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EXISTENCE OF POSITIVE SOLUTIONS
FOR A SECOND ORDER

PERIODIC BOUNDARY VALUE PROBLEM
WITH IMPULSIVE EFFECTS

Jiafa Xu — Zhongli Wei — Youzheng Ding

Abstract. In this paper, we are mainly concerned with the existence and

multiplicity of positive solutions for the following second order periodic

boundary value problem involving impulsive effects

8><
>:

−u′′ + ρ2u = f(t, u), t ∈ J ′,

−∆u′|t=tk = Ik(u(tk)), k = 1, . . . , m,

u(0)− u(2π) = 0, u′(0)− u′(2π) = 0.

Here J ′ = J \ {t1, . . . , tm}, f ∈ C(J × R+, R+), Ik ∈ C(R+, R+), where
R+ = [0,∞), J = [0, 2π]. The proof of our main results relies on the

fixed point theorem on cones. The paper extends some previous results

and reports some new results about impulsive differential equations.

1. Introduction

In this paper, we investigate the existence and multiplicity of positive solu-
tions for the following second order periodic boundary value problem involving
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impulsive effects

(1.1)


−u′′ + ρ2u = f(t, u), t ∈ J ′,
−∆u′|t=tk

= Ik(u(tk)), k = 1, . . . ,m,

u(0)− u(2π) = 0, u′(0)− u′(2π) = 0,

where J ′ = J \ {t1, . . . , tm}, J = [0, 2π], ρ > 0, f ∈ C(J × R+,R+), Ik ∈
C(R+,R+), tk(k = 1, . . . ,m) are fixed points with 0 < t1 < . . . < tm < 2π,
∆u′|t=tk

= u′(t+k ) − u′(t−k ), where u′(t+k ) and u′(t−k ) denote the right and left
limit of u′(t) at t = tk, respectively.

As one kind of instantaneous mutation phenomena, the impulsive phenome-
non exists widespread in practical problems in areas of the modern technology,
and its mathematical model is always due to the impulsive differential system.
Therefore, the impulsive differential equation, developed in recent years, becomes
an important branch of the differential equations. This explains the reason that
the last two decades have witnessed an overgrowing interest in the research of
such problems, with many papers in this direction published.

When Ik ≡ 0 for k = 1, . . . ,m, problem (1.1) reduces to the periodic bound-
ary value problem of ordinary differential equation, which has been studied using
various theorems and methods of nonlinear functional analysis, see [1], [3], [4],
[7], [8], [10], [11], [16], [17], [21]. In [21], Zhang and Wang studied the following
periodic boundary value problem

(1.2)

{
−u′′ + ρ2u = f(t, u), t ∈ J,
u(0)− u(2π) = 0, u′(0)− u′(2π) = 0,

and established the existence and multiplicity of positive solutions to the problem
(1.2) under the condition that f : [0, 2π]×R+ → R+ is a Carathéodory function.

In recent years, periodic boundary value problems of nonlinear impulsive dif-
ferential equations have received considerable attention and much literature has
been published about the existence of solutions of periodic boundary problems
for impulsive differential equations, see, for example, [2], [6], [12]–[15], [18]–[20]
In [19], Zhou, Jiang and Tian considered the problem

(1.3)


−u′′ + ρ2u = f(t, u), t ∈ J ′,
∆u|t=tk

= Ik(u(tk)), −∆u′|t=tk
= Jk(u(tk)), k = 1, . . . ,m,

u(0)− u(2π) = 0, u′(0)− u′(2π) = 0.

The authors adopted a fixed point theorem on a cone to obtain some conditions
on f , Ik and Jk, which guarantee the existence of solutions for (1.3).

Motivated by the works mentioned above, in this paper, we study the exis-
tence and multiplicity of positive solutions for (1.1). Nevertheless, our method-
ology and results in this paper are different from those in the papers cited above.
We first note the problem (1.1) as a perturbation of the problem (1.2), so we
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can construct an integral operator for the corresponding linear periodic bound-
ary value problem without impulsive effects and find out its first eigenvalue and
eigenfunction. Then we establish a special cone associated with the Green func-
tion of (1.1). Finally, by employing fixed point index theory, combined with
a priori estimates of positive solutions, the existence and multiplicity of positive
solutions of (1.1) are obtained. It is of interest to note that f , Ik in (1.1) may
grow superlinearly and sublinearly. These mean that our methodology and main
results here are entirely different from those in [19], [21].

This paper is organized as follows. Section 2 contains some preliminary
results. Section 3 is devoted to the existence and multiplicity of positive solutions
for (1.1).

2. Preliminaries

Let J ′ = J \ {t1, . . . , tm},

PC(J,R) := {x: J 7→ R :

x|(tk,tk+1) ∈ C(tk, tk+1), x(t−k ) = x(tk), ∃x(t+k ), k = 1, . . . ,m}

be a Banach space with norm ‖x‖PC := sup
t∈[0,2π]

|x(t)|. Let P := {u ∈ PC(J,R) :

u(t) ≥ 0, t ∈ J}, and then P is a cone in PC(J,R).

Lemma 2.1 (see [19]). Let f and Ik be defined in (1.1). Then the problem
(1.1) is equivalent to

(2.1) u(t) =
∫ 2π

0

G(t, s)f(s, u(s)) ds+
m∑

k=1

G(t, tk)Ik(u(tk)) =: (Au)(t),

where

G(t, s) :=
1

2ρ(e2ρπ − 1)

{
eρ(t−s) + eρ(2π−t+s), 0 ≤ s ≤ t ≤ 2π,

eρ(s−t) + eρ(2π−s+t), 0 ≤ t ≤ s ≤ 2π.

Note that if f ∈ C(J × R+,R+), Ik ∈ C(R+,R+), then A:P → P is a com-
pletely continuous operator. From (2.1), we easily know that the existence of
positive solutions for (1.1) is equivalent to that of positive fixed points of A.
Define ω := 1/e2ρπ > 0 and P0 := {u ∈ PC(J,R) : u(t) ≥ ω‖u‖, t ∈ J}. Clearly,
P0 is also a cone in PC(J,R).

Lemma 2.2. A(P ) ⊂ P0 (in particular A(P0) ⊂ P0).

Proof. We note that G has the following properties

(2.2)
1

ρ(e2ρπ − 1)
<

eρπ

ρ(e2ρπ − 1)
= G(π, 0) ≤ G(t, s)

≤ G(0, 2π) =
e2ρπ + 1

2ρ(e2ρπ − 1)
<

e2ρπ

ρ(e2ρπ − 1)
.
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By the definition of A and (2.2), we have

‖Au‖ ≤ e2ρπ + 1
2ρ(e2ρπ − 1)

∫ 2π

0

f(s, u(s)) ds+
e2ρπ

ρ(e2ρπ − 1)

m∑
k=1

Ik(u(tk)).

On the other hand, by (2.2) again, we find,

(Au)(t) ≥ eρπ

ρ(e2ρπ − 1)

∫ 2π

0

f(s, u(s)) ds+
1

ρ(e2ρπ − 1)

m∑
k=1

Ik(u(tk))

=
2eρπ

e2ρπ + 1
· e2ρπ + 1
2ρ(e2ρπ − 1)

∫ 2π

0

f(s, u(s)) ds

+
1

e2ρπ
· e2ρπ

ρ(e2ρπ − 1)

m∑
k=1

Ik(u(tk))

≥ 1
e2ρπ

[
e2ρπ + 1

2ρ(e2ρπ − 1)

∫ 2π

0

f(s, u(s)) ds+
e2ρπ

ρ(e2ρπ − 1)

m∑
k=1

Ik(u(tk))
]
.

As a result, (Au)(t) ≥ ω‖Au‖, for all t ∈ J as claimed. �

Remark 2.3. The completely continuous operator A, defined by (2.1), sat-
isfies A(P ) ⊂ P0 and in particular A(P0) ⊂ P0. Hence our proof in this paper
will be carried out in P0 rather than in P .

Denote a linear operator by

(Lu)(t) :=
∫ 2π

0

G(t, s)u(s) ds, t ∈ J,

then it is easy to check that L:C(J) → C(J) is a completely continuous and
positive operator. From now on, let r(L) denote the spectral radii of L. By
Gelfand’s theorem, we have easily the following result.

Lemma 2.4. L’s spectral radii r(L) > 0.

Proof. By the definition of L, we have

‖L‖ = max
t∈J

∫ 2π

0

G(t, s) ds ≥ max
t∈J

∫ 2π

0

G(π, 0) ds = 2πG(π, 0) > 0.

Similarly,

‖L2‖ = max
t∈J

∫ 2π

0

∫ 2π

0

G(t, s)G(s, τ) dτ ds

≥ max
t∈J

∫ 2π

0

∫ 2π

0

G(π, 0)G(π, 0) dτ ds = [2πG(π, 0)]2.

Inductively, we have ‖Ln‖ ≥ [2πG(π, 0)]n, n = 1, 2, . . . Therefore, Gelfand’s
Theorem gives

r(L) = inf
n≥1

n
√
‖Ln‖ ≥ 2πG(π, 0) > 0. �
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By Lemma 2.4 and the Krein–Rutman Theorem [9], there exist two functions
ϕ ∈ P \ {0} and ψ ∈ P \ {0} with ψ(x) ≥ 0 for which

(2.3)

∫ 2π

0

G(t, s)ϕ(s) ds = r(L)ϕ(t),∫ 2π

0

G(t, s)ψ(t) dt = r(L)ψ(s),∫ 2π

0

ψ(t) dt = 1.

We denote Bρ := {u ∈ E : ‖u‖ < ρ} for ρ > 0 in the sequel.

Lemma 2.5 (see [5]). If A:Bρ∩P → P is a completely continuous operator.
If there exists u0 ∈ P \ {0} such that u−Au 6= λu0, for all λ ≥ 0, u ∈ ∂Bρ ∩ P ,
then i(A,Bρ ∩ P, P ) = 0.

Lemma 2.6 (see [5]). If 0 ∈ Bρ and A:Bρ∩P → P is a completely continuous
operator. If u 6= λAu, for all u ∈ ∂Bρ ∩ P , 0 ≤ λ ≤ 1, then i(A,Bρ ∩ P, P ) = 1.

3. Main results

Let λ1 := 1/r(L). We now list our hypotheses.

(H1) There exist c > 0 and a1 ≥ 0, a2 ≥ 0 satisfying a1 +ωa2

m∑
k=1

ψ(tk) > λ1,

such that

(3.1) f(t, u) ≥ a1u− c, Ik(u) ≥ a2u− c, for all t ∈ [0, 2π], u ≥ 0.

(H2) There exist r > 0 and b1 ≥ 0, b2 ≥ 0 satisfying

b21 + b22 6= 0, b1 + ω−1b2

m∑
k=1

ψ(tk) < λ1,

such that

(3.2) f(t, u) ≤ b1u, Ik(u) ≤ b2u, for all t ∈ [0, 2π], 0 < u < r.

(H3) There exist r > 0 and a3 ≥ 0, a4 ≥ 0 satisfying a3 +ωa4

m∑
k=1

ψ(tk) > λ1,

such that

(3.3) f(t, u) ≥ a3u, Ik(u) ≥ a4u, for all t ∈ [0, 2π], 0 < u < r.

(H4) There exist c > 0 and b3 ≥ 0, b4 ≥ 0 satisfying

b23 + b24 6= 0, b3 + ω−1b4

m∑
k=1

ψ(tk) < λ1,

such that

(3.4) f(t, u) ≤ b3u+ c, Ik(u) ≤ b4u+ c, for all t ∈ [0, 2π], u ≥ 0.
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(H5) There is a δ > 0 such that 0 ≤ u ≤ δ and 0 ≤ t ≤ 2π implies

f(t, u) ≤ ηδ, Ik(u) ≤ ηkδ,

where η, ηk ≥ 0 satisfy

η +
m∑

k=1

ηk > 0, 2πη +
m∑

k=1

ηk <
ρ(e2ρπ − 1)

e2ρπ
.

(H6) There is a δ > 0 such that ωδ ≤ u ≤ δ and 0 ≤ t ≤ 2π implies

f(t, u) ≥ ξδ, Ik(u) ≥ ξkδ,

where ξ, ξk ≥ 0 satisfy

ξ +
m∑

k=1

ξk > 0, 2πξ +
m∑

k=1

ξk > ρ(e2ρπ − 1).

Theorem 3.1. Suppose that (H1), (H2) are satisfied. Then (1.1) has at least
one positive solution.

Proof. LetM1 = {u ∈ P : u = Au+λϕ, λ ≥ 0}, where ϕ ∈ P is determined
by (2.3). We shall prove that M1 is bounded. Indeed, if u ∈M1, then we have
u ≥ Au by definition. This leads to

(3.5) u(t) ≥
∫ 2π

0

G(t, s)f(s, u(s)) ds+
m∑

k=1

G(t, tk)Ik(u(tk)).

Multiply by ψ(t) on both sides of the above and integrate over [0, 1] and use
(2.3) to obtain∫ 2π

0

u(t)ψ(t) dt(3.6)

≥
∫ 2π

0

ψ(t)

[∫ 2π

0

G(t, s)f(s, u(s)) ds+
m∑

k=1

G(t, tk)Ik(u(tk))

]
dt

=λ−1
1

∫ 2π

0

f(t, u(t))ψ(t) dt+ λ−1
1

m∑
k=1

ψ(tk)Ik(u(tk)).

Consequently,

(3.7) λ1

∫ 2π

0

u(t)ψ(t) dt ≥
∫ 2π

0

f(t, u(t))ψ(t) dt+
m∑

k=1

ψ(tk)Ik(u(tk)).

Combining this and (3.1), we find

(3.8) λ1

∫ 2π

0

u(t)ψ(t) dt ≥
∫ 2π

0

ψ(t)(a1u(t)− c) dt+
m∑

k=1

ψ(tk)(a2u(tk)− c).
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From (3.8) we obtain

(3.9) (λ1 − a1)
∫ 2π

0

u(t)ψ(t) dt+ c1 ≥ a2

m∑
k=1

u(tk)ψ(tk),

where c1 = c
(
1 +

m∑
k=1

ψ(tk)
)
. By Lemma 2.2, we have

(3.10) (λ1 − a1)‖u‖+ c1 ≥ ωa2‖u‖
m∑

k=1

ψ(tk).

Therefore,

‖u‖ ≤ c1

a1 + ωa2

m∑
k=1

ψ(tk)− λ1

=: N1, for all u ∈M1,

which establishes the boundedness of M1, as required. Taking R > N1, we
obtain

u 6= Au+ λϕ, for all u ∈ ∂BR ∩ P, λ ≥ 0.

Now Lemma 2.5 yields

(3.11) i(A,BR ∩ P, P ) = 0.

Let M2 := {u ∈ Br ∩ P : u = λAu, λ ∈ [0, 1]}. We shall prove M2 = {0}.
Indeed, if u ∈M2, we have

u(t) ≤ (Au)(t) =
∫ 2π

0

G(t, s)f(s, u(s)) ds+
m∑

k=1

G(t, tk)Ik(u(tk)),

for all u ∈ Br ∩ P . Similar to (3.6), multiply by ψ(t) on both sides of the above
and integrate over [0, 1] and use (2.3) to obtain

(3.12) λ1

∫ 2π

0

u(t)ψ(t) dt ≤
∫ 2π

0

ψ(t)f(t, u(t)) dt+
m∑

k=1

ψ(tk)Ik(u(tk)),

for all u ∈ Br ∩ P . This, together with (3.2), implies

(3.13) λ1

∫ 2π

0

u(t)ψ(t) dt ≤ b1

∫ 2π

0

u(t)ψ(t) dt+ b2

m∑
k=1

u(tk)ψ(tk).

Lemma 2.2 leads to

ω(λ1 − b1)‖u‖ ≤ (λ1 − b1)
∫ 2π

0

u(t)ψ(t) dt ≤ b2

m∑
k=1

u(tk)ψ(tk) ≤ b2‖u‖
m∑

k=1

ψ(tk),

which contradicts the condition b1 + ω−1b2
m∑

k=1

ψ(tk) < λ1. This implies M2 =

{0} and thus u 6= λAu for all u ∈ ∂Br ∩P and λ ∈ [0, 1]. Now Lemma 2.6 yields

(3.14) i(A,Br ∩ P, P ) = 1.
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Combining this with (3.11) gives i(A, (BR \ Br) ∩ P, P ) = 0 − 1 = −1. Hence
the operator A has at least one fixed point on (BR \Br)∩P and therefore (1.1)
has at least one positive solution. �

Theorem 3.2. Suppose that (H3), (H4) are satisfied. Then (1.1) has at least
one positive solution.

Proof. LetM3 := {u ∈ Br∩P : u = Au+λϕ, λ ≥ 0}. We claimM3 ⊂ {0}.
Indeed, if u ∈ M3, then we have u ≥ Au by definition. By (3.3) and (3.7), we
have

(3.15) λ1

∫ 2π

0

u(t)ψ(t) dt ≥ a3

∫ 2π

0

u(t)ψ(t) dt+ a4

m∑
k=1

u(tk)ψ(tk).

Lemma 2.2 and (3.15) yield

(λ1−a3)‖u‖ ≥ (λ1−a3)
∫ 2π

0

u(t)ψ(t) dt ≥ a4

m∑
k=1

u(tk)ψ(tk) ≥ ωa4‖u‖
m∑

k=1

ψ(tk),

which contradicts the property a3 + ωa4

m∑
k=1

ψ(tk) > λ1. This implies ‖u‖ ≡ 0,

for all u ∈M3. Hence M3 ⊂ {0}, as claimed. As a result, we have u−Au 6= λψ

for all u ∈ ∂Br ∩ P and λ ≥ 0. Now Lemma 2.5 gives

(3.16) i(A,Br ∩ P, P ) = 0.

Let M4 := {u ∈ P : u = λAu, λ ∈ [0, 1]}. We assert M4 is bounded. Indeed, if
u ∈M4, then u ≤ Au, which can be written in the form

u(t) ≤
∫ 2π

0

G(t, s)f(s, u(s)) ds+
m∑

k=1

G(t, tk)Ik(u(tk)).

By (3.4) and (3.12), we obtain

λ1

∫ 2π

0

u(t)ψ(t) dt ≤
∫ 2π

0

ψ(t)(b3u(t) + c) dt+
m∑

k=1

ψ(tk)(b4u(tk) + c).

From Lemma 2.2, we get

ω(λ1 − b3)‖u‖ ≤ (λ1 − b3)
∫ 2π

0

u(t)ψ(t) dt

≤ b4
m∑

k=1

u(tk)ψ(tk) + c1 ≤ b4‖u‖
m∑

k=1

ψ(tk) + c1,

where c1 = c
(
1 +

m∑
k=1

ψ(tk)
)
. Consequently, we see

‖u‖ ≤ ω−1c1

λ1 −
(
b3 + ω−1b4

m∑
k=1

ψ(tk)
) =: N2.
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Now the boundedness of M4, as asserted. Taking R > N2, we have u 6= λAu for
all u ∈ ∂BR ∩ P and λ ∈ [0, 1]. Now Lemma 2.6 yields

(3.17) i(A,BR ∩ P, P ) = 1.

Combining this with (3.16) gives i(A, (BR \Br) ∩ P, P ) = 1− 0 = 1. Hence the
operator A has at least one fixed point on (BR \Br)∩P and therefore (1.1) has
at least one positive solution. �

Theorem 3.3. Suppose that (H1), (H3) and (H5) are satisfied. Then (1.1)
has at least two positive solutions.

Proof. By (H5) and (2.2), we have

‖Au(t)‖ ≤
∫ 2π

0

e2ρπ

ρ(e2ρπ − 1)
ηδ ds+

m∑
k=1

e2ρπ

ρ(e2ρπ − 1)
ηkδ

=
e2ρπδ

ρ(e2ρπ − 1)

[
2πη +

m∑
k=1

ηk

]
< δ.

Consequently, ‖Au‖ < ‖u‖, for all u ∈ ∂Bδ ∩ P , and thus u 6= λAu for all
u ∈ ∂Bδ ∩ P and λ ∈ [0, 1]. Now Lemma 2.6 yields

(3.18) i(A,Bδ ∩ P, P ) = 1.

On the other hand, in view of (H1) and (H3), we may choose R > δ and r ∈
(0, δ) such that (3.11) and (3.16) hold (see the proofs of Theorems 3.1 and 3.2).
Together with (3.11), (3.16) and (3.18), we have

i(A, (BR \Bδ) ∩ P, P ) = 0− 1 = −1, i(A, (Bδ \Br) ∩ P, P ) = 1− 0 = 1.

Therefore, A has at least two fixed points, one on(BR \ Bδ) ∩ P and the other
on (Bδ \Br) ∩ P . Equivalently, (1.1) has at least two positive solutions. �

Theorem 3.4. Suppose that (H2), (H4) and (H6) are satisfied. Then (1.1)
has at least two positive solutions.

Proof. By Lemma 2.2, red for all u ∈ ∂Bδ ∩ P and t ∈ [0, 2π], we obtain
ωδ ≤ u(t) ≤ δ. Therefore, from (H6) and (2.2), we have

‖Au(t)‖ ≥
∫ 2π

0

1
ρ(e2ρπ − 1)

ξδ ds+
m∑

k=1

1
ρ(e2ρπ − 1)

ξkδ(3.19)

=
δ

ρ(e2ρπ − 1)

[
2πξ +

m∑
k=1

ξk

]
> δ.

Consequently, we find u− Au 6= λϕ, for all u ∈ ∂Bδ ∩ P and λ ≥ 0. We obtain
by Lemma 2.5

(3.20) i(A,Bδ ∩ P, P ) = 0.
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On the other hand, in view of (H2) and (H4), we may choose R > δ and r ∈ (0, δ)
such that (3.14) and (3.17) hold (see the proofs of Theorem 3.1 and 3.2). We
obtain by (3.14), (3.17) and (3.20)

i(A, (BR \Bδ) ∩ P, P ) = 1− 0 = 1, i(A, (Bδ \Br) ∩ P, P ) = 0− 1 = −1.

Hence A has at least two fixed points, one on (BR \ Bδ) ∩ P and the other on
(Bδ \Br) ∩ P , and thus (1.1) has at least two positive solutions. �
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