
The Review of Modern Logic

Volume 10 Numbers 3 & 4 (March 2005–May 2007) [Issue 32], pp. 213–217.

Ricardo Caferra, Alexander Leitsch, and Nicholas Peltier
Automated Model Building
Applied Logic Series, Vol. 31
Dordrecht/Boston/London: Kluwer Academic Publishers, 2004
xi + 341 pp. ISBN 1402026528

REVIEW

VLADIK KREINOVICH

Automated deduction was traditionally concentrated on trying to
find out whether a given statement A can be deduced from a given
theory T . Some automated deduction techniques start with the theory
and try to get as many conclusions as possible—in the hope that the
query A will be among these statements. Other automated deduc-
tion techniques—including resolution, probably the most well known
of these techniques—start with adding the negation ¬A to the the-
ory, and proceed by deducing as many conclusions as possible in the
hope that one of these conclusions will be a contradiction; if T is not
compatible with ¬A , this means that T implies A.
Sometimes, the conclusion is that the formula A cannot be deduced

from the theory T . In many practical applications, it is desirable not
just to show that A cannot be deduced from T , but also to produce a
model explaining a situation when T holds but A does not hold. For
example, one possible application of automated deduction is to prove
that a robot is safe. In this case, T is a theory describing the motion
of a robot under the given design, and A is a statement describing
that this robot is safe (e.g., that a mobile robot never leaves the safe
zone where it is supposed to stay). In this example, if we prove that
the robot is not safe, i.e., that A cannot be deduced from T , then the
robot designer would like not only to know the fact that the design is
un-safe, but also to see an explicit detailed example where this design
fails—i.e., a model of T ∪{¬A}. Such a specific example is, in general,
much more useful in correcting the design than simply an indication
that the design is wrong.
In pure mathematics, the need for models is also well known. For

example, in geometry, it was an interesting theoretical achievement to
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prove that Euclid’s Vth postulate cannot be deduced from the other
axioms of elementary geometry. However, real applications of this re-
search endeavor started only when researchers formulated and analyzed
explicit non-Euclidean geometries—which led not only to interesting
new mathematics, but also to a breakthrough in our understanding of
space-time (that came with Einstein’s General Relativity).
Ideally, instead of building a model, it is desirable to design a gen-

eral scheme for generating all possible models—i.e., in effect, building
a universal parametric model, that covers all possible models when we
change the values of the parameters. For example, in the robot de-
sign, it would be excellent to learn not only of a situation where this
robot design is unsafe, but of all such situations. Similarly, in geome-
try, the application of non-Euclidean geometries was greatly enhanced
when mathematicians moved from describing individual models of non-
Euclidean geometry (such as Lobachevsky space) to Riemann’s descrip-
tion of general non-Euclidean geometries—a description that made it
possible for Einstein to find classes of space-time models which are
consistent with observations.
All these examples show that it is often very important to be able

to automatically build models of consistent theories.
At first glance, automated model building may seem to be a com-

pletely different problem from automated deduction:

• In automated deduction, our goal is to deduce A as fast as
possible; thus, we try to deduce the truth values of as few ad-
ditional statements as possible.

• In model building, conversely, we are interested in assigning
truth values to as many statements as possible.

However, in practice, the difference is not as large as it may seem at
first glance. Yes, in the ideal world, the search for a proof of A should
be guided and focused, and it should result in proving only statements
in a short chain from the axioms of T to the desired statement A.
However, in real life, the search problems are known to be compu-
tationally difficult—even with linear-size proofs, the search for these
proofs requires, in many cases, at least exponential time. Thus, no
matter how much we try to focus our search, the search for a proof of
a given statement usually results in proving a lot of additional state-
ments unrelated to A. In many situations, we deduce so many such
statements that we are, in effect, halfway towards building a full model
for the original theory. As a result of this connection, many automated
model building techniques are based on the corresponding automated
deduction ones.
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The book under review is the first book on automated model build-
ing. It mainly describes the approaches developed by the authors, but
it also provides an overview (in Chapter 6) of other existing approaches
and techniques. From the technical viewpoint, the authors’ main ob-
jective is to teach the reader new methods and techniques; however,
the authors also have a more fundamental objective that makes this
book really interesting and exciting: to convince the reader that the
existing automated model building systems are actually capable of au-
tomatically building non-trivial models.
How can we build a model? A model means that we assign truth

values to all possible logical statements. Of course, to describe a model,
it is sufficient to assign truth values to all atomic statements—then,
the logical rules will enable us to automatically assign truth values to
composite logical statements as well. Therefore, one possible approach
to model building is an enumeration (non-symbolic) approach in which
we enumerate all atomic formulas and assign them truth values one-
by-one.
It is well known that it is often more efficient to first assign truth

values to complex formulas—e.g., if we succeed in deducing ∀xP (x),
then we can immediately assign “true” to all the atomic formulas of the
type P (t), without the need to individually analyze all of them. The
resulting deduction-based (symbolic) approach is especially important
for infinite models—where there are infinitely many atomic formulas
and thus, it is impossible to enumerate all of them. (In practice, a
proper combination of these two approaches is often the most efficient
way to model building.)
The book starts with the introduction to the problem (Chapter 1),

and a brief overview of the basic technical ideas like resolution that will
be used in the main part of the book (Chapter 2). Chapter 3 explains
how resolution techniques (especially the ideas of hyper-resolution that
speed up resolution) can be extended from their traditional use in au-
tomated deduction to their new use in automated model building.
Chapter 4 describes automated model building techniques motivated

by constraints. In constraint satisfaction, usually the objective is ei-
ther to show that the constraints are inconsistent or to find a design
or an object that satisfies all the given constraints. Because of this
objective, algorithms for solving such problems simultaneously try to
find a solution and to prove that the solution is not possible—i.e.,
simultaneously search for refutations and models. The authors gener-
alize this idea from the usual number-based constraints to the most
general logical constraints corresponding to general theories. To be
able to efficiently look both for models and for refutations, the authors
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add new dis-inference rules to the standard inference rules underlying
automated deduction.
For example, constraint techniques corresponding to strict inequal-

ities can be naturally extended to dis-equation constraints t1 �= t2 be-
tween the terms t1 and t2. Such dis-equations can be very useful for
describing a model: e.g., if we have a system of equations, then its
most general solution can be described by a most general unifier (that
provides unification to all the pairs). In the presence of negation, such
representation is no longer possible: e.g., the solutions to the formula
x = f(u, v) ∧ u �= v cannot be described by a finite disjunction of
unification problems, we need to explicitly represent dis-equations.
The authors show that with the new dis-inference rules and new

substitution rules which are only valid under constraints, we can of-
ten efficiently describe models for complex theories—theories in which
some axioms contain negations, disjunctions, and quantifiers applied
to equations.
Once we have built a model, i.e., once we have selected a sequence

of formulas that, in principle, uniquely determine the truth values of
all the formulas, it is then necessary to develop an efficient procedure
that would tell us, for each given formula A, whether this formula is
true or false in this model. This topic is discussed in Chapter 5.
Chapter 6 describes the specifics of building finite models. At first

glance, building a finite model may seem like an easier task than build-
ing an infinite model—after all, for each model size, there are only
finitely many possible truth assignments, so, in principle, we can try
all of them and find the model by exhaustive search. In practice, how-
ever, building a finite model is more difficult than building an infinite
one. One of the main reasons for this difficulty is that many known
properties of models, properties which are efficiently used in automated
deduction, are no longer valid if we restrict ourselves to finite models
only. One such property is a compactness theorem: if every subset of
a theory is consistent, then the theory as a whole is also consistent—
i.e., has a model. This compactness property does not hold for finite
models: e.g., the sequence of infinitely many statements

∃x1 . . .∃xn(x1 �= x2 ∧ x1 �= x3 ∧ . . . ∧ xn−1 �= xn)

(meaning that there are at least n different objects) does not have a fi-
nite model, but each finite subset has one. Finite models is where most
of the current work in automated model building was done. Because
of this, in the finite-model Chapter 6, the authors overview other ap-
proaches to automated model building and their known applications—
in AI, in mathematics, and in operations research.
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The authors have made a lot of effort to make this book generally
accessible. The book starts with the preliminaries that go as far as
explaining the notion of a clause, the basic ideas behind resolution
and natural deduction, etc. Of course, the authors’ brief introduction
cannot completely replace serious textbooks; however, it enables the
readers who are not very familiar with automated deduction to be able
to follow all the technical details—and those who have forgotten some
of the automated deduction ideas have a chance to recall them. In
spite of this introduction, in my opinion, this book is mostly beneficial
to readers who are somewhat familiar with automated deduction.
Motivated readers who want to learn more about automated model

building—e.g., those who want to creatively apply the authors’ tech-
niques to their practical problems like robotics—are also strongly en-
couraged to read this book. For these readers, it will not be easy
reading, but first, they can always use an AI or automated deduction
textbook if necessary; second, they can consult technical books and
papers (rarely an easy reading); and third, this is the only book so far,
so interested readers do not really have a choice.
It is also, in my opinion, a very good book for a special topics course.
In short, I would encourage readers to study this book. The area

is new, there are many interesting open problems and potential im-
provements. Because of this newness, motivated readers have a unique
opportunity not only to learn interesting ideas but also, hopefully, to
meaningfully contribute to this area—by providing new applications,
new ideas, and new results.

Department of Computer Science, University of Texas at El Paso,
El Paso, TX 79968, USA

E-mail address: vladik@utep.edu


