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ON THE SECOND ORDER EQUATIONS

WITH NONLINEAR IMPULSES.

FREDHOLM ALTERNATIVE TYPE RESULTS

Pavel Drábek — Martina Langerová

Abstract. We consider the semilinear homogeneous Dirichlet boundary

value problem for the second order equation on a finite interval with

nonlinear impulses in the derivative at prescribed points. We introduce
Landesman–Lazer type necessary and sufficient conditions for resonance

problems and generalize the Fredholm alternative results for linear opera-

tors. An interaction between nonlinear restoring force and nonlinear im-
pulses is presented.

1. Introduction

In this paper we study the second order Dirichlet boundary value problem

with nonlinear impulse effects in the first derivative of the solution. Similar

problems were considered in papers [1], [7], [13] and [9], for periodic problems

see e.g. [12]. The practical importance of models the solutions of which include

instantaneous impulses depending on the position that result in jump disconti-

nuities in velocity, but with no change in position, was stressed in papers [2], [3],

[8] and [10].
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250 P. Drábek — M. Langerová

We consider nonlinear impulses at prescribed points and study their influence

on the solvability of the Dirichlet problem. In particular, we concentrate on the

so called resonance problems and give necessary and sufficient conditions for the

existence of a solution.

Let us consider the linear Dirichlet boundary value problem

(1.1)
−u′′(x)− λu(x) = f(x), for a.e. x ∈ (0, π),

u(0) = u(π) = 0,

where λ ∈ R is a spectral parameter and f ∈ L2(0, π).

Let 0 = t0 < t1 < . . . < tp < tp+1 = π be given points and Ij : R → R,

j = 1, . . . , p, be given continuous functions. We are interested in the solutions

of (1.1) satisfying the impulse conditions in the derivative:

(1.2) ∆u′(tj) := u′(tj
+)− u′(tj−) = Ij(u(tj)), j = 1, . . . , p.

Assume that λ 6= n2, n ∈ N, i.e. λ is not an eigenvalue of the homogeneous

problem (f ≡ 0 in (1.1)), and all Ij have sublinear growth at ±∞:

(1.3) lim
|s|→∞

Ij(s)

s
= 0, j = 1, . . . , p.

Under these assumptions the problem (1.1) has a solution satisfying (1.2) for

arbitrary f ∈ L2(0, π), see Theorem 1. We call (1.1), (1.2) a nonresonance

problem.

Let λ = n2 for some n ∈ N. Then λ is an eigenvalue of the homogeneous

problem and φn(x) = sinnx is the corresponding eigenfunction. In order to

formulate the result we need to distinguish among the points tj , j = 1, . . . , p,

which belong to subintervals of (0, π) where sinnx is positive or negative and

also those which coincide with zero points of sinnx. For this purpose let us

denote

I+ =

(
0,
π

n

)
∪
(

2π

n
,

3π

n

)
∪ . . . , I− =

(
π

n
,

2π

n

)
∪
(

3π

n
,

4π

n

)
∪ . . .

Clearly, sinnx > 0, x ∈ I+, sinnx < 0, x ∈ I−. We arrange tj , j = 1, . . . , p,

into 3 sequences: 0 < τ1 < . . . < τp+ < π, τi ∈ I+, i = 1, . . . , p+; 0 < σ1 <

. . . < σp− < π, σj ∈ I−, j = 1, . . . , p−; ξk ∈ {π/n, 2π/n, . . . , (n− 1)π/n},
k = 1, . . . , p0. Obviously, we have p+ + p− + p0 = p and p0 ≤ n− 1. At first we

assume p++p− > 0. The impulse condition (1.2) is then written in the following

form:

(1.4)

∆u′(τi) = Iτi (u(τi)), i = 1, . . . , p+,

∆u′(σj) = Iσj (u(σj)), j = 1, . . . , p−,

∆u′(ξk) = Iξk(u(ξk)), k = 1, . . . , p0.
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We assume that Iτi , I
σ
j , I

ξ
k : R → R, i = 1, . . . , p+; j = 1, . . . , p−; k = 1, . . . , p0,

are continuous and sublinear functions (i.e. satisfy (1.3)). There exist limits

lim
s→±∞

Iτi (s) = Iτi (±∞), lim
s→±∞

Iσj (s) = Iσj (±∞) and the following inequalities

hold:

(1.5) Iτi (−∞) < Iτi (s) < Iτi (+∞), Iσj (−∞) < Iσj (s) < Iσj (+∞)

for all s ∈ R and i = 1, . . . , p+; j = 1, . . . , p−. Note that infinite limits are

allowed in (1.5).

Under these assumptions the problem (1.1) has a solution satisfying (1.4) if

and only if the function f ∈ L2(0, π) is such that

(1.6)

p+∑
i=1

Iτi (−∞) sinnτi +

p−∑
j=1

Iσj (+∞) sinnσj <

∫ π

0

f(x) sinnx dx

<

p+∑
i=1

Iτi (+∞) sinnτi +

p−∑
j=1

Iσj (−∞) sinnσj ,

see Theorem 4.1.

In case p+ + p− = 0 the impulses are prescribed only at zero points of the

eigenfunction sinnx and the problem (1.1) has a solution satisfying (1.4) if and

only if the function f ∈ L2(0, π) satisfies the condition∫ π

0

f(x) sinnx dx = 0,

see Theorem 4.2. The sublinearity of impulses can be relaxed and Iξk , k =

1, . . . , p0, are supposed to be arbitrary continuous functions. Necessary and

sufficient conditions for solvability of (1.1) and (1.1), (1.4) thus coincide.

Problem (1.1) with λ = n2, n ∈ N, is refered to as a resonance problem.

The condition (1.6) is then called Landesman–Lazer type condition. Similar

condition was introduced in paper [6] at the beginning of seventies and had been

generalized in hundreds of subsequent papers in the following decades.

We also note here that if the inequalities in (1.5) hold in reversed order, we

switch the role of +∞ and −∞ in (1.6) and similar result holds.

We illustrate our results on the following examples.

Example 1.1. Let λ = 1 in (1.1) and the impulse condition is of the form

(1.7) ∆u′
(
π

2

)
= arctanu

(
π

2

)
or ∆u′

(
π

2

)
= − arctanu

(
π

2

)
.

Then (1.1) has a solution satisfying (1.7) if and only if f ∈ L2(0, π) and

(1.8) −π
2
<

∫ π

0

f(x) sinx dx <
π

2
.
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Example 1.2. Let λ = 4 in (1.1) and the impulse condition is of the form

(1.9) ∆u′(ti) = arctanu(ti), t1 =
π

4
, t2 =

π

2
, t3 =

3π

4
.

In our notation t1 = τ1, t2 = ξ1, t3 = σ1. Then (1.1) has a solution satisfying

(1.9) if and only if f ∈ L2(0, π) and

(1.10) −π <
∫ π

0

f(x) sin 2x dx < π.

Example 1.3. Let λ = 4 in (1.1) and the impulse condition is given by

(1.11) ∆u′
(
π

2

)
= u3

(
π

2

)
.

Then (1.1) has a solution satisfying (1.11) if and only if f ∈ L2(0, π) and

(1.12)

∫ π

0

f(x) sin 2x dx = 0.

The reader certainly noticed that the Dirichlet problem (1.1) is linear and

the nonlinearity has been involved just in impulses so far. Let g : R → R be

a continuous function with sublinear growth, i.e. lim
s→±∞

g(s)/s = 0, the limits

g(±∞) := lim
s→±∞

g(s) exist and for all s ∈ R

(1.13) g(−∞) < g(s) < g(+∞).

Note that infinite limits are allowed in (1.13).

Consider nonlinear perturbation of (1.1):

(1.14)
−u′′(x)− λu(x) + g(u(x)) = f(x), x ∈ (0, π),

u(0) = u(π) = 0.

Under above assumption on g, problem (1.14) with λ 6= n2, n ∈ N, has a solution

for any f ∈ L2(0, π). On the other hand, problem (1.3) with λ = n2 for some

n ∈ N has a solution for f ∈ L2(0, π) if and only if

(1.15) g(−∞)

∫ π

0

(sinnx)+ dx− g(+∞)

∫ π

0

(sinnx)− dx <

∫ π

0

f(x) sinnx dx

< g(+∞)

∫ π

0

(sinnx)+ dx− g(−∞)

∫ π

0

(sinnx)− dx,

see [4, Section 1.1] for details.

Our approach allows to combine the effects of nonlinear restoring force given

by g with the presence of nonlinear impulses at prescribed points, see (1.4).

In the nonresonance case, i.e. λ 6= n2, n ∈ N, problem (1.14) with impulses (1.2)

has a solution for arbitrary f ∈ L2(0, π), see Theorem 5.1. On the other hand,
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in the resonance case, i.e. λ = n2 for some n ∈ N, (1.14), (1.4) has a solution for

f ∈ L2(0, π) if and only if

(1.16) g(−∞)

∫ π

0

(sinnx)+ dx− g(+∞)

∫ π

0

(sinnx)− dx+

p+∑
i=1

Iτi (−∞) sinnτi

+

p−∑
j=1

Iσj (+∞) sinnσj <

∫ π

0

f(x) sinnx dx < g(+∞)

∫ π

0

(sinnx)+ dx

− g(−∞)

∫ π

0

(sinnx)− dx+

p+∑
i=1

Iτi (+∞) sinnτi +

p−∑
j=1

Iσj (−∞) sinnσj ,

see Theorem 5.2.

If reversed inequalities hold in (1.13), i.e. g(+∞) < g(s) < g(−∞) for all

s ∈ R, similar condition to (1.16) holds with the role of +∞ and −∞ mutually

switched.

Example 1.4. Let us consider problem

(1.17)
−u′′(x)− u(x)− arctanu(x) = f(x), x ∈ (0, π),

u(0) = u(π) = 0.

with impulses given by

(1.18) ∆u′
(
π

2

)
= arctanu

(
π

2

)
.

Then (1.17), (1.18) has a solution for f ∈ L2(0, π) if and only if

−3π

2
<

∫ π

0

f(x) sinx dx <
3π

2
.

One can consider different situations depending on the values of g(±∞),

Iτi (±∞), Iσj (±∞). The mutual connections among these values determine the

range for f ∈ L2(0, π), given by the inequalities (1.16), for which the problem

(1.14), (1.4) has a solution.

As far as we know, the second order problems with impulses of nonresonance

type were considered in paper [11] but resonance problems have not been treated

in the literature yet. Our results can be formulated and proved also for other

types of boundary conditions like the Neumann or the periodic ones.

The reader should notice that conditions (1.6) and (1.16) may be regarded as

a generalization of the condition
∫ π
0
f(x) sinnx dx = 0. From this point of view

our results can be understood as a generalization of the Fredholm alternative for

semilinear equations with nonlinear impulses.
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2. Functional framework

We start with precise definition of the notion of the solution of (1.1), (1.2).

Following the ideas of [9], we say that u is a classical solution of (1.1), (1.2) if

the following conditions are fulfilled:

• u|(tj ,tj+1) ∈ H2(tj , tj+1), j = 0, . . . , p;

• the equation in (1.1) holds a.e. in (0, π) and u(0) = u(π) = 0;

• one sided limits u′(tj
−), u′(tj

+) exist and (1.2) holds for j = 1, . . . , p.

We say that u ∈ H1
0 (0, π) (the usual Sobolev space) is a weak solution of (1.1),

(1.2) if the integral identity

(2.1)

∫ π

0

u′(x)v′(x) dx− λ
∫ π

0

u(x)v(x) dx

= −
p∑
j=1

Ij(u(tj))v(tj) +

∫ π

0

f(x)v(x) dx

holds for any test function v ∈ H1
0 (0, π).

Note that the definitions of classical and weak solutions of (1.1), (1.4) follow

with obvious modifications.

We refer to Lemma 3.1 and [9, Section 4] to claim that every weak solution of

(1.1), (1.2) (or (1.1), (1.4)) is also a classical solution and vice versa. With this

result in hands, we can look for (classical) solutions as for solutions of certain

operator equation induced by (2.1).

Namely, we set H := H1
0 (0, π) with the scalar product

(u, v) =

∫ π

0

u′(x)v′(x) dx

and the norm ‖u‖ =
√

(u, u), and introduce the operators J, S, I∗ : H → H and

an element f∗ ∈ H as follows:

(Ju, v) =

∫ π

0

u′(x)v′(x) dx, (Su, v) =

∫ π

0

u(x)v(x) dx,

(f∗, v) =

∫ π

0

f(x)v(x) dx, (I∗(u), v) =

p∑
j=1

Ij(u(tj))v(tj), u, v ∈ H.

The problem with nonlinear impulses (1.1), (1.2) is then equivalent to the opera-

tor equation

(2.2) Ju− λSu+ I∗(u) = f∗.

It follows easily from the definition of J , S, I∗ and from the compact embedding

H ↪→ C[0, π] that J is just identity, S is linear compact operator and I∗ is

(nonlinear) compact operator. Since f ∈ L2(0, π), an element f∗ ∈ H is well

defined, too.
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To find a solution of (2.2) we use the Leray–Schauder Degree (LSD for short)

argument (see [5] for details).

3. Nonresonance case

We start with nonresonance case and prove

Theorem 3.1. Let λ 6= n2, n ∈ N, Ij : R → R, j = 1, . . . , p, be continuous

sublinear functions (see (1.3)). Then (1.1), (1.2) has a solution for arbitrary

f ∈ L2(0, π).

Proof. The properties of J , S, I∗ and f∗ imply that the LSD:

deg (J − λS + I∗ − f∗;BR, 0)

where BR := {u ∈ H : ‖u‖ < R}, is well-defined if

Ju− λSu+ I∗(u)− f∗ 6= 0

for all ‖u‖ = R. If we find R > 0 (possibly large) such that

(3.1) deg (J − λS + I∗ − f∗;BR, 0) 6= 0,

then there exists u ∈ BR which is a solution of (2.2). In order to find R > 0

such that (3.1) holds, we use the homotopy invariance property of the LSD. To

this end we introduce the homotopy

H(κ, u) := Ju− λSu− (1− κ)δSu+ κI∗(u)− κf∗

where κ ∈ [0, 1] is a homotopy parameter and δ > 0 is so small that λ+(1−κ)δ 6=
n2, n ∈ N, for any κ ∈ [0, 1]. We prove that there exists R > 0 such that for all

u ∈ H, ‖u‖ = R, and all κ ∈ [0, 1] we have

(3.2) H(κ, u) 6= 0.

Assume for a while that (3.2) holds. We then conclude

deg (J − λS + I∗ − f∗;BR, 0) = deg (H(1, · );BR, 0)(3.3)

= deg (H(0, · );BR, 0) = deg (J − (λ+ δ)S;BR, 0).

Since J and S are odd operators, by Borsuk Theorem (see [5, Chapter 5]), the

last degree is equal to an odd number. In particular,

(3.4) deg (J − (λ+ δ)S;BR, 0) 6= 0.

Hence (3.1) holds and the existence result follows.

It remains to prove (3.2). We perform the proof via contradiction. Assume

that there exist um ∈ H, ‖um‖ → ∞, κm ∈ [0, 1] such that H(κm, um) = 0. This

is equivalent to

(3.5) Jvm − λSvm − (1− κm)δSvm + κm
I∗(um)

‖um‖
− κm

f∗

‖um‖
= 0
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where we set vm = um/‖um‖. The last two terms tend to zero due to (1.3) and

the fact that f∗ is a fixed element. Passing to subsequences if necessary, we may

assume vm ⇀ v (weakly) in H for some v ∈ H and κm → κ ∈ [0, 1]. Since S is

compact, Svm → Sv (strongly) in H. Now the strong convergence Jvm → Jv

follows from (3.5). In particular, ‖v‖ = 1 and

Jv − (λ+ (1− κ)δ)Sv = 0.

Since λ + (1 − κ)δ 6= n2, n ∈ N, the above equation has only trivial solution,

a contradiction. �

4. Resonance case

In this section we deal with the resonance case. Assume that τi, σj , ξk,

Iτi , Iσj , Iξk are as in Section 1. We have the following necessary and sufficient

condition.

Theorem 4.1. Let λ = n2 for some n ∈ N. Then (1.1), (1.4) has a solution

if and only if f ∈ L2(0, π) satisfies (1.6).

Proof. 1. Necessity of (1.6). Let u be a solution of (1.1), (1.4). Then the

integral identity

(4.1)

∫ π

0

u′(x)v′(x) dx− n2
∫ π

0

u(x)v(x) dx = −
p+∑
i=1

Iτi (u(τi))v(τi)

−
p−∑
j=1

Iσj (u(σj))v(σj)−
p0∑
k=1

Iξk(u(ξk))v(ξk) +

∫ π

0

f(x)v(x) dx

holds for any v ∈ H. Take v(x) = sinnx, an eigenfunction associated with n2,

in (4.1). The left-hand side as well as the third sum vanish and we get

(4.2)

p+∑
i=1

Iτi (u(τi))v(τi) +

p−∑
j=1

Iσj (u(σj))v(σj) =

∫ π

0

f(x) sinnx dx.

Now it follows from (1.5) and (4.2) that (1.6) must hold true.

2. Sufficiency of (1.6). We use the LSD argument similarly as in the proof

of Theorem 3.1. For this purpose we define I∗τ , I
∗
σ, I
∗
ξ : H → H by

(I∗τ (u), v) =

p+∑
i=1

Iτi (u(τi))v(τi),

(I∗σ(u), v) =

p−∑
j=1

Iσj (u(σj))v(σj),

(I∗ξ (u), v) =

p0∑
k=1

Iξk(u(ξk))v(ξk).
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Problem with impulses (1.1), (1.4) is then equivalent to the operator equation

Ju− n2Su+ I∗τ (u) + I∗σ(u) + I∗ξ (u) = f∗.

Hence, our goal is to prove

(4.3) deg (J − n2S + I∗τ + I∗σ + I∗ξ − f∗;BR, 0) 6= 0

for some R > 0. To this end we introduce homotopy

H(κ, u) := Ju− n2Su− (1− κ)δSu+ κI∗τ (u) + κI∗σ(u) + κI∗ξ (u)− κf∗,

where κ ∈ [0, 1] is a homotopy parameter and 0 < δ < 2n + 1. We prove that

there exists R > 0 such that

(4.4) H(κ, u) 6= 0

holds for all u ∈ H, ‖u‖ = R, and all κ ∈ [0, 1]. The result then follows from (4.4)

and from the homotopy invariance of the LSD as in the proof of Theorem 3.1.

We prove (4.4) via contradiction. Let um ∈ H, ‖um‖ → ∞, κm ∈ [0, 1] be

such that H(κm, um) = 0. Then, setting vm := um/‖um‖, this is equivalent to

Jvm − n2Svm − (1− κm)δSvm + κm
I∗τ (um)

‖um‖

+ κm
I∗σ(um)

‖um‖
+ κm

I∗ξ (um)

‖um‖
− κm

f∗

‖um‖
= 0.

Clearly, κmf
∗/‖um‖ → 0, and also κmI

∗
τ (um)/‖um‖ → 0, κmI

∗
σ(um)/‖um‖ → 0

and κmI
∗
ξ (um)/‖um‖ → 0 due to the fact that all Iτi , I

σ
j and Iξk satisfy (1.3).

Similarly as in the proof of Theorem 3.1 we arrive at the limit equation

(4.5) Jv − (n2 + (1− κ)δ)Sv = 0

with v ∈ H, ‖v‖ = 1, κ ∈ [0, 1]. Since n2 + (1 − κ)δ < (n + 1)2 due to the

choice of δ, (4.5) may occur only if κ = 1 and v(x) = ±(1/n)
√

2/π sinnx. Let

us assume first that v(x) = (1/n)
√

2/π sinnx. Taking the inner product of

H(κm, um) = 0 with sinnx, we get

(4.6) (1− κm)δ

∫ π

0

um(x) sinnx dx+ κm

p+∑
i=1

Iτi (um(τi)) sinnτi

+ κm

p−∑
j=1

Iσj (um(σj)) sinnσj + κm

p0∑
k=1

Iξk(um(ξk)) sinnξk

− κm
∫ π

0

f(x) sinnx dx = 0.
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Notice that sinnξk = 0, k = 1, . . . , p0. Since vm(x) ⇒ (1/n)
√

2/π sinnx (uni-

formly) on [0, π] (by the embedding H ↪→ C[0, π]), we have

(4.7)

∫ π

0

um(x) sinnx dx > 0

from m� 1. It follows from (4.6) and (4.7) that

(4.8)

p+∑
i=1

Iτi (um(τi)) sinnτi +

p−∑
j=1

Iσj (um(σj)) sinnσj ≤
∫ π

0

f(x) sinnx dx.

Since sinnτi > 0, sinnσj < 0, passing to the limit for m→∞ in (4.8), we get

p+∑
i=1

Iτi (+∞) sinnτi +

p−∑
j=1

Iσj (−∞) sinnσj ≤
∫ π

0

f(x) sinnx dx,

a contradiction with the second inequality in (1.6).

If v(x) = −(1/n)
√

2/π sinnx we derive similarly a contradiction with the

first inequality in (1.6). �

Theorem 4.2. Let λ = n2 for n ∈ N, p+ + p− = 0, and Iξk : R → R
be continuous functions, k = 1, . . . , p0 (not necessarily sublinear). Then (1.1),

(1.4) has a solution if and only if f ∈ L2(0, π) satisfies

(4.9)

∫ π

0

f(x) sinnx dx = 0.

Proof. 1. Necessity of (4.9). Let u be a solution of (1.1), (1.4). Then∫ π

0

u′(x)v′(x) dx− n2
∫ π

0

u(x)v(x) dx+

p0∑
k=1

Iξk(u(ξk))v(ξk) =

∫ π

0

f(x) sinnx dx.

Choose v(x) = sinnx, an eigenfunction associated with n2, and use the fact

sinnξk = 0, k = 1, . . . , p0, to derive (4.9).

2. Sufficiency of (4.9). Elementary calculation (variation of constants for-

mula) yields that under condition (4.9) the function

w(x) = A sinnx+
1

n

∫ x

0

f(σ) cosnσ dσ · sinnx− 1

n

∫ x

0

f(σ) sinnσ dσ · cosnx,

A ∈ R, is a (general) solution of the equation −u′′ − n2u = f which satisfies

boundary conditions u(0) = u(π) = 0. Set

uk(x) = ck sinnx+
1

n

x∫
0

f(σ) cosnσ dσ · sinnx− 1

n

∫ x

0

f(σ) sinnσ dσ · cosnx,

x ∈ Ik, Ik = (ξk, ξk+1), k = 0, . . . , p0, where ξ0 = 0, ξp0+1 = π. Then ∆u′(ξk) =

Iξk(u(ξk)) if and only if we choose

(4.10) ck − ck+1 =
1

n
Iξk

(
cosnξk
n

∫ ξk

0

f(σ) sinnσ dσ

)
, k = 0, . . . , p0.
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The solution of (1.1), (1.4) then consists of functions uk, k = 1, . . . , p0, with the

choice of constants ck given by (4.10). �

Note that we have an analytic expression of the solution. It follows from

(4.10) that the solution is not determined uniquely. The constant c0 ∈ R can

be chosen arbitrarily, the values of ck, k = 1, . . . , p0, then follow from recurrent

formula (4.10).

5. Combined effect of restoring force and impulses

Weak and strong solutions of (1.14), (1.4) are defined with obvious modifi-

cations similarly as weak and strong solutions of (1.1), (1.2) in Section 2. We

introduce an operator G : H → H by

(G(u), v) =

∫ π

0

g(u(x))v(x) dx, u, v ∈ H.

Then G is a (nonlinear) compact operator due to the compact embedding H ↪→
C[0, π] and the continuity of the Nemyt’skĭı operator g( · ) : C[0, π]→ C[0, π] (see

[5, Chapter 3] for details). Problem with impulses (1.14), (1.2) is then equivalent

to the operator equation

(5.1) Ju− λSu+G(u) + I∗(u) = f∗.

Similarly, problem with impulses (1.14), (1.4) is equivalent to

(5.2) Ju− λSu+G(u) + I∗τ (u) + I∗σ(u) + I∗ξ (u) = f∗.

Using the sublinear growth of g at ±∞, obvious modifications of the proof

of Theorem 3.1 yield the nonresonance result.

Theorem 5.1. Let λ 6= n2, n ∈ N, g and Ij, j = 1, . . . , p, be as in Section 1.

Then (1.14), (1.2) has a solution for arbitrary f ∈ L2(0, π).

Proof. We use the properties of the LSD and consider the homotopy

H(κ, u) := Ju− λSu− (1− κ)δSu+ κG(u) + κI∗(u)− κf∗,

κ ∈ [0, 1], δ > 0 such that λ+(1−κ)δ 6= n2, n ∈ N, for any κ ∈ [0, 1]. Homotopy

invariance of the LSD then yields the existence of a solution of (5.1). �

As for the resonance case, we have the following assertion.

Theorem 5.2. Let λ = n2 for some n ∈ N, g, τi, σj, ξk, Iτi , Iσj , Iξk be

as in Section 1. Then (1.14), (1.4) has a solution if and only if f ∈ L2(0, π)

satisfies (1.16).
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Proof. 1. Necessity of (1.16). Similarly as in the proof of Theorem 4.1, we

arrive at∫ π

0

g(u(x)) sinnx dx+

p+∑
i=1

Iτi (u(τi)) sinnτi +

p−∑
j=1

Iσj (u(σj)) sinnσj

=

∫ π

0

f(x) sinnx dx.

Condition (1.16) then immediately follows from (1.13) and (1.5).

2. Sufficiency of (1.16). Similarly as in the proof of the Theorem 4.1, our

goal is to prove that

(5.3) deg (J − n2S +G+ I∗τ + I∗σ + I∗ξ − f∗;BR, 0) 6= 0

for some R > 0. To this end we introduce homotopy

H(κ, u) := Ju− n2Su− (1− κ)δSu+ κG(u) + κI∗τ (u) + κI∗σ(u) + κI∗ξ (u)− κf∗

with homotopy parameter κ ∈ [0, 1] and 0 < δ < 2n + 1. A contradiction

argument leads to the same limit equation (4.5). If v(x) = (1/n)
√

2/π sinnx,

we take the inner product of H(κm, um) = 0 with sinnx and get

(1− κm)δ

∫ π

0

um(x) sinnx dx+ κm

∫ π

0

g(um(x)) sinnx dx

+ κm

p+∑
i=1

Iτi (um(τi)) sinnτi + κm

p−∑
j=1

Iσj (um(σj)) sinnσj

+ κm

p0∑
k=1

Iξk(um(ξk)) sinnξk − κm
∫ π

0

f(x) sinnx dx = 0.

Using (4.7), we arrive at∫ π

0

g(um(x)) sinnx dx+

p+∑
i=1

Iτi (um(τi)) sinnτi +

p−∑
j=1

Iσj (um(σj)) sinnσj

≤
∫ π

0

f(x) sinnx dx.

Passing to the limit for m→∞ we obtain from here

g(+∞)

∫ π

0

(sinnx)+ dx− g(−∞)

∫ π

0

(sinnx)− dx+

p+∑
i=1

Iτi (+∞) sinnτi

+

p−∑
j=1

Iσj (−∞) sinnσj ≤
∫ π

0

f(x) sinnx dx,

a contradiction with the second inequality in (1.16).
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Similarly, we arrive at a contradiction with the first inequality in (1.16) in

the case v(x) =−(1/n)
√

2/π sinnx. The homotopy invariance of the LSD then

yields (5.3) and the proof is finished. �
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Plzeň, CZECH REPUBLIC

E-mail address: mlanger@ntis.zcu.cz

TMNA : Volume 44 – 2014 – No 1


