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ON THE ASYMPTOTIC BEHAVIOR
OF STRONGLY DAMPED WAVE EQUATIONS

YUNLONG DU — XIN L1 — CHUNYOU SUN

ABSTRACT. This paper is devoted to the asymptotic behavior of the semi-
linear strongly damped wave equation with forcing term only belongs
to H—!. Some refined decompositions of the solution have been presented,
which allow to remove the quasi-monotone condition f’(s) > —k. The
asymptotic regularity and existence of a finite-dimensional exponential at-
tractor are established under the usual assumptions.

1. Introduction

We consider the following strongly damped wave equation on a bounded
domain Q C R? with smooth boundary 9:
ug — Aug — Au+ f(u) =g in Q x R,
(1.1) (u(0),  u:(0)) = (uo, vo),
ulon =0,
where g € H™1 is time-independent, f € C}(R) with f(0) = 0 and satisfies the

following conditions:

(1.2) |f'(5)] < Co(1+]s*) foralls€R
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and

(1.3) liminf® > —Aq,
|s] 200 S
A1 is the first eigenvalue of —A on Hg ().
The global well-posedness of (1.1)—(1.3) in the natural energy phase space

H} () x L*(Q) was well known, for example, see [1], [2], [12]:

LemMa 1.1 ([1], [2], [12]). Let © C R3 be a smooth domain, g € H™* be
independent of time, f € CY(R) with f(0) = 0 and satisfy (1.2)—(1.3). Then,
for every T > 0 and every (uo,vo) € HL(Q) x L?(Q), (1.1) has a unique weak
solution

u € C([O,T},H&(Q)), u € C([OvT]7L2(Q)) n Lz([OaT]a H(}(Q))»

and the solution operator defines a continuous semigroup {S(t)}+>0 on HL(Q) x
L2(2). Moreover, {S(t)}+>0 satisfies the following Lipschitz continuity: for any
21,29 € HHQ) x L3(Q) and any t > 0,

(1.4) 15(t)z1 = S() 22l mp ey xr2@) < € llz1 = zall i) <22 (o)
where the constant c1 depends only on the size of ||%i|| i )x 2 ()-

The asymptotic behavior of solutions to equation (1.1) has been the object
of extensive studies via attractors, e.g. see [1], [2], [4], [5], [9], [10], [12], [13],
[17], [19] and the references therein, especially, the first result concerning ex-
istence of a global attractor in the critical case was proved by Carvalho and
Cholewa [2] whereas fractal dimension of the global attractor in the critical case
was estimated by Cholewa et al. [5].

Recently, asymptotic regularity for dissipative equations has been paid more
attention, especially for the strongly damped wave equation, e.g. see [3]-[5], [9],
[12], [13], [15] and so on for the relative results of (1.1).

For the case g € L*(Q), the authors in [12] have proved that the global
attractor is bounded in H?(Q) x H(Q), and based on such regularity results,
by using of the abstract framework developed in [6], they obtained further the
existence of exponential attractor. In [13], the authors have proved that the
global attractor is bounded in H?(Q)x H2(2) as g € L*(f2) when the nonlinearity
f(+) satisfies 1ir|n inf f/(s) > — Ay, and the authors in [13] also pointed out further

|s|—
that one can prove the regularity of attractor when f(-) only satisfies (1.2) and

(1.3), which have been realized recently in [16], [19]. In [9], the authors have
studied a more general case, that is, a quasi-linear equation and the growth of
nonlinear term can large than 5 under some additional structural conditions,
also some asymptotic regularity and the existence of exponential attractor have
been established.
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For the case g € H~!, the corresponding results are not so abundant as that
for g € L?(9).
We know that the solution of the elliptic equation

(15) —Au+ f(u)=g€ H 1,
uloq =0,
in general only belongs to H(Q) when f(-) satisfies (1.2) and (1.3). So, as
g € H™', we cannot expect any higher regularity for the first component u
of (u,v) in attractor than H}(Q2).
In [15], the author has proved some asymptotic regularity for the solution
of (1.1) under the following additional conditions: f € C? with

(1.6) If"(s)] <C(1+|s|*) forall s €R,
(1.7) f(s) > -k for all s € R.

The quasi-monotone condition (1.7) can simplify the proof largely when we con-
sider the long-time behavior, removing such condition has been seen as a “non-
trivial progress” to some extent; For example, we see that the following “good”
(smooth and linear growth) nonlinear function satisfies (1.2), (1.3) and (1.6),
but not (1.7):

A
flv) = ?11)~Sinv, for all v € R.

Hence, our first main purpose of this paper is to remove the quasi-monotone
condition (1.7) and establish a same asymptotic regularity as that in [15]. That
is, in Section 3, by using of some refined properties of the stationary solution
of (1.5) and combining with some skillful decomposition of (1.1) (see [18] for
another application to nonclassical diffusion equation), we prove the following
asymptotic regularity:

THEOREM 1.2 (Asymptotic regularity). Let f € C3(R) and satisfy (1.3) and
(1.6), g € H™! and {S(t)}+>0 be the semigroup generated by the weak solution
of (1.1) in the natural energy space H = H}(Q) x L?(Q). Then, for each positive
constant o < 1/2, there exist a subset B, positive constant v and a continuous
increasing function Qq(+): RT — R such that: for any bounded set B C H,

(1.8) disty, (S(t)B, %,) < Q. (|Blln)e™"" for allt >0,
where B, satisfying

By ={z€H: ||z~ (6(2),0)| e @)xmo(@) < Ao <00}
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for some positive constant A,; and ¢(x) is the unique solution of the following
elliptic equation

—A¢+ f(p) + (3l + Co)p = g(w) — g"(z) inQ,

1.9
( ) ¢|GQ = 07

where the constants 1,Cy come from (3.1) and (1.2) respectively, g" € L*(12)
such that ||g — g"||g—1 < n < (Co - C")~Y4/4. The constant Ay and Q,(-)
may depend on o, but v is independent of o; Cy comes from (1.2) and C’ is the
embedding constant of H}(Q) — L°(Q).

Our second purpose is to establish the existence of a finite-dimensional ex-
ponential attractor for equation (1.1) when g € H~1.

For the case g € L?(Q2), the existence of an exponential attractor has been
obtained in several papers recently, e.g. Cholewa, Czaja and Mola [5], Pata
and Squassina [12], Yang and Sun [19], Kalantarov and Zelik [9] and so on. In
these papers, due to g € L?, the asymptotic regularity of solutions can arrive
H?(2) x H?(2), consequently the nonlinear term f(u) will belong to L*(£2) by
the embedding H?(Q)) — L>(£), hence, the criterion for the existence of an
exponential attractor devised in [6], [11] can be verified easily.

For the case g € H~!, as mentioned previously, the first component u of
global attractor will only bounded in H}(2). Hence the nonlinear term f(u) only
belongs to H~!, this brings some essential difficulties in verifying the criterion
for the existence of exponential attractor; for example, the method in [12], [19]
can not directly apply to this case and further argument is needed. In order to
overcome this difficulty, in [15], the author required f(-) satisfy some additional
conditions which hold for the standard polynomial nonlinearities f(7) = 7|7|* +
lower order terms.

In Section 4, based on the asymptotic regularity result Theorem 1.2 and
some asymptotical regular decomposition, we prove the existence of exponential
attractor under the same conditions as in Theorem 1.2, that is:

THEOREM 1.3 (Exponential attractor). Under the assumptions of Theo-
rem 1.2, there exists a set £, which is compact in HE () x L*(Q) and satisfies
the following conditions:

(a) & is positively invariant, i.e. S(t)€ C & for allt > 0;

(b) dimp (&, H(Q) x L3(Q)) < oo, i.e. £ has finite fractal dimension in

Hy(Q) x L*(Q);

(¢c) there exist an increasing function @: RT — RT and o > 0 such that for

any subset B C H with ||B|l3 < R there holds

dist g1 () x£2() (S(H) B, €) < Q(R)e=*"  for allt > 0;
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(d) € = (¢(2),0) + & with &, bounded in H'T7(Q) x H°(Q) (0 < 1/2),
where ¢(x) is the unique solution of (1.9).

REMARK 1.4. Moreover, combining with the estimates about ||Vu(¢)|| and
|luee ()] given in Pata, Zelik [13], as that in Yang, Sun [19], we indeed can prove a
stronger attraction for the second component u;(t) of (u(t),u:(t)). For example,
we can improve the attraction in Theorem 1.3(c) to be dist g1 ) x 1 () (S(¢) B, )
provided that ¢ > 0.

2. Preliminaries and notation

We first recall a Gronwall-type inequality, which will be used in the proof of
Theorem 1.2, for the proof please see [8]:

LEMMA 2.1. Let A: RT — R be an absolutely continuous function satisfying
d

M) +2eA(8) < h(DAR) + F,

where € > 0, k > 0 and f;h(T)dT <e(t—8)+m forallt > s > 0 and some
m > 0. Then,

m

A(t) < A(0)e™e™=" + k% for all t > 0.

Next we recall a criterion for the existence of exponential attractor that
established in [6, Theorem 2.8]:

LEMMA 2.2 ([6]). Let X andY be two Banach spaces such thatY is compactly
embedded into X and let B be a bounded closed subset of Y. Operator S: B — B
satisfies that following condition: there exist positive constants € and K such that

||Sh1 — Sh2||y S (1 — E)th — thy +K||h1 - hQHX fOT all hl,h2 € B.

Then the semigroup {S™}2°, defined on B has an exponential attractor M inY,
that is, M satisfying the following properties:

(a) M is compact in'Y and its fractal dimension in'Y is finite, i.e.
dimp(M,Y) < o0;

(b) M is semi-invariant with respect to S, i.e. SM C M;
(¢) M attracts B exponentially, i.e. there exist C,k > 0 such that

disty (S"B, M) < Ce™"" for alln € N.

Here S™ is the n times iteration of S, and disty (-, -) means the Hausdor(f
semi-distance in'Y .

In the following we give the notation that we will use throughout this paper:
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(1) A= —A with domain D(A) = H%(Q) N H}(2), and consider the family
of Hilbert spaces D(A%/?), s € R with the standard inner products and

norms, respectively,
(-1 Vpaszy = (A2, A2 ) and || - [Ipassz) = |42 .

Especially, (-, -) and || - | denote the L?(f2) inner product and norm
respectively;

(2) H® = D(AU+3)/2) x D(A%/?), 5 € [0, 1]; Especially, H = H°;

(3) &u(t) = (u(t),us(t)) for any t > 0;

(4) Q(+), Qi(-): [0,00) — [0,00), i = 1,2,... are continuous increasing
functions;

(5) C, ¢; (i = 1,2,...) denote the general positive constant, which may
different from line to line.

3. Asymptotic regularity
We first list some properties associated with the assumptions of (1.2)—(1.3),
which will be used later in the decomposition of equation (1.1) for removing (1.7).

e From (1.3), we have that: there exist M; > 0 and A with 0 < A < Aq,
such that f(s)s > —\s? for all |s| > Mj;

e From (1.2) and £(0) = 0, we have |f(s)s| < Co(1 + |s|*)s? for all s € R,
where Cj is the constant in (1.2);

e Take

(3.1) I=1+Co(1+ M)+ A,
then
(3.2) f(s)s +1s> > s* forall s € R;
e From (1.2) and (3.1), we have that: for any s € R,
(3.3) f'(s) +1>—Cols|*.

3.1. Decomposition of the equations. Since the injection i: L?(Q) <
H~! is dense, we know that for every g € H~! and any n € (0,1), there is
a g" € L*(Q) which depends on g and 7 such that

(3.4) lg—9"llg— <n.

Hereafter we always assume that f(-) satisfies (1.3) and (1.6), n € (0,(Cy -
C'G)_1/4)/4.

Now, we decompose the solution u(t) of (1.1) corresponding to initial data
(ug, vo) as follows:

(u(t), () = S()§u(0) = Ky ()€u(0) + Dy ()€ (0),
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where K, (t)€,(0) = (w(t),w/(t)) and D, (t)&.(0) = (2"(¢),2/(t)) solve the
following equations respectively,

wy — Awy — Aw + f(u) — f(2) = g7+ (3l + Cp)z in @ x RT,

(3.5)
w(z,t)]ae =0, & (0) = (0,0),
and
(3.6) 2zt — Dze — Az + f(2) + (Bl+ Cp)z =g —¢g" in QxRT,

Z(ﬁ,t)bg =0, gz(o) = gu(o)v
where the constant  comes from (3.1).

Then, we decompose further the solution z7(x,t) of (3.6) as 27(x,t) =
v1(x,t) + ¢"(z), where ¢"(x) is the unique solution of (1.9), and v"(z,t) solves
the following equation

Vit — Avt — Av + f(Zn) — f(d)n) + (3l + 00)1} =0 in Qx R+,
(3.7) v]an =0,
£0(0) = £u(0) — (¢7(), 0).

3.2. A priori estimates. At first, from (3.2), for the solution ¢(z) = ¢"(x)
of (1.9) we have that

(3.8) 6l < llg = g"llz-+ <.
Secondly, for the solution of (3.6) we have the following estimates:

LEMMA 3.1. There exists an increasing function Q1(-) such that for any
bounded set B C H, the following estimate holds:

(3-9)  1Dy&u(0)ll < e=* Qu(IBll%) + c2llg — g" -1, for all £,(0) € B,
where the positive constant c1, co depend on ||Bll3, but are independent of 7.

PRrROOF. Set fo(-) = f(-)+ (381 4+ Cp)-. Then, from (3.2), we see that fo(-)
satisfying all conditions required in [19, Lemma 3.2], consequently the proof is
same as the proof for [19, Lemma 3.2]. O

Denote h(-) = f(-)+(314+Cp) -, then we have the following a priori estimate:

LEMMA 3.2. Letn < min{1, (Co-C"%)"1/*/(4(1 + c2))}, then for any bounded
set B C H, there exists Ty = T1(||Bl|ln,n) > 0 such that the corresponding
solutions of (1.9) and (3.7) satisfy the following estimate:

%HW(L‘)\F +2(h(v(t) + @) — h(9),v(t)) — (W (P)v(t),v(t)) =20 ast>Th,

where ¢ and v are the solutions of (1.9), (3.7) correspondingly, and C' is the
embedding constant of H}(Q) — L°(Q).
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PrOOF. From (3.3) we have that
B'(s) > 214 Cy — Co|s|* for all s € R,
therefore,
2(h(v(t) + ¢) — h(9),v(t))
>2(2 + Co)[v(®)|* — 2Co /Q [ro(t) + ¢[*o(t)] da

> (41 +2Co) lv(1)]|* — 2Co2° /Q(Iv(t)l4L +olD)o(t)? do

> (41 +2Co) v (B)]|* = 32Co - C"°(|[Vo(@)[[* + V| ) IVu(t)]|.
On the other hand, from (1.2) we have |1/(s)| < Co(1+ |s|*) 4+ 3l + C, and then

(B (9)v(t), v(t)) < Collv(®)]* + CoC (Ve[ *[Vu(t)||* + (31 + Co) v (t)[|.
Hence, from (3.8) and (3.9), by taking 7 small enough (e.g. n < (Co - C"6)~1/4/
(4(1 + ¢3))) and T large enough (e.g. e=7Q,(||B|l3) < 1), we have that
%I\W(t)ll2 +2(h(v(t) + ¢) — (@), v(t)) — (W' ()v(t), v(t))
> %HW(L‘)II2 +o@®)]1 = 33CoC (VoI + Vel ) [ Vo) ? = 0

for all t > T. O

Consequently, as ) < (Cp-C"8)~1/4/(4(1 4 ¢3)), similar to Pata and Zelik [14]
and Sun [15], for the solution of (3.7) we have:

LEMMA 3.3. Let 1 < (Co - C")~Y4/(4(1 + ¢3)), then there exist positive
constant ki and increasing function Q2( ) such that for any bounded set B C H,
the following estimate holds:

(3.10) (v, 1), ve(@, 1))l < Q2(|IBlla)e ™", for allt >0, &,(0) € B.

PROOF. At first, applying the usual multiplier method (e.g. see [2], [12]) we
can obtain that there is a constant M = M (|| B||%) such that

(3.11) [(v(z, t),ve(x, t))||w < M forallt >0, &(0) € B.

Now, similar to [14], for € € (0, 1) to be determined later, define the functional
A(t) = VoI +lloe O +el Vo) P +2(h(2) = 1(8), v)+2¢(vr, v) = (W (¢)v, v).
Then, from Lemma 3.2 and by taking e small enough, we have

1
A#) > lI&@®)5 forall t > T1, &(0) € B,
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where T = T4 (|| B||,,) is given in Lemma 3.2. Therefore, same as that in [15,
Lemma 4.3], multiplying (3.7) by v;(t) 4+ ev(t) we have that (note that z; = vy
and ¢; = 0)

LA+ M)+ T+ S[Vu)? = 2((H(2) — W(9) 0,0,

where
D =2|Vo(6)]* + %HVU@)H2 = 3efluell® — 26% (v, v) — €| Vul|* + (W (), v?).
It is easy to see that I' > 0 as e small enough, and from (1.6) we have
(K (2) — W ()2, v) < SIV + SIV2IPA,
where the constant ¢ depends only on || Bl|3 +|V¢||. Hence, applying Lemma 2.1
and noticing A(T1) < Q5(|| Dy (T1)B||#), we have that
I(w(a, 1), v, £) ]l < Q5 (| Dy(T1)Bllw)e ™ ", for all t > T1, &(0) € B,
which, combining with (3.11), implies the estimate (3.10) immediately. O

REMARK 3.4. Note that the constant k; in Lemma 3.3 depends on both
| B|l3 and n (through 7).

3.3. Proof of Theorem 1.2. After obtained Lemma 3.3, applying the
methods introduced in [7], [12], [20], the remainder of the proof are completely
same as that in [15, Lemmas 4.4-4.8] (Note that in [15], the quasi-monotone
condition (1.7) only be used to establish the a priori estimate [15, Lemma 4,3]).
More precisely, we can finish our proof by the following steps:

Step 1. At first, about the solution of equation (3.5), by the usual multiplier
method, we can deduce the following estimates: For every bounded subset B C H
and any o € [0,1/2), there exist positive constant v, (which depends only on
| Bll3 and o) and an increasing function Qg jjgn|/(-) such that

(3.12) 1y (£)€u(0) 132 = [l (" (8), w7 (1)) ll2er < Qorigny (I Bllae)e”",
for all t > 0, &,(0) € B.

Step 2. Secondly, based on Lemma 3.3 and the estimate (3.12), we can
decompose the solution &, (t) = (u(t),u:(t)) of (1.1) as following: for any € > 0,

u(t) = v1(t) + wi(t), forallt >0,
where v1(t) and w (t) satisfy the following estimates:
t
(3.13) / Vo (7)||?dr <e(t—s)+C. forallt>s>0,
S
and

(3.14) A+ 20 ()| < K. for all £ > 0,
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with the constants C. and K. depending on ¢, ||£,(0)|% and ||g||g-1-

Step 3. Finally, follows the idea of Zelik [20], the estimates (3.13)-(3.14) allow
us to overcome the difficulty brings by the critical nonlinearity and obtain that

1Ky (66 (0) 130 = 1w (&), wi () 3e < TyBlla,lign o

for all £ > 0 and &,(0) € B, for some positive constant Jj g, g7],0; and then we
can obtain the exponential estimate (1.8) by applying the attraction transitivity
lemma devised in [7]. The details are similar to that in [12], [15]. O

4. Exponential attractor

The main purpose of this section is to construct an exponential attractor of
{S(t)}+>0 in H by the abstract method devised in [6], [11].

We first give a decomposition results about w(t), which will be used to con-
struct the exponential attractor, its proof are similar as the proof of Theorem 1.2
(or see [15, Lemma 4.9] for a outline of its proof), here we omit it.

LEMMA 4.1. Under the assumption of Theorem 1.2, for each o € [0,1/2) and
for any bounded (in H?) subset By C H7, if the initial data &,(0) € ¢(x) + By,
then the solution u(t) of (1.1) also satisfies a similar estimate, more precisely,
we have

1S()€u(0) = (6(2), 0)l[3> = [I(u(t), ue(t) = (6(2),0)[3r < Ky o

for allt >0, £,(0) € ¢(x) + By, where the constant Kp, , depends only on the
H? -bound of By and o.

For each fixed o € (0,1/2), denote
_—
(4.1) B, =JSt)%, ,
t>1
where 4, is the set obtained in Theorem 1.2. Then, from Lemma 4.1 we know

that [|By — (¢(z), 0)[2- < oo.
For any two initial data &,,(0) € B, and the corresponding solution

(' (1), uy(8)) = S(t)&u, (0), i=1,2

set (u(t),ue(t)) = S(t)&uy (0) — S(t)&u,(0), then (u(t),u:(t)) solves the following
problem:

)
)=

Uy — AUy — A+ f(u') = f(u®) =0,
mag =0.

Then we have the following result about the solution of (4.2), which is a key
step in constructing the exponential attractor:
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LEMMA 4.2. Let 0 € (2/5,1/2) be fivred and B, be defined by (4.1). Then
there exist a time t* > 0 and positive constant K such that for any two initial
data &,,(0) € By, i = 1,2, the following estimate holds:

1S () &ur (0) =S () &u, (0) [l < %Hﬁul(0)—Eu2(0)||w+KII£u1 (0)=&uz (0) 134

where both t* and K depend only on the bounds ||By — (¢(x),0)||3 and o.

PRrROOF. Multiplying (4.2) by A%(u; + o) and integrating oven 1 (where
a € (0,1) is a small constant which will be determined later), we obtain that
d o o
(4.3) %(HAGQ(W +aa)|* + (1+ )| AU %))
+ 2| ACTO2G, |2 4 20| AT/ 252
< 20| A/, | + 202|477 4225 |

+ 2/Q(f(uQ) — f(u')) - A%y dx + 2a/ (f(u?) = f(ub)) - AU da.

Q

Note that for any ¢ € D(A1+9)/2) we have [|A(+9)/2p||2 > A\||A7/2p||?, so
we can take o small enough such that, for all o, gy € D(A1+9)/2),

(4.4) 20| A7 [P + 202 | A7 %01 ||| A7 20|
< AU 2oy |12+ af | AT+ 20002
and
(e 1 o
(4.5) al| A7 % || < §||A(14r 204]].

In the following, we fixed « such that (4.4)—(4.5) hold, and begin to estimate
the nonlinear term. At first, from (1.2) we have
(4.6) [f(u?) = fh)] < Co(1+ |u' + (1= 0)u?|)|u’ —u?|
= Co(1+ Ju' + (1 = O)u?|")al,

1

where 6 € (0,1) depends on ¢, u' and u?.

Now, applying the regular decomposition Lemma 4.1, for any € > 0, we can
decompose u’(t) (t > 0 and i = 1,2) as u’ = ul + ¢. with

(4.7) ul(t)||give < M, < oo, forallt>0, &, € B,
and

(4.8) el < e,
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where the constant M, . depends only on the bounds ||B, — (¢(x),0)||%- and €.
Therefore, by using of (4.6) and Hélder inequality, we have

@9) 2 [ (f?) ~ fu) - A°Tuda
Q
<2Cq [ (L4 lub + (1= 002 + 6. )il - | 4”7 do
Q
< CUNATTN + 1ellLe - 1l o/0-200 | 472Gyl o420
oo 1 - A2 o420 )

Hence, noticing that 12/(1 — o) < 6/(1 — 20) for each o € (2/5,1/2), then apply-
ing Cauchy-Schwarz inequality and Sobolev embedding H'*7(Q) — L8/(1=20)
HY(Q) < L5(), we can deduce from (4.7)—(4.9) that

(4.10) 2/(f(u2) — F(uh) - A7, do
Q
< C(Cel])? + el| A+, |2
+ e[| ACHO2| | AT 2, |+ M2 ]| - AT 2, )
<Cen., |[l]® + - AT 20, |2 4 | ATH25)1%).

Similarly, we can obtain that

(4.11) 2a/(f(u2) — f(uh)) - A%udx
Q
< aCon, |[ul]* + & - aC([|ATF25, |2 4 | AUT27)2),

Consequently, insetting (4.10)—(4.11) into (4.3) and also using (4.4)—(4.5), we
obtain

d - ~ ~
(4.12) @(HA””(W +a@)|* + (1 + o) | AN 2] ?)
+ ||A(1+U)/2ﬂt”2 —‘rO[HA(H_U)/QﬂHQ
< Caeuont  Mal)? + & - Co (AT, 2 + | ACT/25)2)
for all ¢ > 0. Note that « is fixed, and so we can take € small enough such that

e+ Ca(ATF 20|12 4 | ATH20)1%) < S(|ATFD20,1° + al| AT 25 2).

N |

Hence, we finally deduce that (using the embedding || - || < C|| A2 - |)):

d _
aEa(t) + CoEq(t) € Coeroon., ||Ul)® for all t >0,

where F3(t) is defined as

(4.13)

(4.14) Eq(t) = |A7"?(@(t) + aa(0))|* + (1 + o)A+ 2a(t)|?,



STRONGLY DAMPED WAVE EQUATIONS 173
which satisfying (notice a € (0, A\1))

(4.15)  caxn, (1472 @07 + | AT 2a(0)|?) < Ea(t)
< G (14720, (1)) + | AN 20 (1) )12),

where the positive constants ¢4, and Cq x, are independent of ¢ and w. Then
apply the Gronwall lemma to (4.13), we can obtain that

t
(4.16) Ey(t) < e*C”tEa(O) + Ca,s,(,,Meyge*C“t/ eC‘*SHﬂ(s)H2 ds,
0

which, combining with (4.15) and the Lipschitz continuity (1.4), implies that

- - Cy
14722, (1)) + | AT 2q(t)|? < e Cat . 2220

COL,Al
e2¢21t -1

(1472 0) 2 + | AN Za(0)|?) + Ca e oo+ 5 I€a(0) 3
Cl : Ca,Al

Hence, we can finish our proof by taking t* as a time which satisfies

2, [e=Cat* . Cany < 1
Ca,)\l 2
and taking K as
2c1t* 1
9 e
K = CQ)E7U)ME,U : . [:l
2¢1 - Cany

Set B, = B, — (¢(x),0) C H, and define the shift operator T on B, as
follows:
T:B, - B,,
T(£u(0) = (¢(2),0)) := S(t*)(£u(0)) — (¢(),0), for all £,(0) € By
Then, we can see that T satisfies all of conditions in Lemma 2.2 with X = H,

Y =H" (6 €(2/5,1/2)) and B = B, C Y. Hence, we know that the semigroup
{T"}22 , has an exponential attractor M C B, which satisfying

(4.17)

M is compact in H° and dimp(M\, HT) < oo,
(4.18) TMc M,
de,k >0, distye (T"(B;),M\) <ce "™ for any n € N.
Now, set M = M+(¢(),0), then from (4.17)—(4.18) we can see that M C B,
satisfying
M is compact in H? and dimp (M, H?) < oo,
(4.19) St )M M,
Je, k>0, distye(S(nt*)(B,), M) < ce™ "™ for any n € N,
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which certainly implies that
M is compact in H and dimp (M, H) < oo,
(4.20) St )M C M,
Jeg, k>0, disty (S(nt*)(Bg),M) < cpe "™ for any n € N.

In order to passing from the discrete semigroup {S(nt*)}52; to the continu-
ous case {S(¢)}+>0, we need the following Lipschitz continuity:

LEMMA 4.3. The mapping (t,&,(0)) — &, (t) is Lipschitz continuous on
[0,t*] x B,.

PRrROOF. For any &,,(0) € By, t; € [0,t*], i = 1,2, we have

15(t1)€uy (0) = S(t2)€u, (0)[|2
SIS ()€, (0) = S(t1)€u, (0) I3 + [[5(81)€u, (0) — S (t2)&u, (0) [

This first term has been estimated, e.g., see [12, Theorem 2]; for the second term,

we have

1S (01)60s (0) — S(t2)60, (0 ||H_\ /

(06, 0)

H ’

H (t)€u, (0)) t1 — taf,
Lo (0,t*;H)
and note that ||-2(S(t)&u, ( ))HLw(o,t*;H) has been estimated in [13]. O

Now we are ready to prove Theorem 1.3.

ProoF oF THEOREM 1.3. By using of the attraction transitivity lemma

devised in Fabrie et al. [7] and taking &€ = |J S(t)M (where M is given
te[0,t*]

n (4.20)), then we can verify from (1.8), (4.20) and the Lipschitz continuity

given in Lemma 4.3 directly that £ is an exponential attractor of {S(¢)}1>0 in H
and satisfies all conditions in Theorem 1.3. O
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