivity of γ around 0, which implies ω < 1. �

2.4. Submanifold geometry. We end this section recalling some classic
facts about submanifolds of a semi-Riemannian manifold (M, g). For our appli-
cations, the manifold M will be the product M × M , and g will be the semi-
Riemannian metric given by the sum of some semi-Riemannian metric g on M

and its opposite −g. Consider the inclusion i:P ↪→M of a submanifold P ⊂M.
The restriction i∗g may degenerate, in which case the submanifold P is called
degenerate.

To carry the main tools from Riemannian submanifold theory to the semi-
Riemannian context, one is forced to restrict to the nondegenerate case. It is
then natural to consider

(2.1) Metk
ν(M,P) = {g ∈ Metk

ν(M) : P is nondegenerate}.

Remark 2.7. If 0 < ν < n, this subset Metk
ν(M,P) might be empty, since

there are topological obstructions to the existence of semi-Riemannian metrics
of fixed index on a compact manifold P. For instance, in the Lorentzian case, if
P is orientable, there exists a Lorentzian metric on P if and only if P has Euler
characteristic 0. In general, P admits a semi-Riemannian metric of index ν if
and only if it admits a distribution of rank ν.
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Characteristic classes, in particular the Euler class, can be used for a more
comprehensive study of these obstructions. However, in general this is a fairly
difficult problem. For instance, if M has dimension 6 and P is homeomorphic
to a 4-sphere, then Metk

3(M,P) is empty. This follows easily from the following
facts. On the one hand, the restriction to P of any metric tensor on M having
index equal to 3 cannot be positive or negative definite. On the other hand, P
does not admit any metric tensor of index 1 or 2, since P does not admit smooth
distributions of rank 1 or 2. (2)

If g ∈ Metk
ν(M,P), the second fundamental form of P in the normal direction

η ∈ TP⊥ is the symmetric bilinear tensor SPη ∈ Γk
sym(TP∗ ⊗ TP∗), given by

SPη (v, w) = g(∇g
vw, η),

where ∇g is the Levi–Civita connection on (M, g) and w is a smooth extension
of w tangent to P. Using the fact that P is nondegenerate, we will also identify
SPη at a point p ∈ P with the g-symmetric linear operator (SPη )p:TpP → TpP
defined by g((SPη )pv, w) = SPη (v, w), for all v, w ∈ TpP.

3. An abstract genericity criterion

In this section we recall a result of L. Biliotti, M. A. Javaloyes and P. Pic-
cione [6, Section 3], that appears also in former paper by D. Chillingsworth [8],
which gives a powerful method to obtain genericity of Morse functionals satis-
fying appropriate transversality conditions. It follows the lines of a standard
transversality argument by B. White [18]. Recall that a subset of a metric space
is said to be generic if it contains a dense Gδ, that is, countable intersection of
open dense subsets. By the Baire theorem, a generic set is dense.

Assume Y is a Hilbert manifold, and fx:Y → R is a family of functionals
parametrized in an open subset of a Banach manifold X. Under suitable regular-
ity hypotheses, the set M = {(x, y) : y is a critical point of fx} is an embedded
submanifold of X × Y , the projection Π:X × Y → X is a nonlinear Fredholm
map of index zero and its critical values are precisely the set of parameters x

such that fx has some degenerate critical point (3) in Y . Therefore, the problem
of genericity of nondegenerate critical points is reduced to a matter of regular
values of a Fredholm map. Applying the Sard–Smale theorem [17], one achieves
the desired genericity property.

More precisely, the abstract genericity criterion can be stated as follows:

(2) Recall that a compact manifold admits a semi-Riemannian metric tensor of index ν if
and only if it admits a smooth distribution of rank ν.

(3) By degenerate critical point of a map we mean a point where the Hessian of this map
is not injective. In this case, y0 ∈ Y such that d2fx(y): Ty0Y → Ty0Y ∗ is not injective.
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Proposition 3.1. Let f :U → R be a Ck map defined in an open subset
U ⊂ X × Y , where X is a separable Banach manifold and Y a separable Hilbert
manifold. Assume that for every (x0, y0) ∈ U such that (∂f/∂y)(x0, y0) = 0, the
following conditions hold:

(a) the Hessian (∂2f/∂y2)(x0, y0):Ty0Y → Ty0Y
∗ ∼= Ty0Y is a Fredholm

operator;
(b) for all w ∈ ker[(∂2f/∂y2)(x0, y0)] \ {0}, there exists v ∈ Tx0X such that

∂2f

∂x∂y
(x0, y0)(v, w) 6= 0.

Let Ux = {y ∈ Y : (x, y) ∈ U} and denote by Π:X × Y → X the projection onto
the first factor. Then the set of x ∈ X such that the functional

fx:Ux 3 y 7→ f(x, y) ∈ R

is a Morse function is generic in the open subset Π(U) ⊂ X.

Remark 3,2. Given y0 ∈ Y , since x 7→ (∂f/∂y)(x, y0) takes values on the
fixed Hilbert space Ty0Y

∗, the mixed derivative in condition (b) is well defined
without the use of a connection on TY ∗. Also (∂2f/∂y2)(x0, y0) is well defined
when (∂f/∂y)(x0, y0) = 0, coinciding with the Hessian of f(x0, ·) at the critical
point y0.

3.1. Sketch of the proof. Recall that a complete proof of such criterion
can be found in [6], [8].

Let us briefly give the main lines of how the proof goes. Condition (b) is
a transversality condition, more precisely it implies that the map ∂f/∂y:U →
TY ∗ is transversal to the null section of the cotangent bundle TY ∗. This guar-
antees that

M =
{

(x, y) ∈ U :
∂f

∂y
(x, y) = 0

}
is an embedded Ck−1 submanifold of X×Y and the restriction Π|M is a nonlinear
Ck−1 Fredholm map of index zero. Moreover, its critical points are precisely the
(x, y) ∈ M such that y is a degenerate critical point of the functional fx:Ux 3
y 7→ f(x, y) ∈ R. Hence applying the Sard–Smale theorem [17, Theorem 1.3] one
obtains genericity of parameters x for which fx has only nondegenerate critical
points.

We shall use this abstract criterion in the following set up. The Banach
manifold X will be a fixed Ck-Whitney type Banach space of tensor fields over
M , and the Hilbert manifold Y will be the manifold of curves of Sobolev class
H1 satisfying a general boundary condition on M . Typically, the open subset
U ⊂ X×Y will be taken of the form U = U0×Y , where U0 is an open subset of X
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consisting of metric tensors. The functional f will be a generalized energy func-
tional. Hence critical points are pairs of metrics and geodesics. The Sard–Smale
theorem applied to the projection on the first variable will imply genericity of
metrics whose energy functional is Morse. We will give a more precise description
of the intended use of this abstract genericity criterion in Section 5.

4. General boundary conditions

In this section we study general boundary conditions for the geodesic varia-
tional problem on M for curves parametrized in [0, 1] with certain regularity. We
shall define general boundary condition on M , analyze the structure of the set of
curves satisfying such a boundary condition, and discuss some of its important
features, namely the absence of short geodesics under some further admissibility
assumptions.

A fixed endpoint boundary condition on M is just a fixed pair of points
(p, q) ∈ M ×M , and the correspondent restraint on a curve γ is γ(0) = p and
γ(1) = q. This is the boundary condition on curves considered in [6] to prove
genericity of metrics without degenerate geodesics, with the assumption that
p 6= q. Several attempts to generalize this condition are possible, for instance
instead of fixing two points p, q ∈ M , fix two submanifolds P,Q ⊂ M , and allow
γ(0) ∈ P and γ(1) ∈ Q. The most comprehensive generalization is considering
a submanifold P ⊂ M×M , with the restriction (γ(0), γ(1)) ∈ P on the endpoints
of curves γ. This makes arbitrary choices of boundary conditions possible.

4.1. Nondegeneracy. Before defining general boundary condition and con-
sidering the appropriate space of curves satisfying such condition, it is necessary
to go into a technical remark on the openness of nondegeneracy property of
submanifolds.

Fix an index ν ∈ {0, . . . , n} and E a Ck-Whitney type Banach space of tensor
fields over M . Let Aν ⊂ E ∩ Metk

ν(M) be an open subset of the intersection.
For any g ∈ Aν , the first step to analyze degeneracy of geodesics with such
a boundary condition P is to induce a metric structure on the submanifold
i:P ↪→ M ×M . It will be later clear from Remark 5.6 that the natural choice is
to consider the restriction of the ambient space metric g⊕(−g) to P. Henceforth
this product metric corresponding to g ∈ Aν will be denoted g.

Proposition 4.1. Let P ⊂ M × M be a compact submanifold. Then the
subset Aν,P = {g ∈ Aν : P ⊂ (M ×M, g) is nondegenerate} is open in Aν .

Proof. Suppose Aν nonempty, otherwise the statement is trivially verified.
For each g ∈ Aν , consider the product metric g. Let {gα} be a convergent
sequence in Aν \ Aν,P and {gα} the correspondent sequence in Metk

n(M ×M) \
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Metk
n(M × M,P) (4), with limα→∞ gα = g∞. Identifying at each p ∈ P the

vector spaces TpP∗ ⊗ TpP∗ ∼= Lin(TpP, TpP∗), one may consider the symmetric
tensor i∗gα at each p as a linear map (i∗gα)p:TpP → TpP∗ ∼= TpP, denoted
with the same symbol. Since for all α, i∗gα is a degenerate symmetric bilinear
tensor on P, there exists pα ∈ P and Vα ⊂ Tpα

P, with dim Vα ≥ 1, such that
Vα ⊂ ker(i∗gα)pα . Choosing r to be the minimum of dim Vα, without loss of
generality it is possible to assume that for all α, dim Vα = r ≥ 1.

Thus {Vα} is a sequence in the Grassmannian bundle Grr(P), which is com-
pact, since P is compact. Up to subsequences, there exists V∞ ∈ Grr(P) limit of
the sequence {Vα}. By continuity of this convergence, there exists a limit point
p∞ ∈ P, and V∞ ⊂ ker(i∗g∞)p∞ . Therefore, as dim V∞ = r ≥ 1, the limit metric
tensor g∞ is also in Metk

n(M ×M) \Metk
n(M ×M,P), hence g∞ ∈ Aν \Aν,P .�

4.2. A few definitions. Using the same notation from Proposition 4.1, it
is now possible to define the following:

Definition 4.2. A ν-general boundary condition on M is a compact sub-
manifold P ⊂ M ×M , such that Aν,P is nonempty (see Remark 2.7). When the
index ν is evident from the context, P will be simply called general boundary
condition.

Henceforth, P will denote a general boundary condition on M .
Note that if ν = 0 and T(p,p)P ∩ (TpM ⊕ TpM) = {0} for all (p, p) ∈ P,

then Aν = Aν,P is obviously nonempty for all submanifolds P ⊂ M × M .
Compactness of P is a fundamental assumption, not only in order to prove
Proposition 4.1, but also because we shall use boundedness of P to get the
desired conditions on limits of curves satisfying such general boundary condition.
It is also crucial to consider only nondegenerate metrics, since we shall prove
genericity of the set of metrics without degenerate geodesics in Aν,P . This is
genuinely the natural set of metrics to be considered in this context. Moreover,
the submanifold geometry of P determines the behavior of variational fields
correspondent to curves with these conditions, and for instance Lemma 5.5 would
not hold in case P was degenerate (see Remark 5.6).

Let us now investigate the adequate setting for curves on M with endpoints
in P. As usual, H1([0, 1],M) denotes the set of all curves of Sobolev class H1

in M . It is a well-known fact that H1([0, 1],M) has a canonical Hilbert manifold
structure (see S. Lang [13] or R. Palais [15]) modeled on the separable Hilbert
space H1([0, 1], Rn). In order to verify that the subset

(4.1) ΩP(M) = {γ ∈ H1([0, 1],M): (γ(0), γ(1)) ∈ P},

(4) See (2.1). Notice that the index of g = g ⊕ (−g) is always equal to the dimension n of
M , with no dependence of ν.
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is a Hilbert manifold, consider the double evaluation map ev01:H1([0, 1],M) →
M × M , given by ev01(γ) = (γ(0), γ(1)). It is then easy to see that ev01 is
a submersion, hence ΩP(M) = ev−1

01 (P) is a submanifold of H1([0, 1],M). Fur-
thermore, the tangent space TγΩP(M) can be identified with the Hilbertable
space of all sections v of Sobolev class H1 of the pull-back bundle γ∗TM such
that (v(0), v(1)) ∈ T(γ(0),γ(1))P.

Moreover, for each γ ∈ ΩP(M), the fixed complete Riemannian metric gR

on M induces a Riemannian structure on the fibers of the pull-back bundle
γ∗TM . Hence ΩP(M) can be endowed with a Riemann–Hilbert structure using
the inner product in TγΩP(M) given by

(4.2) 〈v, w〉 =
∫ 1

0

gR(DgRv,DgRw) dt.

Example 4.3. The fixed endpoints condition P = {p} × {q} is trivially (5)
a general boundary condition. As expected, the tangent space TγΩP(M) is
formed by Sobolev class H1 sections v of γ∗TM such that v(0) = 0 and v(1) = 0.
Similarly, if P and Q are compact submanifolds, then P = P × Q is a general
boundary condition, unless it fails to admit semi-Riemannian metrics of the
appropriate index (see Remark 2.7). The curves γ ∈ ΩP(M) satisfy γ(0) ∈ P

and γ(1) ∈ Q, and the condition on the sections v of γ∗TM that form the tangent
space is v(0) ∈ Tγ(0)P and v(1) ∈ Tγ(1)Q. Note that P would still be a general
boundary condition if one submanifold was taken as a point, i.e. Q = {q}.

Note that the transpose of a general boundary condition P, defined by

Pt = {(p, q) ∈ M ×M : (q, p) ∈ P},

is also a general boundary condition, and the spaces ΩP(M) and ΩPt(M) can
be canonically identified by reparametrizing curves using the backwards param-
eterization. Hence solutions of the geodesic variational problems with boundary
conditions P and Pt are also obviously identified. Due to such symmetry, every
result stated for some general boundary condition P is also automatically valid
for its transpose Pt.

Definition 4.4. Fix g ∈ Aν,P . A g-geodesic γ ∈ ΩP(M) will be called
a (g,P)-geodesic if it satisfies (γ̇(0), γ̇(1)) ∈ T(γ(0),γ(1))P⊥, where ⊥ denotes
orthogonality relatively to g. It will be seen in Section 5 that this is equivalent
to (g, γ) being a critical point of a generalized energy functional.

(5) Note that P is automatically nondegenerate, since the tangent space to P is trivial

and every possible ambient metric induces the identically null metric on P. This also holds if
p = q.
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4.3. Periodic geodesics. An interesting example of boundary condition
for geodesics is given by the diagonal ∆ = {(p, p) : p ∈ M} (6); critical points of
the g-energy functional in the space of curves with endpoints on ∆ are periodic
g-geodesics. Note however that ∆, more generally any submanifold P somewhere
tangent to ∆, is always degenerate for a metric of the form g = g⊕ (−g). Thus,
these are not general boundary conditions. Indeed, if P is tangent to ∆ at (p, p),
the tangent space T(p,p)P is a subspace of the diagonal ∆ ⊂ TpM ⊕ TpM , hence
g is identically null in this space. In particular, ∆ ⊂ M×M itself is not a general
boundary condition.

Nevertheless, L. Biliotti, M. A. Javaloyes and P. Piccione [7] recently man-
aged to use equivariant variational genericity to prove the semi-Riemannian
bumpy metric theorem (7), which corresponds to our main result, Theorem 5.10,
in case P = ∆. Our technique though does not apply to this case, and we use
the semi-Riemannian bumpy metric theorem to prove our genericity statement
if P ∩∆ 6= ∅.

4.4. Admissibility. For the main result, it is necessary to have a lower
bound on the Riemannian length of nonconstant (g,P)-geodesics. To this aim
we introduce the following:

Definition 4.5. A ν-general boundary condition P will be said to be ad-
missible if for every g0 ∈ Aν,P , there exists an open neighbourhood V of g0

in Aν,P and a > 0, such that for all g ∈ V, and all (g,P)-geodesics γ, LR(γ) ≥ a.

It is easy to see that this definition does not depend on the choice of the
Riemannian metric gR. Some elementary classes of admissible general boundary
conditions are worth mentioning. First, if the general boundary condition P
satisfies P ∩∆ = ∅, then it is admissible. In this case, it is enough to set

a = min
(p,q)∈P

dR(p, q),

where dR denotes the gR-distance in M .
Another class of admissible general boundary conditions is given by P =

P ×{q}, where P ⊂ M is a compact submanifold, and q ∈ M , as in Example 4.3.
There are two possible situations; namely if q /∈ P , then P ∩∆ = ∅, hence it is
also in the previous class. However, if q ∈ P , the proof of [7, Lemma 3.6] can

(6) Here ∆ ⊂ M × M is the diagonal of the product manifold M × M , however in the

sequel we will be somewhat sloppy about the use of the symbol ∆. It will denote the diagonal
not only of M ×M , but also of any product space, for instance ∆’s own tangent space, which

is the diagonal ∆ ⊂ TxM ⊕TxM . There is no ambiguity, since it will always be clear from the

context which diagonal is being considered.
(7) This theorem asserts that the set of bumpy metrics, that is, metrics without degen-

erate periodic geodesics, is generic. The Riemannian version of this result was formulated by
R. Abraham [3] and proved by D. V. Anosov [4].
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be used to verify that P is admissible. In fact, although stated only for periodic
geodesics, its proof is automatically valid considering nonconstant geodesic loops
instead of periodic geodesics, hence gives the required condition on P. Note that
the same is true for the transpose Pt = {q} × P .

We shall now establish the admissibility of a larger class of general boundary
conditions that intersect ∆, using again a transversality approach. To this aim,
we give an estimation of the decrease of the difference between the normalized
tangent field to a geodesic at its endpoints, in terms of its length.

Lemma 4.6. Let U ⊂ Rn be an open subset and g0 ∈ Metk
ν(U). Then for

all compact subsets K ⊂ U there exists a positive number c > 0 and an open
neighbourhood O of g0 in the weak Whitney C1-topology, such that for all g ∈ O
and all nonconstant g-geodesic γ: [a, b] → U with γ([a, b]) ⊂ K, the following
inequality holds ∥∥∥∥ γ̇(b)

‖γ̇(b)‖
− γ̇(a)
‖γ̇(a)‖

∥∥∥∥ ≤ c

∫ b

a

‖γ̇(t)‖ dt,

where ‖ · ‖ is the Euclidean norm.

Proof. Given g ∈ Metk
ν(U), denote by Γg the Christoffel tensor of g rela-

tively to the Euclidean metric on U . Thus, for all x ∈ U , Γg(x): Rn×Rn → Rn is
a symmetric bilinear map depending continuously on x, and if γ is a g-geodesic,
γ̈ = Γg(γ)(γ̇, γ̇), where γ̈ denotes the ordinary second derivative of γ in Rn. This
association g 7→ Γg is clearly continuous when Metk

ν(U) is endowed with the weak
Whitney C1-topology and the space of Γg’s is endowed with the weak Whitney
C0-topology. If K ⊂ U is a given compact subset, set κ = maxx∈K ‖Γg0(x)‖+ 1
and define

O = {g ∈ Metk
ν(U) : ‖Γg(x)‖ < κ, for all x ∈ K},

which is obviously an open neighbourhood of g0 in the weak Whitney C1-
topology.

Let us show that such O satisfies the conclusion, with c = 2κ. Indeed, if
g ∈ O and γ is a nonconstant g-geodesic with image lying in K, then at each
time t ∈ [a, b],∥∥∥∥ d

dt

γ̇

‖γ̇‖

∥∥∥∥ =
∥∥∥∥ γ̈

‖γ̇‖
− γ̇〈γ̇, γ̈〉

‖γ̇‖3

∥∥∥∥ =
∥∥∥∥− Γg(γ)(γ̇, γ̇)

‖γ̇‖
+
〈γ̇, Γg(γ)(γ̇, γ̇)〉

‖γ̇‖3
γ̇

∥∥∥∥
≤ ‖Γg(γ)‖‖γ̇‖2

‖γ̇‖
+
‖Γg(γ)‖‖γ̇‖4

‖γ̇‖3
≤ 2κ‖γ̇‖.

Integrating the above inequality in [a, b], it follows that∥∥∥∥ γ̇(b)
‖γ̇(b)‖

− γ̇(a)
‖γ̇(a)‖

∥∥∥∥ ≤ ∥∥∥∥∫ b

a

d

dt

γ̇

‖γ̇‖
dt

∥∥∥∥ ≤ ∫ b

a

∥∥∥∥ d

dt

γ̇

‖γ̇‖

∥∥∥∥ dt ≤ 2κ

∫ b

a

‖γ̇(t)‖ dt. �
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Proposition 4.7. If a ν-general boundary condition P intersects ∆ trans-
versally (8), then P is admissible.

Proof. We proceed by contradiction. Since the weak Whitney C1-topology
is first countable, assuming P is not admissible implies that there exists a se-
quence {gα} in Aν,P converging to some g0 ∈ Aν,P in the weak Whitney C1-
topology and a sequence γα ∈ ΩP(M) of nonconstant (gα,P)-geodesics such that
limα→∞ LR(γα) = 0. Since P is compact, up to taking subsequences, one can as-
sume that there exists x ∈ M such that (x, x) ∈ P and both limα→∞ γα(0) = x,
limα→∞ γα(1) = x.

By taking a local chart of M around x, we can assume that we are in an open
subset U ⊂ Rn. Let K ⊂ U be any compact neighbourhood of x, so that there
exists α0 such that for α ≥ α0, γα([0, 1]) ⊂ K. Since LR(γα) tends to zero, then
also the Euclidean length of γα tends to zero. From Lemma 4.6, it follows that,

lim
α→∞

(
γ̇α(0)
‖γ̇α(0)‖

− γ̇α(1)
‖γ̇α(1)‖

)
= 0,

and, up to taking subsequences, we can assume that both γ̇α(0)/‖γ̇α(0)‖ and
γ̇α(1)/‖γ̇α(1)‖ converge to unitary vectors. However, from the above limit, both
tend to the same unitary vector v ∈ Rn.

We claim that (v, v) ∈ T(x,x)P⊥, where ⊥ denotes orthogonality with respect
to g0, and that this concludes the proof. Indeed, suppose the claim to be true.
Then

(v, v) ∈ T(x,x)P⊥ ∩∆ = (T(x,x)P + ∆⊥)⊥.

It is easy to see that ∆⊥ = ∆; and since we assumed T(x,x)P+∆ = TxM⊕TxM ,
its orthogonal complement with respect to g0 is trivial. Hence v = 0, which gives
the desired contradiction.

It remains to prove the above claim that (v, v) ∈ T(x,x)P⊥. Consider O
the open neighbourhood (9) of g0 ∈ Metk

ν(U) in the weak Whitney C1-topology
given by Lemma 4.6 with the choices above. Then, for all g ∈ O it is possible to
give the following estimation for any g-geodesic γ with image lying in K,∣∣∣∣ d

dt
log ‖γ̇(t)‖

∣∣∣∣ =
|〈γ̇, γ̈〉|
‖γ̇‖2

=
|〈γ̇, Γg(γ)(γ̇, γ̇)〉|

‖γ̇‖2
≤ ‖Γg(γ)‖‖γ̇‖3

‖γ̇‖2
≤ κ‖γ̇‖,

where κ = maxx∈K ‖Γg0(x)‖ + 1 is again the same as in Lemma 4.6. Hence,
integrating the above inequality in [0, 1], it follows that∣∣∣∣ log

‖γ̇(1)‖
‖γ̇(0)‖

∣∣∣∣ =
∣∣∣∣ ∫ 1

0

d

dt
log ‖γ̇‖ dt

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣ d

dt
log ‖γ̇‖

∣∣∣∣ dt ≤ κ

∫ 1

0

‖γ̇‖ dt.

(8) That is, T(x,x)P + ∆ = TxM ⊕ TxM , for all x ∈ P ∩∆.

(9) Using the identification above given by a local chart U of M around x, since the

restriction map Aν,P 3 g 7→ g|U ∈ Metk
ν(U) is continuous in the considered topologies, the

open neighbourhood of g0 in Aν,P can be taken as the preimage of O by this restriction map.
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Applying this estimation to the (gα,P)-geodesics {γα}, since its Euclidean length
tends to zero, one concludes that

lim
α→∞

‖γ̇α(1)‖
‖γ̇α(0)‖

= 1.

Moreover, for each α,(
γ̇α(0)
‖γ̇α(1)‖

,
γ̇α(1)
‖γ̇α(1)‖

)
∈ T(γα(0),γα(1))P⊥α ,

where ⊥α denotes orthogonality with respect to gα and limα→∞ γ̇α(1)‖γ̇α(1)‖=v.
From the limits limα→∞ γ̇α(0)/‖γ̇α(0)‖=v and limα→∞ ‖γ̇α(1)‖/‖γ̇α(0)‖=1,

it follows that also limα→∞ γ̇α(0)/‖γ̇α(1)‖ = v. Since P is compact, this proves
the claim that (v, v) ∈ T(x,x)P⊥. �

Remark 4.8. Since admissibility of P can be characterized by its transver-
sality to ∆, it follows that admissibility is a generic property of general boundary
conditions.

To end this section, we analyze admissibility of some general boundary con-
ditions given in Example 4.3.

Example 4.9. The fixed endpoints boundary condition P = {p} × {q} is
clearly admissible, even if p = q. Indeed, it falls in the class of boundary condi-
tions of the form P = P×{q}, where P ⊂ M is a compact submanifold, explored
in the beginning of this subsection. Substituting q for a compact submanifold
Q ⊂ M gives P = P ×Q, as in Example 4.3. This is also clearly an admissible
general boundary condition if P ∩Q = ∅. If P ∩Q 6= ∅, it is easy to see that P
is transversal to ∆ if and only if P and Q are transversal submanifolds of M .

5. Genericity of metrics without degenerate geodesics

In this section we prove our main result, the genericity of semi-Riemannian
metrics without degenerate geodesics satisfying an admissible general boundary
condition. It is an immediate generalization of the genericity result in [6], that
corresponds to {p}×{q}, to any admissible general boundary condition P, even
if P ∩∆ 6= ∅.

More precisely, consider again M a n-dimensional smooth manifold, an index
ν ∈ {0, . . . , n} and Aν ⊂ E ∩Metk

ν(M) a nonempty open subset of E , which is
a fixed Ck-Whitney type Banach space of tensor fields over M . Consider also P
an admissible ν-general boundary condition, gR the fixed complete Riemannian
metric on M and the Hilbert–Riemann structure it induces on ΩP(M) (see (4.1)),
given by (4.2). We shall prove that the set of semi-Riemannian metrics on M
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of fixed index ν such that all (g,P)-geodesics (10) are nondegenerate is generic
in Aν,P (see Proposition 4.1).

For this we shall use the abstract genericity criterion given in Proposition 3.1
with the following geodesic setup. The Banach manifold X will be taken as the
Banach space E and the Hilbert manifold Y as ΩP(M). The open subset of
X × Y is U = Aν,P × ΩP(M), domain of the generalized energy functional

(5.1) f :U 3 (g, γ) 7→ 1
2

∫ 1

0

g(γ̇, γ̇) dt ∈ R,

which is a Ck functional. More precisely, it is smooth with respect to the first
variable g ∈ Aν,P and Ck with respect to the second variable γ. Furthermore,
with this formulation, (g0, γ0) is a critical point of f if and only if γ0 is a (g0,P)-
geodesic, i.e. γ0 ∈ ΩP(M) is a g0-geodesic and

(γ̇0(0), γ̇0(1)) ∈ T(γ0(0),γ0(1))P
⊥,

where ⊥ denotes orthogonality with respect to g0.
Hence, critical points of the projection Π:U → Aν,P correspond to the set

of (g0, γ0) such that γ0 is a degenerate (11) (g0,P)-geodesic. Thus applying
Proposition 3.1 we shall conclude that the set of g ∈ Aν,P such that the g-energy
functional is Morse is generic in Π(U) = Aν,P .

5.1. Derivatives of the energy functional. In order to verify the hy-
potheses of the abstract genericity criterion, we first compute the index form of
the generalized energy functional and its kernel, verifying condition (a); and we
also calculate the mixed derivative correspondent to condition (b).

An easy computation gives the following formula for the index form

(5.2)
∂2f

∂γ2
(g0, γ0)(v, w) =

∫ 1

0

g0(Dg0v,Dg0w)− g0(Rg0(γ̇0, v)w, γ̇0) dt

− SP(γ̇0(0),γ̇0(1))
((v(0), v(1)), (w(0), w(1))),

where SPη is the second fundamental form of P with normal η ∈ TP⊥, with
respect to the ambient metric g0.

Lemma 5.1. The index form (∂2f/∂γ2)(g0, γ0) is a Fredholm symmetric bi-
linear form on Tγ0ΩP(M), i.e. it is represented by a self-adjoint Fredholm oper-
ator of this Hilbert space.

Proof. For each t ∈ [0, 1], denote by At the automorphism of Tγ(t)M that
represents g0 in terms of the fixed Riemannian metric gR, that is, such that

(10) Recall that by geodesic we mean affinely parametrized geodesic.

(11) That is, (∂2f/∂γ2)(g0, γ0) is not injective. If P = {p} × {q} is a fixed endpoints
condition, this means that p and q are conjugate along γ0. For a general P, we shall char-

acterize the elements of the index form kernel as P-Jacobi fields and give further geometric

interpretation in Subsection 5.3.
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g0 = gR(At · , · ). Then the map Φ: Tγ0ΩP(M) → Tγ0ΩP(M) that carries v to ṽ,
where ṽ(t) = Atv(t), is an isomorphism.

We shall prove that the index form (5.2) is a compact perturbation of Φ,
hence Fredholm. Indeed, the difference

D(v, w) =
∂2f

∂γ2
(g0, γ0)(v, w)− 〈Φv, w〉

is given by

D(v, w) =
∫ 1

0

[−gR(A′v,DRw) + gR(ADRv,ΓRw) + gR(AΓRv,DRw)

+ gR(AΓRv,ΓRw) + gR(AR(v), w)] dt

− SP(γ̇0(0),γ̇0(1))
((v(0), v(1)), (w(0), w(1))),

where ΓR = Dg0 −DR is the Christoffel tensor of ∇g0 relatively to ∇R, R(v) =
Rg0(γ̇0, v)γ̇0 and A′ is the covariant derivative (12) of A.

Note that each term of the integral above is a bilinear form in Tγ0ΩP(M)×
Tγ0ΩP(M) that does not contain more than one derivative of its arguments.
Hence each term is continuous in one of its arguments, and continuous in the
C0-topology in the other (13); and since the inclusion H1 ↪→ C0 is compact,
each of these bilinear forms is represented by a compact operator of Tγ0ΩP(M).
Furthermore, the last term of the expression above for D is also represented by
a compact operator of Tγ0ΩP(M), since it is the image by an evaluation map
with values on a finite dimensional vector space of a C0-continuous bilinear form
in Tγ0ΩP(M). Therefore D is represented by a compact operator of Tγ0ΩP(M).�

Moreover, the kernel of the index form (∂2f/∂γ2)(g0, γ0) is the space of all
Jacobi fields J ∈ Tγ0ΩP(M), such that

(5.3) (Dg0J(0),Dg0J(1)) + SP(γ̇0(0),γ̇0(1))
(J(0), J(1)) ∈ T(γ0(0),γ0(1))P

⊥.

The elements of this space will be called P-Jacobi fields.

Example 5.2. According to expected, in the cases of admissible general
boundary conditions given in Example 4.9, P = {p} × {q} and P = P × Q,
the P-Jacobi fields are Jacobi fields along γ0 that, respectively, vanish at the
endpoints, and J(0) ∈ Tγ0(0)P and J(1) ∈ Tγ0(1)Q. Geometrically, existence of
a nontrivial P-Jacobi field in the previous cases can be interpreted as follows. In
the first case, it simply means that p and q are conjugate along γ0; and in the
second, if Q = {q} is a point, it means that q is focal to P . For the geometrical
interpretation of conjugacy for general products P = P ×Q see for instance [16].

(12) A can be thought as a Ck section of γ∗0 (TM∗⊗TM), and the connection ∇R induces

a canonical connection on this bundle.
(13) Using the inclusion H1 ↪→ C0 it is possible to induce a C0-topology in Tγ0ΩP (M).
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Remark 5.3. Consider γ ∈ ΩP(M) a (g,P)-geodesic. Although the tangent
field γ̇ is a Jacobi field, it is never a P-Jacobi field . This is immediate from the
fact that γ̇ is g-orthogonal to P at (γ(0), γ(1)), and that all P-Jacobi fields along
γ must be tangent to P at this point. Since g does not degenerate on P, it follows
γ̇ /∈ TγΩP(M) and hence γ̇ cannot be a P-Jacobi field.

Note that this observation includes the case of geodesics loops, which may
be (g,P)-geodesics if P ∩ ∆ 6= ∅. In addition, it also covers the possibility
P = {p} × {q}, even if p = q. In such case, the tangent space T(p,q)P is trivial,
hence all P-Jacobi fields J along γ have to satisfy J(0) = 0 and J(1) = 0.
Therefore, γ̇ is not a P-Jacobi field once more.

Remark 5.4. Suppose P ∩∆ 6= ∅ and let γ be a periodic g-geodesic that is
also a (g,P)-geodesic. As a consequence of Remark 5.3, the notions of degeneracy
of γ differ when it is considered as a periodic geodesic and as a (g,P)-geodesic.
More precisely, the tangent field γ̇ is always a Jacobi field along γ, therefore
γ would always be a degenerate critical point of the g-energy functional. Such
degeneracy is caused by the obvious action of the circle S1 on periodic curves, by
right composition. To treat this special case, one is forced to use an equivariant
definition of degeneracy. Namely, a periodic geodesic γ is said to be degenerate
as a periodic geodesic if it admits a periodic Jacobi field that is not a constant
multiple of γ̇.

Since the tangent field γ̇ is not a P-Jacobi field along γ, it follows that if γ is
nondegenerate as a periodic geodesic, then it is also nondegenerate as a (g,P)-
geodesic. However, the converse is not true, since γ may admit a Jacobi field
which is not a constant multiple of γ̇, neither a P-Jacobi field.

Let γ be a (g,P)-geodesic. Not only the tangent field γ̇ is not a P-Jacobi
field (Remark 5.3), but also P-Jacobi fields along γ are only parallel to γ̇ at
a finite number of points. Such claim is a consequence of Lemma 2.4 combined
with the following result.

Lemma 5.5. Let γ: [a, b] → M be a g-geodesic. If J is a nontrivial P-Jacobi
field along γ, then it is not everywhere parallel to γ̇.

Proof. First, let us consider the trivial case when P is not a point. Since
J is a P-Jacobi field, (J(a), J(b)) ∈ T(γ(a),γ(b))P. Hence J(a) and J(b) are not
respectively parallel to γ̇(a) and γ̇(b), because (γ̇(a), γ̇(b)) ∈ T(γ(a),γ(b))P⊥.

If P = {p} × {q}, the argument is modified as follows. In this case, suppose
that there exists λ: [a, b] → M such that J(t) = λ(t)γ̇(t). Since J is the solution
of the Jacobi equation, λ must be an affine function, that is, λ(t) = c1 + c2t

for some c1, c2 ∈ R. Moreover, (J(a), J(b)) is tangent and orthogonal to P at
(γ(a), γ(b)), thus λ(a) = λ(b) = 0. This implies that J is the trivial solution. �
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Remark 5.6. This is the reason to choose the product metric g = g⊕ (−g)
instead of any other. Note that if the metric in P was different, it would be
possible that the tangent field γ̇ was a P-Jacobi field. Furthermore, notice that
the nondegeneracy of P with respect to this g is essential in the proof.

To compute the second mixed derivative ∂2f/∂g∂γ of the energy functional
(5.1), it is convenient to use Schwartz lemma. Since the domain Aν,P×ΩP(M) is
the product of an open subset Aν,P of a Banach space E and a Hilbert manifold
ΩP(M), the first partial derivative can be thought as

∂f

∂g
:Aν,P × ΩP(M) → E∗.

Fix g0 ∈ Aν,P . Deriving (∂f/∂g)(g0, · ), one obtains

(5.4)
∂

∂γ

∂f

∂g
(g0, γ0):Tγ0ΩP(M) → E∗,

which may also be seen as a bilinear form on Tγ0ΩP(M)×E . If instead of deriving
f first in g, one derives first in γ and then in g, the result is

(5.5)
∂

∂g

∂f

∂γ
(g0, γ0): E → Tγ0ΩP(M)∗,

which is a bilinear form on E × Tγ0ΩP(M). Using local charts and Schwartz
lemma, it follows that these maps are transpose to each other, that is, for all
(v, w) ∈ E × Tγ0ΩP(M),

∂2f

∂g∂γ
(g0, γ0)(v, w) =

∂2f

∂γ∂g
(g0, γ0)(w, v).

We are interested in computing (5.5), however it turns out to be easier to
compute (5.4), so we shall use the observation above. Since f is linear in the
first variable, for all h ∈ E ,

∂f

∂g
(g0, γ)h =

1
2

∫ 1

0

h(γ̇, γ̇) dt.

Fix any (14) symmetric connection∇ on M . Deriving (∂f/∂g)(g0, · ), one obtains
for each (h, v) ∈ E × Tγ0ΩP(M),

(5.6)
∂2f

∂γ∂g
(g0, γ0)(v, h) =

∫ 1

0

h(γ̇0,Dv) +
1
2
∇h(v, γ̇0, γ̇0) dt,

where D is the covariant derivative of vector fields along γ0 induced by ∇. This
gives a final formula for the mixed derivative which is crucial to verify condition
(b) of Proposition 3.1.

(14) It is easy to see that the following construction does not depend on the choice of ∇.
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5.2. Strongly degenerate geodesics. Before proving our main theorem,
let us introduce a class of geodesics that will play a special role in the final
arguments for periodic geodesics.

Definition 5.7. Let γ: [0, 1] → M be a g-geodesic. Then γ is said to be
strongly degenerate if there exists an integer k ≥ 2 such that:

(a) γ(t + i/k) = γ(t), for all i ∈ {0, . . . , k − 1} and t ∈ [0, 1/k[;
(b) γ admits a Jacobi field J 6= 0, such that

∑k−1
i=0 J(t + i/k) = 0, for all

t ∈ [0, 1/k[.

Observe that if γ is strongly degenerate, then it is automatically a periodic
geodesic with period 1/k. Moreover, our next result asserts it is also degenerate
as such.

Proposition 5.8. If γ ∈ ΩP(M) is a strongly degenerate (g,P)-geodesic,
then it is also degenerate as a periodic geodesic (see Remark 5.4). That is, γ

admits a nontrivial periodic Jacobi field J that is not a constant multiple of γ̇.

Proof. Take J a Jacobi field as in (b). Then J is not everywhere parallel
to γ̇, otherwise it would follow that γ̇ = 0. Comparing condition (b) at t = 0
and t = 1/k, one obtains that

J(0)− J(1) =
k−1∑
i=0

J

(
i

k

)
−

k−1∑
i=0

J

(
1
k

+
i

k

)
= 0.

Moreover, V (t) =
∑k−1

i=0 J(t + i/k) is the identically null vector field, hence
DV (t) = 0 for all t ∈ [0, 1]. Thus, it follows that

DJ(0)−DJ(1) = DV (0)−DV (1/k) = 0.

This concludes the proof, since the same J that degenerates γ as a (g,P)-geodesic
is also periodic and is not a constant multiple of γ̇. �

Remark 5.9. Let γ: [0, 1] → M be a periodic g-geodesic with period 1/k,
k ≥ 2. Suppose that γ admits a nontrivial Jacobi field J such that

(5.7)
k∑

i=0

J

(
t +

i

k

)
= λ(t)γ̇(t),

for all t ∈ [0, 1/k[. Then, since the left-hand side in the above equality is a Jacobi
field, then λ must be an affine function. However, since J is periodic, then λ must
be constant, for otherwise the right-hand side of (5.7) would be unbounded as
t → ±∞. Hence, by adding a suitable multiple of γ̇ to J , it is possible to obtain
a Jacobi field that satisfies conditions (a) and (b) of Definition 5.7. Therefore,
in this case γ is strongly degenerate.
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5.3. Main result. We are now ready to prove our main genericity result.
More precisely, we prove that the set of semi-Riemannian metrics without degen-
erate geodesics satisfying an admissible general boundary condition P is generic
in the Whitney Ck-topology among metrics for which P is nondegenerate. It
extends the previous genericity statement in [6] to the general boundary con-
ditions setup described in the last section, which in particular allows one to
consider geodesic loops at a point p.

Geometrically, [6] asserts that generically two distinct points are not conju-
gate. As in Examples 4.9 and 5.2, P = P×{q} is an admissible general boundary
condition, where P is a compact submanifold and q a point. Applied to such P,
our result asserts that generically q is not focal to P .

The proof is done in two steps. First, we consider the trivially admissible
case P ∩ ∆ = ∅ and apply the abstract genericity criterion using a local per-
turbation argument. Secondly, we treat the special case P ∩ ∆ 6= ∅ using its
admissibility, since the abstract criterion fails due to the possible presence of
strongly degenerate geodesics (see Definition 5.7). Furthermore, we stress that
this result is not an immediate consequence of the first case P ∩∆ = ∅ and the
semi-Riemannian bumpy metric theorem. Indeed, if γ ∈ ΩP(M) is a periodic
(g,P)-geodesic, the notions of degeneracy as a (g,P)-geodesic and as a periodic
geodesic do not coincide (see Remark 5.4). For this, we use a more elaborate
argument, which employs both the semi-Riemannian bumpy metric theorem and
the abstract genericity criterion in a different way.

Theorem 5.10. Let M be a smooth n-dimensional manifold and ν ∈ {0,

. . . , n} an index. Fix E ⊂ Γk
sym(TM∗⊗TM∗) a Ck-Whitney type Banach space

of tensor fields over M and Aν ⊂ E ∩Metk
ν(M) an open subset. Consider P an

admissible ν-general boundary condition. Then the following is a generic subset
in Aν,P

GP(M) = {g ∈ Aν,P : all (g,P)-geodesics γ ∈ ΩP(M) are nondegenerate}.

Proof. We shall prove the genericity of GP(M) in Aν,P in two steps. First,
we suppose that P satisfies P∩∆ = ∅, and apply the abstract genericity criterion
in Proposition 3.1. Secondly, if P ∩ ∆ 6= ∅, the abstract criterion fails due to
possible existence of strongly degenerate geodesics. In this case, we use a more
elaborate argument to deal with the periodic geodesic issue, appealing to the
semi-Riemannian bumpy metric theorem.

Case 1. Suppose P ∩ ∆ = ∅. From Lemma 5.1, it suffices to prove that
condition (b) of Proposition 3.1 is satisfied in the geodesic set up described
in the beginning of this section. More precisely, we have to prove that given
a semi-Riemannian metric g0 ∈ Aν,P and γ0 a (g0,P)-geodesic with a nontrivial
P-Jacobi field J along γ0 (see (5.3)), there exists h ∈ E such that the right-hand
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side of (5.6) does not vanish. For this, we use a local perturbation argument along
the lines of [6, Proposition 4.3], that employs Lemma 2.3.

Once more we treat two cases separately. First we assume γ0 is not a portion
of a periodic geodesic with period ω < 1. With this assumption, from Proposi-
tion 2.6, γ0 has only a finite number of self intersections. It is then possible to
find an open interval I ⊂ [0, 1] such that γ0|I is injective, γ0(I)∩γ0([0, 1]\I) = ∅
and J is not parallel to γ̇0 at any time in I. Indeed such an interval exists, since
the first condition is feasible due to the finiteness of self intersections and the
second is also admissible as a consequence of Lemmas 2.4 and 5.5.

In order to find the required h ∈ E , we now apply Lemma 2.3 with E =
TM∗ ⊗ TM∗. Let U ⊂ M be any open subset containing γ0(I) such that
γ0(t) ∈ U if and only if t ∈ I. For instance, U can be taken as the complement
of γ0([0, 1]\I). Set H ∈ Γ(γ∗0E) identically null and K ∈ Γ(γ∗0E) any symmetric
bilinear form smooth on t, that satisfies K(γ̇0, γ̇0) ≥ 0 and

∫
I
Kt(γ̇0(t), γ̇0(t)) dt >

0. Reducing the size of I if necessary and applying Lemma 2.3, it follows that
there exists a globally defined smooth section h of E with compact support
contained in U such that hγ0(t) = 0 and ∇Jt

h = Kt for all t ∈ I. Hence for this
h, the formula (5.6) gives∫ 1

0

[
h(γ̇0,DJ) +

1
2
∇h(J, γ̇0, γ̇0)

]
dt =

1
2

∫
I

Kt(γ̇0(t), γ̇0(t)) dt > 0.

This concludes the proof of the case P ∩∆ = ∅, when γ0 is not a portion of
a periodic geodesic of period ω < 1.

If the (g0,P)-geodesic γ0 has infinitely many self intersections, one can apply
the exact same argument used in the second part of the proof of [6, Proposi-
tion 4.3] to show that this local perturbation approach above can be adapted.
In general terms, the technique consists of a parity argument to find the desired
interval I where the local perturbation occurs.

Remark 5.11. More generally, this local perturbation argument used in the
previous case of geodesics with finite self intersections can be extended to any (15)
periodic geodesic that is not strongly degenerate. In fact, if γ0 has period ω < 1,
then γ0(0) 6= γ0(1), and [6, Proposition 4.3] applies. If γ0(0) = γ0(1), then γ0 is
periodic with period 1/k, k ≥ 2. Suppose J is a nontrivial P-Jacobi field along
γ0. Then a sufficient condition for the local perturbation to hold is that for some
t0 ∈ [0, 1],

k−1∑
i=0

J

(
t0 +

i

k

)
6= 0,

(15) Except the case of a prime periodic geodesic γ0 ∈ ΩP (M), with period ω = 1. Recall
that a geodesic is said to be prime if it is not obtained as n-fold iteration of some other geodesic.
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which holds unless γ0 is strongly degenerate. Under this condition, by continuity,
it is possible to find an interval I around such t0 with the same properties as
the interval I considered above in Case 1. Then, Lemma 2.3 guarantees (see
Remark 5.9) existence of the desired globally defined smooth section h, verifying
the transversality condition (b) of Proposition 3.1.

Case 2. Assume now P ∩ ∆ 6= ∅. Recall that LR is the length of curves
with respect to the fixed complete Riemannian metric gR on M . For each α ∈ N
define

(5.8) Rα = {g ∈ Aν,P : all (g,P)-geodesics γ with LR(γ) ≤ α

are nondegenerate}.

Since GP(M) =
⋂

α∈NRα, we shall prove that each Rα is open and dense
in Aν,P , hence the genericity result will follow from the Baire theorem.

Let us verify the first claim, namely that Rα are open. For this, consider
a convergent sequence {gβ} in Aν,P \ Rα, with limβ→∞ gβ = g∞. From defini-
tion of Rα, for each β ∈ N there exists a degenerate (gβ ,P)-geodesic γβ with
LR(γβ) ≤ α. Since P is compact and LR(γβ) ≤ α, by the Arzelà–Ascoli theo-
rem, up to subsequences there exists a convergent sequence {tβ} in [0, 1] with
limβ→∞ tβ = t∞ such that ‖γ̇β(tβ)‖R ≤ α for all β ∈ N, and γβ(tβ) converges to
v ∈ Tp∞M , with p∞ = limβ→∞ γβ(t∞). From continuous dependence of ODE’s
solutions on initial conditions, it is easy to see that the solution γ∞ of Dg∞ γ̇ = 0
with initial conditions γ(t∞) = p∞ and γ̇(t∞) = v is the C2-limit of the sequence
of geodesics γβ . Therefore γ∞ is a (g∞,P)-geodesic, and obviously LR(γ∞) ≤ α.

Moreover, γ∞ is nonconstant. This follows from the fact that P is an admissi-
ble general boundary condition. Hence there exists a > 0 such that LR(γβ) ≥ a,
for large β, since gβ will be in any open neighbourhoods of g∞ in Aν,P .

In order to prove that such γ∞ is a degenerate (g∞,P)-geodesic, for each β

let Jβ be a nontrivial P-Jacobi field along γβ . Then Jβ is the solution of a second
order linear ODE whose initial conditions converge to initial conditions of the
P-Jacobi fields equation along the g∞-geodesic γ∞. More precisely, for each β,
Jβ is a nontrivial P-Jacobi that in particular satisfies the gβ-Jacobi equation

Dgβ Jβ = Rgβ Jβ .

By adding a suitable multiple of γ̇β(0), one can assume that Jβ(0) is gR-ortho-
gonal to γ̇β(0). In addition, using an adequate normalization it is also possible
to assume that max{‖Jβ(0)‖R, ‖Dgβ Jβ(0)‖R} = 1. Again, up to subsequences,
the initial conditions converge,

lim
β→∞

Jβ(0) = v ∈ Tγ∞(0)M, lim
β→∞

Dgβ Jβ(0) = w ∈ Tγ∞(0)M.
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By continuity, v is gR-orthogonal to ˙γ∞(0), and

(5.9) max{‖v‖R, ‖w‖R} = 1.

The solution of the g∞-Jacobi equation along γ∞ with such limit initial condi-
tions is a P-Jacobi field J∞ that is also the C2-limit of the P-Jacobi fields Jβ .
Finally, it is not a trivial P-Jacobi field. Indeed, if J∞ was a multiple of ˙γ∞, since
v is gR-orthogonal to ˙γ∞(0), it would be v = 0 and w = 0, which contradicts
(5.9). Hence g∞ ∈ Aν,P \ Rα, which proves that Rα is an open subset.

It still remains to prove the second claim, that Rα are dense. For this we
define the following subsets of Aν,P :

Bα = {g ∈ Aν,P : all periodic g-geodesics γ with LR(γ) ≤ α

are nondegenerate},

Dα = {g ∈ Aν,P : all g-geodesics γ with LR(γ) < α

that are periodic or (g,P)-geodesics are nondegenerate}.

It is easy to see that for each α, Dα+1 ⊂ Rα. From the semi-Riemannian
bumpy metric theorem [7, Theorem 3.14], each Bα is open and dense in Aν,P .
Hence to prove that Rα is dense in Aν,P , it suffices to prove that Dα is dense
in Bα. To this aim, for each α we use the abstract genericity criterion of Propo-
sition 3.1 again. The setting is as in Case 1, with the only difference being the
domain of the generalized energy functional, which we now take as the open
subset

U = Bα × {γ ∈ ΩP(M) : LR(γ) < α}.
This means that we are dealing only with bumpy metrics, that is, metrics without
degenerate periodic geodesics.

Let us prove that the hypotheses of Proposition 3.1 are verified also in this
context, concluding the proof. Condition (a) follows again from Lemma 5.1. As
for transversality condition (b), it would only fail in the presence of strongly
degenerate geodesics (see Remark 5.11). Indeed, for all non strongly degenerate
geodesics γ0 and P-Jacobi fields J along γ0, the sufficient condition mentioned
in Remark 5.11 is verified, hence Lemma 2.3 can be applied to some interval I

with the same properties as in Case 1. This is true even if γ0 is a prime periodic
geodesic, since it cannot be degenerate once the considered domain is a set of
bumpy metrics Bα.

However, if γ0 is a strongly degenerate (g0,P)-geodesic, then it admits a Ja-
cobi field J which satisfies (b) of Definition 5.7. For this J , the right-hand side of
(5.6) is identically null for any section h of TM∗⊗TM∗. In this strongly degen-
erate case, condition (b) would not hold. Nevertheless, there cannot be critical
points of the form (g0, γ0), where γ0 is a strongly degenerate (g0,P)-geodesic.
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This follows from Proposition 5.8, since γ0 would also be a degenerate periodic
geodesic, contradicting g0 ∈ Bα. Thus condition (b) is verified and the abstract
genericity criterion applies. Therefore Rα is generic, in particular dense, in Aν,P

for each α.
This concludes the proof that GP(M) is generic in Aν,P . �

5.4. Genericity in the C∞-topology. We conclude this section showing
how to extend the notion of genericity given above to the space of metrics en-
dowed with the weak C∞-topology. Since this topology cannot be induced by
a Banach space structure on the set Γk

sym(TM∗ ⊗ TM∗) of symmetric tensors
on M , Proposition 3.1 cannot be applied. The appropriate argument uses ideas
from [9] and although it is basically contained in previous works [6], [11], will be
repeated here for reader’s convenience.

Let us rename Aν , Aν,P and GP(M) as Ak
ν , Ak

ν,P and Gk
P(M) to stress depen-

dence on Ck regularity of tensor fields. Let us set A∞ν,P =
⋂

k∈NAk
ν,P and anal-

ogously G∞P (M) =
⋂

k∈N Gk
P(M). The main result stated above, Theorem 5.10,

asserts that Gk
P(M) is generic in Ak

ν,P , for all k, and we claim it also holds in the
C∞-topology.

Proposition 5.12. G∞P (M) is generic in A∞ν,P .

Proof. Rename as Rk
α the set (5.8) of metrics in Ak

ν,P defined in the proof
of Theorem 5.10, such that all (g,P)-geodesics with gR-length less or equal to α

are nondegenerate. Let us also set R∞α =
⋂

k∈NRk
α. From the same argument

used in the proof, it follows that Rk
α is open in Ak

ν,P for k = 2, . . . ,∞. Therefore,
it is only left to prove that R∞α is dense in A∞ν,P , for all positive integers α. This
implies that G∞P (M) =

⋂
α∈NR∞α will be a countable intersection of open dense

subsets of A∞ν,P , hence it is generic in A∞ν,P .
In order to verify that R∞α is dense in A∞ν,P , for each α we argue as fol-

lows. Note that Rk
α contains Gk

P(M), which is generic (Theorem 5.10) in Ak
ν,P .

Therefore Rk
α is dense in Ak

ν,P (and open, as already mentioned). Moreover,
A∞ν,P is dense in Ak

ν,P for each k ∈ N, k ≥ 2. Observe that R∞α = A∞ν,P ∩ Rk
α,

and is therefore dense in Ak
ν,P . In fact, it is the intersection of a dense subset

with an open and dense subset of Ak
ν,P . Thus R∞α is dense in the intersection⋂

k∈N Ak
ν,P = A∞ν,P , and this concludes the proof. �
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