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REVIEW

R. GREGORY TAYLOR

Early on, a certain consensus established itself regarding the Church–
Turing Thesis (CT), according to which every effectively computable
function is Turing-computable (partial recursive). Nonetheless, a range
of views regarding its status has developed over the intervening decades,
and this anthology provides a timely survey. It consists of twenty-two
articles by twenty-five different authors. The articles range in length
from six to fifty-three pages and concern issues in the philosophy of
mind, philosophy of mathematics, history of mathematical logic, theory
of computation, or theory of programming languages. Only three of
the papers—those by Blass and Gurevich, Odifreddi, and Sieg—have
appeared previously.

The quality of the articles published here is very uneven. Five out
of twenty-two—Bridges, Fitz, Horsten, McCarty, and Turner, to name
names—are excellent in our opinion and even well written. Most of
the others have something of interest. But a few range over very fa-
miliar territory without offering any clear point of view. Some—even
one of our favorites—are patently the result of appending this or that
regarding CT to a rehearsal of previously published ideas—however
interesting—so as justify inclusion in this anthology. There are oc-
casional problems with English. Oddly, the articles appear in lexico-
graphic order using (first) author’s last name with the result that the
volume is devoid of internal organization. A two-paragraph preface
helps not at all in this regard, and there is a name, but no topic, index.

We shall say at least a few words regarding each article and, along
the way, group them thematically indicating dependencies. (Our clas-
sification is admittedly somewhat arbitrary due to the fact that several
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of the articles fall under at least two of our headings.) We start with
the philosophy of mind.

I. Minds, Machines, and (Hyper)Computation

(1) B. Jack Copeland, Turing’s Thesis, pp. 147–74.
(2) Andrew Hodges, Did Church and Turing Have a Thesis about

Machines?, pp. 242–52.
(3) Darren Abramson, Church’s Thesis and Philosophy of Mind,

pp. 9–23.
(4) Selmer Bringsjord and Konstantine Arkoudas, On the Provabil-

ity, Veracity, and AI-Relevance of the Church–Turing Thesis,
pp. 66–118.

(5) Stanis�law Krajewski, Remarks on Church’s Thesis and Gödel’s
Theorem, pp. 269–80.

Logicians of the thirties used the term ‘computability’ to mean ‘ef-
fective computability’ exclusively, and ‘computing machine’ likewise
meant a physical device mimicking the activity of human computers.
The articles of Copeland and Hodges concern their recent debate re-
garding whether Church and Turing considered hypercomputation pos-
sible, whereby computation exceeding the capacity of a universal Tur-
ing machine is intended. According to Hodges both men excluded this
possibility at least initially, holding that any physically computable
function is Turing-computable (henceforth PCT). Copeland disagrees.
According to him Church’s pronouncements are noncommittal with
respect to this issue, whereas Turing’s remarks regarding ‘digital com-
puters with a random element’ as well as machines that learn indicate
that the behavior of such a machine might surpass that of any Turing
machine.

Searle’s Chinese Room Argument may be taken to show that our
mental life—specifically, understanding Chinese—involves hypercom-
putation and, by CT, thereby goes beyond what is effectively com-
putable. This in turn runs counter to the stronger claims of the Ar-
tificial Intelligence community, which was Searle’s target. Abramson
begins by arguing, following Copeland’s work elsewhere, that a certain
generalization of Searle’s original argument conflates PCT with CT.
Otherwise, he evaluates several arguments, based on other thought ex-
periments, to the effect that human minds hypercompute. All these
arguments fail according to Abramson.

In the longest article within the collection, authors Bringsjord and
Arkoudas argue against Mendelson’s claim that CT is a potentially
provable proposition and consider arguments against its falsity and as
well as objections to those arguments. In a final section the question
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whether CT entails a form of computationalism is taken up, whereby
one means the view that cognition is computation. Against Copeland
and siding with Searle the authors argue that CT has as consequence
a weak version of computationalism according to which brain activity
can be simulated by a Turing machine.

Krajewski explores real and apparent links between CT and Gödel’s
First Incompleteness Theorem. He begins by reviewing Kleene’s 1987
proof of a weak form of Gödel incompleteness that only appears to rely
on CT. A second section discusses informal use of CT and its con-
trapositive “in connection with Gödel’s Theorem.” But the latter is
playing no role here that we can see, and a strained analogy between
CT and Gödel’s Completeness Theorem is unsuccessful in our opinion.
(What does the author mean by “translation of algorithms to the lan-
guage of [number-theoretic] functions” on page 274?) A final section
discusses the possible role of CT in Lucas–Penrose arguments.

II. Alternative Formulations of CT

(1) Charles McCarty, Thesis and Variations, pp. 281–303.
(2) Leon Horsten, Formalizing Church’s Thesis, pp. 253–68.
(3) Douglas S. Bridges, Church’s Thesis and Bishop’s Construc-

tivism, pp. 58–65.

In just what sense can a pocket calculator be said to compute the ad-
dition function given that permissible addends cannot exceed twenty
decimal digits, say? This is the question that motivates McCarty’s
contribution. The problem with a counterfactual approach lies in de-
limiting a range of counterfactual circumstances and device behaviors
within them that are strictly relevant. It is our calculator qua logi-
cal machine in Wittgenstein’s sense that computes the full addition
function, and McCarty’s principal goal is formalization of a notion
of physical computing device qua logical machine that validates both
modal and nonmodal versions of Church’s Thesis. Given denotational
semantics for programming languages and the fact that there are but
finitely many physical computing devices, he conjectures the existence
of a primitive recursive predicate M(e,m, n, p) having, roughly, the fol-
lowing property: for each device D, there is a function {e} tracking D’s
resource requirements such that the function computed by D, assum-
ing device input of length not exceeding log10m and device output of
length not exceeding log10n, takes m to n just in case ∃p(M(e,m, n, p))
holds. (We are to think of p as (the encoding of) a program with input
m and output n.) Ultimately, the following modal version of Church’s
Thesis holds in the intended interpretation of a certain extension of
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PA2 with modal operators � and ♦:

∀f∃e�∀m,n(♦(〈m,n〉 ∈ f) ↔ ∃p(M(e,m, n, p))).(�CT)

(Roughly, �CT says that each function computed by a physical de-
vice qua logical machine has a tracking function with index e such
that, given any resource circumstance and any natural numbers m
and n, there is a circumstance involving (possibly) expanded resources
whereby f(m) = n just in case ∃p(M(e,m, n, p)) holds.) Certain non-
modal structures can be derived from the modal structure (interpre-
tation) mentioned above, and a nonmodal version of Church’s Thesis
holds in them (Corollary p. 294). McCarty takes his findings to justify
investigation of modal arithmetic. In particular, his results suggest
that when counterfactual features of physical devices concern anything
but quantity of resources, then �CT fails.

Most, but not all, philosophers and logicians hold that CT is not
mathematically provable simply because it is not a purely mathematical
proposition. On the other hand, the situation would likely change
greatly if CT were to be expressed in a suitably interpreted formal
language. This would mean variables ranging over algorithms, which
lack clear identity criteria. In light of this problem Horsten’s stated
goal is to seek approximations of CT, regarded as hypothesis, in formal
contexts and to then see what propositions can be derived from the
approximations. CT is approximated in an intuitionist setting by the
schema

∀x∃yA(x, y) → ∃e∀x∃m∃n[T (e, x,m) ∧ U(m,n) ∧ A(x, n)],
(ICT)

where A(x, y) is any formula of the language of first-order intuitionist
arithmetic. Very briefly, ICT says that any method witnessing the
truth of its antecedent may be uniformly transformed into a Turing
machine (sequence of equations) e whose computation determines that
A(x, n) holds. Horsten argues that reasoning regarding ICT provides
weak evidence that CT is conservative over PA and thus that informal
appeals to CT in recursion-theoretic arguments are nonessential.

S. Shapiro’s intensional (or epistemic) mathematics S4PA comprises
PA with defining equations for primitive recursive functions together
with the S4 axioms of modal logic formulated in the language of arith-
metic with operator �. In this setting, Horsten considers

�∀x∃y�A(x, y) → ∃e∀x∃m∃n[T (e, x,m) ∧ U(m,n) ∧ A(x, n)],
(ECT)

where now A(x, y) is any formula of the language of S4PA and operator
� is taken to mean “it is (reflexively) provable that.” As it stands, ECT
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does not invoke the notion of algorithm. So Horsten suggests adopt-
ing a thesis (p. 259) stating that any proof witnessing the truth of
�∀x∃y�A(x, y) must involve presentation of an algorithm that, given
natural number x, finds natural number y such that A(x, y). Again,
ECT taken as hypothesis within S4PA has been shown to be arithmeti-
cally conservative over PA, which Horsten takes to be weak evidence
that the same is true of CT.

In the context of Bishop’s constructive mathematics, the effect of
Church’s Thesis can be obtained by adjoining Richman’s Axiom (CPF)
stating that there is an enumeration of the set of all partial functions
from N to N with countable domains. (Of course, “enumeration,”
“function,” and “countable” must be understood constructively.) CPF
can be used to show that, as a consequence of Specker’s Theorem, there
exists a bounded continuous mapping on [0, 1] that is not uniformly
continuous. It follows that one cannot hope to show in constructive
mathematics unsupplemented by other principles that every bounded
continuous mapping on [0, 1] is uniformly continuous. Bridges cites sev-
eral other examples of the way in which Church’s Thesis in the guise
of CPF reveals the limitations of constructive mathematics.

III. CT and Conceptual Analysis

(1) Andreas Blass and Yuri Gurevich, Algorithms: A Quest for
Absolute Definitions, pp. 24–57.

(2) Wilfried Sieg, Step by Recursive Step: Church’s Analysis of Ef-
fective Calculability, pp. 456–90.

(3) Stewart Shapiro, Computability, Proof, and Open-Texture, pp. 420–
55.

(4) Oron Shagrir, Gödel on Turing on Computability, pp. 393–419.
(5) Adam Olszewski, Church’s Thesis As Formulated by Church—

An Interpretation, pp. 383–92.
(6) Roman Murawski and Jan Woleński, The Status of Church’s

Thesis, pp. 310–30.

The article of Blass and Gurevich is largely given over to an in-
formal specification of their Abstract State Machine (ASM) model of
sequential computation whereby each state of an ASM is a first-order
structure. They begin with some remarks regarding CT, which they
take to clarify the notion of computable function without fully deter-
mining the concept of an algorithm since “there is more to an algorithm
than the function it computes.” They have in mind a broad class of
interactive algorithms including randomized algorithms, nondiscrete al-
gorithms such as ruler-and-compass algorithms, as well as algorithms
on abstract structures such as finite graphs. According to the authors,



200 R. GREGORY TAYLOR

Kolmogorov–Uspensky machines followed by the pointer machines of
Knuth and Schönhage come closer to capturing the class of sequential
algorithms than does Turing’s model. But it is left to the ASM model
to formalize the full concept of sequential algorithm.

Sieg’s oft-cited paper sets out to explain why Church’s first published
formulation of CT appeals to Gödel’s notion of general recursiveness
rather than Church’s own notion of λ-definability. The latter’s letters
to Bernays in particular shed much light according to Sieg. In a fi-
nal section Church’s analysis is compared with that of Turing, and a
tenuous analogy with Dedekind on geometric continuity is described.
Sieg’s article reminds the logic community of something important and
forgotten concerning not Church, but rather, Turing, namely, that Tur-
ing’s seminal paper of 1936 presents an argument for the cogency of his
model of computation. Sieg’s original discussion is found in his earlier
“Mechanical Procedures and Mathematical Experience” (in A. George,
ed., Mathematics and Mind, Oxford, Oxford University Press, 1994,
pp. 71–140); a new postscript to the paper in the volume under re-
view summarizes a subsequent shift in Sieg’s thinking regarding the
role of “Turing’s central thesis” within Turing’s argument. (Accord-
ing to that thesis any mechanical procedure can be carried out by a
human computor satisfying certain determinacy, boundedness, and lo-
cality conditions.)

The philosopher Friedrich Waismann noted that most of our empir-
ical concepts are “open-textured” to the extent that “there are always
. . . directions in which [such concepts have] not been defined” (“Verifi-
ability” in A. Flew, ed., Logic and Language, Oxford, Basil Blackwell,
1968, p. 120). Thus Waismann held that there is no need to decide
whether Einstein’s use of the word “simultaneous” constitutes intro-
duction of an altogether new concept, a change in a concept in current
use, or extension of that concept to new cases: the word “time” is
not in fact governed by precise rules. Shapiro argues that mathemat-
ical concepts such as number, set, computability, and recursiveness
(Turing-computability) have been characterized by a similar openness
at least in the past. By implication he follows Mendelson in rejecting
the idea that CT cannot be proved mathematically because it pairs
an imprecise philosophical notion with a precise mathematical notion.
Indeed, Shapiro concludes that CT is now “established with as much
rigor as anything in (informal) mathematics,” crediting the analyses of
Turing, Gandy, and Sieg for the “sharpening” of a pre-theoretic notion
of computability.

After reviewing Turing’s argument for CT, Shagrir reminds us that
Gödel initially rejected CT but was later convinced by Turing’s work
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that CT is in fact true. Then, in 1972, Gödel published a very short
paper containing a section entitled “A Philosophical Error in Turing’s
Work” in which he appears to retract earlier endorsements. Shagrir
concurs with J. Webb’s suggestion that Gödel believed that “all Turing
was really analyzing was the concept of ‘mechanical procedure,’ but in
his arguments for the adequacy of his analysis he overstepped himself by
dragging in the mental life of a human computer” (“Introductory Note
to Remark 3 of Gödel 1972a” in K. Gödel, Collected Works, Vol. II,
S. Feferman et al., eds., New York, Oxford University Press, 1990,
p. 302). Specifically, Gödel rejected Turing’s finiteness constraint on
the number of states of mind. But Gödel never ceased to believe that
Turing’s analysis of computability was on the mark.

Olszewski notes that Church’s 1936 formulation of CT may be inter-
preted in two ways. According to one interpretation it is an empirical
proposition identifying two concepts whose extensions are somehow
fixed. On a second normative reading, CT stipulates that the concept
effectively calculable function should henceforth be identified with the
concept partial recursive function. Olszewski stresses the fact that the
effectively calculable functions properly contain the effectively calcu-
lable number-theoretic functions. But it seems clear that, even in his
abbreviated statements, Church has in mind only the latter. Olszewski
bemoans the lack of progress with respect to the standard interpreta-
tion of CT as an empirical hypothesis and concludes that the usual
formulation of CT is therefore inadequate. But he makes no sugges-
tions for how philosophers and logicians might better proceed.

Murawski and Woleński opt for the standard view that CT is best
regarded as an “explication” of an intuitive concept of effectively cal-
culable function. (Their discussion seems to rule out its simultaneously
being an empirical claim.) They distinguish several ways in which the
analytic–synthetic and a priori–posteriori distinctions can be under-
stood and then claim that CT is analytic in one sense and a priori in
one sense. But their discussion indicates no engagement with a large
philosophical literature. For example, following Kant one typically
holds that it is true propositions that are analytic (or not) and judg-
ments that are a priori (or not). According to Murawski and Woleński,
in contrast, it is sentences, specifically theorems of first-order logic, that
are analytic (in their “absolute” sense). This means that English “all
bachelors are male” fails the test. Further, CT is claimed to be ana-
lytic in a theory-relative sense without its every becoming clear what
the relevant theory is supposed to be.
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IV. Arguments for and against CT

(1) Janet Folina, Church’s Thesis and the Variety of Mathematical
Justifications, pp. 220–41.

(2) Elliott Mendelson, On the Impossibility of Proving the “Hard
Half” of Church’s Thesis, pp. 304–309.

(3) Carol E. Cleland, The Church–Turing Thesis: A Last Vestige
of a Failed Mathematical Program, pp. 119–46.

As for the status of CT, many positions have been staked out: it
is held to be proved, provable but not yet proved, potentially prov-
able, unprovable but true, contingent but possibly true, and even false.
Folina argues that this situation is the result of CT’s being under-
stood in different ways as well as there being different senses in which
a proposition can be “proved.”

Generally speaking, those who doubt that CT is the sort of thing that
can be proved have cited its pairing of a “precise” with an “imprecise”
concept. Mendelson asks that we consider the nature of the relativism
inherent in this notion of precision: it concerns not the concepts basic
to the theoretical context within which a notion is defined but, rather,
the actual definition of that notion in the context. He suggests adding
to the language of ZF a predicate with intended meaning “is an (effec-
tively) computable function” and then introducing axioms expressing
facts regarding such functions. Accordingly, says Mendelson, the con-
cept (effectively) computable function would not be imprecise in such
a context, and both it and its converse might be provable. (What we
are calling CT is what Mendelson refers to as the “hard half” of CT.)

Among the articles collected here that of Cleland, which summarizes
her earlier work, comes as the greatest surprise. She argues against
the received view according to which Turing’s analysis of computabil-
ity succeeds brilliantly and that, consequently, CT is true. Specifically,
she aims to show that “Turing’s account is based upon problematic
assumptions that are very specific to Hilbert’s program” and that “the
credibility of the Turing account is significantly diminished if these du-
bious formalist assumptions are rejected” (p. 121). Cleland correctly
sees the impetus for Turing’s work in Hilbert’s Entscheidungsproblem.
(Both Church and Turing want to say what counts as a formal proof
instance, which involves saying whether a given formula counts as a
substitution instance of a given schema.) Cleland places great weight
on difficulties that arise when one attempts to realize a given Turing
machine physically. We find the details of her discussion puzzling at
many points. Further, we can accept her claim, up to a point, that a
“mineral crystal could instantiate a Turing machine just as well as a



REVIEW: CHURCH’S THESIS AFTER 70 YEARS 203

laptop computer” (p. 138) since in our view neither rock nor laptop,
both impressively finite, manages to do this in a straightforward man-
ner (see the foregoing review of McCarty). Cleland suggests at one
point (pp. 139–40) that the failure of Hilbert’s program entails that
Turing’s account, which it spawned, must be inadequate. But her rea-
soning here is obscure. She emphasizes physical machines and processes
and sees a range of problems in the relations between them and Turing
machines. But the implications for CT remain unclear. Why not iden-
tify the idealized human computor, whose computational abilities are
embodied by a universal Turing machine, with the ideal mathematician
whose proof-verification abilities were assumed by Hilbert and Acker-
mann? Why bring in physical machines and processes?

V. CT and Physical Computation

(1) Hartmut Fitz, Church’s Thesis and Physical Computation, pp. 175–
219.

(2) Piergiorgio Odifreddi, Kreisel’s Church, pp. 353–82.
(3) Jerzy Mycka, Analog Computation and Church’s Thesis, pp. 331–

52.
(4) Karl Svozil, Physics and Metaphysics Look at Computation,

pp. 491–517.

The Physical Church–Turing Thesis (PCT) asserts that a number-
theoretic function is effectively computable by a physical system just
in case it is Turing-computable. Fitz’ article investigates the status of
PCT, specifically a variety of attempts to falsify it by presenting alleged
instances of hypercomputation on the part of physical systems. The
concept of implementation, Fitz argues, is inherently vague although
not arbitrary. Further, the concept of physical computation cannot be
detached from a human observer; it is not a natural phenomenon but,
rather, a mode of description of the behavior of physical systems. Con-
sequently, purely theoretical arguments for observationally inaccessible
instances of hypercomputation on the part of such systems miss their
mark.

Odifreddi sets himself the ambitious task of surveying the many re-
marks regarding the Church–Turing Thesis scattered throughout Kreisel’s
published papers and reviews. Some concern the question whether
PCT is true or false (pp. 374–79), and Kreisel’s remarks point in both
directions.

Mycka reviews three models of analog computation and their rela-
tions to one another: the General-Purpose Analog Computer (GPAC)
model of Shannon and Pour–El, the Extended Analog Computer (EAC)
model of Rubel, and the real recursive function model of Moore. As
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for CT, Mycka thinks it unrelated to analog computation despite the
promise of his title (p. 348). (English “efficiency” is used here whereas
“effectiveness” is intended.) In a few final paragraphs devoted to physi-
cal systems that may hypercompute, Mycka invokes the possibility that
PCT is false. This article was perfectly interesting up to page 348, but
its inclusion here is a stretch nonetheless.

Svozil considers plausible examples of hypercomputation—in partic-
ular, quantum computation—and concludes, rather weakly, that asser-
tion of PCT “appears highly speculative at least for the time being and
maybe forever” (p. 507).

VI. Church’s λ-Calculus and Programming Languages

(1) David Turner, Church’s Thesis and Functional Programming

Turner’s contribution is an introduction to Church’s calculus of λ-
conversion and the functional programming languages (Haskell, Mi-
randa, and ML) derived from it. A single-page introduction concern-
ing CT does not really justify its inclusion here—the link between CT
and ML, say, is less conceptual than historical. What might justify its
inclusion is the quality of this article and the intrinsic interest of its
topic.
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