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A proof of hypoellipticity for
Kohn’s operator via FBI

Gregorio Chinni

Abstract

A new proof of both analytic and C∞ hypoellipticity of Kohn’s
operator is given using FBI techniques introduced by J. Sjöstrand.
The same proof allows us to obtain both kind of hypoellipticity at
the same time.

1. Introduction

In 2005, J. J. Kohn published a seminal paper [6], mainly concerned with
the problem of C∞−hypoellipticity for sums of squares of complex vector
fields.

It turns out that, in contrast with the case of real vector fields satisfying
Hörmander’s bracket condition, a sum of squares of complex vector fields
can be hypoelliptic and, at the same time, lose an arbitrary number of
derivatives. As a consequence, the primary tool (the a priori estimate) used
to prove hypoellipticity can be rather difficult to obtain. As a matter of
fact, J. J. Kohn in [6] produced an example of a sum of squares of complex
vector fields with real analytic coefficients having a symplectic characteristic
manifold that is C∞− hypoelliptic and, as Derridj and Tartakoff prove in
the appendix to [6], is also analytic hypoelliptic.

We recall that a sum of squares of complex vector fields is related to a
sum of squares of real vector fields with special lower order terms. In this
situation, in a transversally non-degenerate case, Treves [14] and Kwon [7, 8]
have proved both C∞ and real analytic hypoellipticity.

The purpose of the present paper is to give an alternate proof of both
Kohn’s result and that of Derridj and Tartakoff on Kohn’s model operator,
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or rather that studied in [2]. We use F.B.I. transform techniques. The
advantage of such an approach is that the same proof works in both the C∞

and Cω categories at the same time. This is due to the fact that, roughly
speaking, the F.B.I. transform has a built in localization that is well adapted
to the analytic category. This results in a characterization of both the C∞

wave front set, WF, and the analytic wave front set, WFa, with a uniform
decay rate (near a certain point) of the F.B.I. transform of the distribution
in examination (see, e.g., [10]). The technique we use to derive an a priori
estimate on the F.B.I. side is inspired by the work of J. Sjöstrand [11].
A similar technique, not dealing with the spectral degeneracy involved in
Kohn’s operator, has permitted J. Sjöstrand to give an F.B.I. proof of the
analytic hypoellipticity results of Treves [15] and Tartakoff [12, 13].

Let us now state our theorem. Let q be an even positive integer and k a
positive integer. Define

L = Dx + ixq−1Dt ,

where Dx = i−1∂x, x ∈ R. The Kohn’s operator is defined as

(1.1) P (x, Dx, Dt) = LL∗ + L∗ x2kL.

Then we have the

Theorem 1.1. Kohn’s operator (1.1) is both C∞ and Cω hypoelliptic.

We point out that the operator P is considered only when q is even and
positive. As a matter of fact the case when q is an odd integer is much easier
since then P is both C∞ and Cω hypoelliptic with a loss of one derivative.
This may be explained by remarking that the kernel of L∗

τ is empty in the
distribution category, where L∗

τ = Dx − ixq−1τ , since L∗
τe

−xqτ/q = 0.

2. Construction of the left parametrix

Let λ be a positive large parameter. Consider the operator λ−2P :

(2.1) (D̃x + ixq−1D̃t)(D̃x − ixq−1D̃t) + (D̃x − ixq−1D̃t)x
2k(D̃x + ixq−1D̃t),

where we used the notation D̃x = 1
λ
√−1

∂
∂x

and D̃t = 1
λ
√−1

∂
∂t

.

The symbol associated with (1.1) via λ-Fourier transform

û(ξ, τ) =
∫

e−iλ(xξ+tτ)u(x, t)dxdt,

u(x, t) =

(
λ

2π

)2 ∫
eiλ(xξ+tτ)û(ξ, τ)dξdτ,
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is

(2.2) (1 + x2k)(ξ2 + x2(q−1)τ 2)+

+
1

λ
((x2k − 1)(q − 1)xq−2τ − 2ikx2k−1(ξ + ixq−1τ)).

Its characteristic set is

(2.3) Σ =
{
(x, t, ξ, τ) ∈ R

4 \ {0} : ξ = 0 = x with τ �= 0
}

;

we put Σ = Σ+ ∪ Σ− where Σ± = {ρ ∈ Σ : τ ≷ 0}. Since the theorem we
want to prove is microlocal in essence, we shall argue in a neighborhood of
the point ρ0 = (0, 0, 0, 1) ∈ Σ+.

Let us consider the λ-Fourier transform of the operator P with respect
to the variable t

(2.4) D̃2
x + x2(q−1)τ 2 − q − 1

λ
xq−2τ+

+ x2k(D̃2
x + x2(q−1)τ 2 +

q − 1

λ
xq−2τ) − 2ik

λ
x2k−1(D̃x + ixq−1τ)

It is useful adopt the notation:

1. P0 = D̃2
x + x2(q−1)τ 2 − q−1

λ
xq−2τ ,

2. Pk = x2k(D̃2
x + x2(q−1)τ 2 + q−1

λ
xq−2τ) − 2ik

λ
x2k−1(D̃x + ixq−1τ).

We point out that the above subdivision of P reflects a homogeneity prop-
erty. More precisely let us consider the dilation x �→ λ−1/qx, t �→ t as well
as its canonical action on the covariables ξ �→ λ1/qξ, τ �→ τ . Then if p0, pk
denote the symbol of P0 and Pk w.r.t. the usual Fourier transform, we have

p0(λ
−1/qx, λ1/qξ/λ, τ) = λ−2+ 2

q p0(x, ξ, τ) and

pk(λ
−1/qx, λ1/qξ/λ, τ) = λ−2+ 2

q
− 2k

q pk(x, ξ, τ).

We call this homogeneity property “global homogeneity”.
To construct an approximate parametrix for P0 + Pk, which will be

sufficient for our purpose, we shall use an algebraic technique following
Sjöstrand [9]. We use the same framework as Boutet de Monvel [1]. In the
latter paper classes of symbols are studied via the distance function to a sym-
plectic characteristic manifold. We use basically the same classes, replacing
quadratic distance with an adapted anisotropic function, keeping into ac-
count the higher vanishing order w.r.t. the x variable of p(x, ξ, τ). We set

m(x, ξ, λ) =
(
d 2

Σ + λ− 2(q−1)
q

) 1
2

where d 2
Σ = |ξ|2 + |x|2(q−1) ,
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and we say that a C∞ function a belongs to Sm,k
q (R2

x,t × R
2
ξ,τ , Σ), or briefly

Sm,k
q , if for any positive integers γ, μ, α and β we have∣∣∣∂γτ ∂μt ∂βξ ∂αx a(x, t, ξ, τ)

∣∣∣ � λm−β−γm(x, ξ, λ)k−β−
α

q−1 ,

for λ ≥ 1 and (x, t, ξ, τ) in a neighborhood of (0, 0, 0, 1) ∈ Σ+. In the
same way we define the symbol class H m

q = ∩∞
j=0S

m−j,k−jq/(q−1)
q (see [1] for

more details.) We denote by OPH m
q = ∩∞

j=0OPSm−j,k−jq/(q−1)
q the set of

pseudodifferential operator corresponding to H m
q .

We recall the inclusion relation: Sm,k
q ⊆ Sm′,k′

q if and only if m ≤ m′ and
m − k(q − 1)/q ≤ m′ − k′(q − 1)/q.

We have that

P0(x, D̃x, D̃t) ∈ OPS0,2
q and Pk(x, D̃x, D̃t) ∈ OPS

0,2+ 2k
q−1

q .

Let Σ1=Πx(Σ) be the projection of characteristic set Σ on Rx. We define
the space Hm+1/2q

q (R2
x,t × Rτ , Σ1), or shortly Hm+1/2q

q , as the space of all

smooth functions belonging to ∩∞
j=0S

m−j+1/2q,−jq/(q−1)
q (R2

x,t×Rτ , Σ1), where
Sm,k
q (R2

x,t × Rτ , Σ1) denotes the set of all smooth functions such that

|∂γτ ∂μt ∂αx a(x, t, τ, λ)| � λm−γ
(
|x|2(q−1) + λ− 2(q−1)

q

) k
2
− α

2(q−1)

.

The action of a symbol a in Hm+1/2q
q as a map a(x, t, D̃t) : C∞

0 (Rt) →
C∞(R2

x,t) is defined by

(
a(x, t, D̃t, λ)u

)
(x, t) =

λ

2π

∫
eiλ(t−t′)τa(x, t, τ)u(t′)dt′dτ.

Such an operator, modulo a regularizing operator (w.r.t. the t-variable)
is called an Hermite operator of degree m and we denote by OPHm

q the
corresponding operator class.

Let a ∈ Hm+1/2q
q , we define the adjoint of the Hermite operator a as the

map a∗(x, t, D̃t, λ) : C∞
0 (R2

x,t) → C∞(Rt) defined by

(
a∗(x, t, D̃t, λ)u

)
(t) =

λ

2π

∫∫
eiλ(t−t′)τa(x, t, τ)u(x, t′)dxdt′dτ.

We denote by OPH∗m
q the related space of operators.

P0(x, D̃x, τ) is a self-adjoint operator on S (Rx); moreover, since q is
even, it is not injective and actually it has an one dimensional kernel. For
more details on this subject see [3].
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Let e0,τ (x, λ) be the L2-normalized null eigenfunction of P0, ‖e0,τ‖L2 = 1,

e0,τ (x, λ) =
√

cq λ
1
2q τ

1
2q e−

λτxq

q

where cq = 2
q

q

√
q
2
Γ
(

1
q

)
. We remark that e0,τ belongs to the space H1/2q

q and

the operator

e0(x, D̃t, λ)f(x, t) =
λ

2π

∫
eiλtτe0,τ (x, λ)f̂(τ)dτ

is an Hermite operator of degree 0, e0(x, D̃t, λ) ∈ OPH0
q . We recall that, by

the results of [4] and [5], we have

|ê0,τ (ξ, λ)| ≤ cλ− 1
2q τ− 1

2q e−ελτ
− 1

q−1 ξ
q

q−1

where c and ε are suitable positive constants.
We define the operators

E : L2(Rτ ) −→ L2(R2
x,τ ), E(f(τ)) = e0,τ (x, λ)f(τ)

and

E∗ : L2(R2
x,τ) −→ L2(Rτ ), E∗(u(x, τ)) =

∫
e0,τ (x, λ)u(x, τ)dx.

In order to obtain an approximate parametrix of the operator P we begin
by constructing an inverse of the matrix operator

(2.5) P =

⎛⎝ (P0 + Pk)(x, D̃x, τ) E

E∗ 0

⎞⎠ .

The operator P0(x, D̃x, τ) on 〈e0,τ 〉⊥, the L2-orthogonal complement of the
one dimensional spaces generated by e0,τ , is injective and admits an inverse.
We have that the matrix

(2.6)

⎛⎝ P0(x, D̃x, τ) E

E∗ 0

⎞⎠ ,

is a bijection on S (R2
x,τ) × L2(Rτ ) and it has an inverse:

(2.7)

⎛⎝ F0(x, D̃x, τ) E

E∗ 0

⎞⎠ ,



590 G. Chinni

where F0(x, D̃x, τ) is a parametrix of P0(x, D̃x, τ) restricted to the range of
1 − EE∗:

P0 # F0 = 1 − EE∗.

Here # denotes the Weyl composition. The operator F0(x, D̃x, D̃t) belongs
to OPS0,−2

q . We remark that 1 − EE∗ is the projection on 〈e0,τ 〉⊥.

We have

(2.8)

⎛⎝ F0(x, D̃x, τ) E

E∗ 0

⎞⎠⎛⎝ (P0 + Pk)(x, D̃x, τ) E

E∗ 0

⎞⎠ =

=

⎛⎝ 1 + F0Pk(x, D̃x, τ) 0

E∗Pk 1

⎞⎠ .

Here F0Pk(x, D̃x, D̃t) ∈ OPS
0, 2k

q−1
q ; a direct computation shows that Pke0,τ

is equal to λ−12(2k + q − 1)τx2k+q−2e0,τ , then we have that E∗Pk belongs

to OPH
∗− 2k

q
− 2(q−1)

q
q . We recall that if A ∈ OPSm,k

q and H ∈ OPH m′
q

then AH ∈ OPH m+m′−k(q−1)/q
q . We remark that the operator 1 + F0Pk

satisfies the second condition of the Proposition 6.1 of [1] so it admits a left
parametrix. (1)

The inverse of the matrix in the right hand side of (2.8) is⎛⎝ (1 + F0Pk)
−1 0

−E∗Pk(1 + F0Pk)
−1 1

⎞⎠ .

Formally we have (1 + F0Pk)
−1 = 1 −∑

j≥0(−1)j(F0Pk)
j+1, for every j we

have σ(F0Pk)
j+1 ∈ S

0, 2k
q−1

+j 2k
q−1

q . By the Proposition 1.11, of [1], exists a

symbol r ∈ S
0, 2k

q−1
q such that for all N , r−∑

j≤N(−1)jσ(F0Pk)
j+1 belongs to

S
0, 2k

q−1
+ N

q−1
q . Let R ∼ ∑

(−1)j+1(F0Pk)
j modulo OPS0,∞

q . We can write the
inverse of the matrix P

(2.9) Q =

⎛⎝ (1 + F0Pk)
−1 0

−E∗Pk(1 + F0Pk)
−1 1

⎞⎠⎛⎝ F0 E

E∗ 0

⎞⎠
=

⎛⎝ (1 + F0Pk)
−1F0 (1 + F0Pk)

−1E

E∗ − E∗Pk(1 + F0Pk)
−1F0 −E∗Pk(1 + F0Pk)

−1E

⎞⎠
1Actually if an operator A ∈ OPSm,k

q satisfies condition (ii) of the Proposition 6.1
then the operator A + B, with B ∈ OPSm,k+k′

q and k′ ≥ 1, satisfies the same condition.
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We have that QP ∼ Id, this relation gives

(2.10)

⎧⎪⎨⎪⎩
((1+F0Pk)

−1F0)(P0 + Pk)+(1+F0Pk)
−1EE∗=1 ;

(E∗−E∗Pk(1+F0Pk)
−1F0)(P0+Pk)−E∗Pk(1+F0Pk)

−1EE∗=0.

Using the second equation in above system we want to show that E∗ =

S(P0 + Pk) + OPH
∗− 2k

q
N− 1

q
q for a suitable operator S. For this purpose we

give an expression of E∗Pk(1 + F0Pk)
−1E (as an operator in λ and τ .) We

have

(2.11) Pk (1 + F0Pk)
−1 E = PkE +

∑
j≥0

(−1)j+1Pk (F0Pk)
j+1 E .

For any j, the symbol associated to the operator Pk (F0Pk)
j+1 E belongs

to the class S
− 4k

q
− 2(q−1)

q
− j

q
,− j

q−1
q . By [1, Proposition 1.11], there exists an

r1 ∈ S
− 4k

q
− 2(q−1)

q
,0

q such that, for all N ,

r1 −
N∑
j≥0

σ
(
Pk (F0Pk)

j+1 E
)
∈ S

− 4k
q
− 2(q−1)

q
−N

q
,− N

q−1
q

(r1 is defined modulo an element in H
− 4k

q
− 2(q−1)

q
q .)

We have that

E∗Pk(1 + F0Pk)
−1E = E∗PkE+

+
N−1∑
j=0

(−1)j+1Pk (F0Pk)
j+1 E +

∑
l≥0

(−1)l+NPk (F0Pk)
l+N E .

E∗PkE is the leading symbol, σ (E∗PkE) ∼ τ− 2k
q

+ 2
q λ− 2k

q
− 2(q−1)

q .

We point out that the number 2k
q

+ 2(q−1)
q

, appearing as the exponent
of λ, is the loss of derivatives of P .

Furthermore

E∗
N−1∑
j≥0

(−1)j+1Pk (F0Pk)
j+1 E

is a symbol in τ and λ of order −4k
q
− 2(q−1)

q
and

E∗∑
l≥0

Pk(F0Pk)
l+NE

is a symbol in τ and λ of order −2k
q
(N + 1) − 2(q−1)

q
.
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Then we have

σ
(
E∗Pk (1 + F0Pk)

−1 E
)
∼ A + B

here

A = λ− 2k
q
− 2(q−1)

q τ− 2k
q

+ 2
q

(
1 −

N−1∑
j=1

cjτ
− 2k

q
jλ− 2k

q
j
)

and
B = cNτ− 2k

q
(N+1)+ 2

q λ− 2k
q

(N+1)− 2(q−1)
q (1 + R(t, τ, λ))

where R is a symbol of order −2k
q
. Using the second equation in (2.10) we

deduce that

E∗ = A−1BE∗ + A−1
(
E∗ − E∗Pk(1 − F0Pk)

−1F0

)
(P0 + Pk)

or more explicitly

E∗=
τ

2k
q
− 2

q λ
2k
q

+
2(q−1)

q(
1 −∑N−1

j=1 cjτ
− 2k

q
jλ− 2k

q
j
) (E∗ − E∗Pk(1 − F0Pk)

−1F0

)
(P0 + Pk)

+ cNτ− 2k
q
Nλ− 2k

q
NE∗ mod(H

∗− 2k
q
N− 1

q
q ).

Hence

E∗= τ
2k
q
− 2

q λ
2k
q

+
2(q−1)

q

∑
s<N+1+ q−1

k

c̃s(τλ)−
2k
q
s
(
E∗−E∗Pk(1 − F0Pk)

−1F0

)
(P0 + Pk)

+ cNτ− 2k
q
Nλ− 2k

q
NE∗ mod(H

∗− 2k
q
N− 1

q
q ).

where c̃s are real constants. Using the above representation of E∗ and the
first equation in (2.10) we get(

τ
2k
q
− 2

q λ
2k
q

+
2(q−1)

q
∑

c̃s(τλ)−
2k
q
sEE∗(1 + Pk(1 + F0Pk)

−1F0)+

+(1 + F0Pk)
−1F0

)
(P0 + Pk) = 1 − τ− 2k

q
Nλ− 2k

q
NEE∗ mod(H

− 2k
q
N− 1

q
q ).

The term

τ− 2k
q
Nλ− 2k

q
NEE∗ ∈ OPS

− 2k
q
N,0

q ⊂ OPS
− 1

q
,− 1

q−1
q .

We do not give a direct construction of the parametrix but, from the condi-
tion (i) of the Proposition 6.1 ([1]), it is easy to see that the operator λ−2P
admits a left parametrix. For future purposes we state here what has been
done until now.
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Proposition 2.1. There exists a left approximate parametrix for the oper-
ator P in (1.1), i.e. there exists a symbol q(x, ξ, τ, λ) such that, for N ∈ N,
a large integer,

a) q(x, ξ, τ, λ)=
∑3
j=1 qj(x, ξ, τ, λ) with

1. q1 = τ
2k
q
− 2

q λ
2k
q

+
2(q−1)

q
∑
s c̃s(τλ)−

2k
q
sσ(EE∗) where s < N +1+ q−1

k

and σ(EE∗) ∈ H 0
q ;

2. q2 =τ
2k
q
− 2

q λ
2k
q

+
2(q−1)

q
∑

c̃s(τλ)−
2k
q
sσ(EE∗Pk(1 + F0Pk)

−1F0) where

σ(EE∗Pk(1 + F0Pk)
−1F0) ∈ H

− 2k
q

q ;

3. q3 = σ((1 + F0Pk)
−1F0) belongs to S0,−2

q .

b) we have

(2.12) (Q ◦ P )u(x, t) = u(x, t)+

+

(
λ

2π

)2 ∫∫
eiλ(x−x′)η+iλ(t−t′)τ a(x, ξ, τ, λ)u(x′, t′)dx′dt′dξdτ

modulo terms in OPH
− 2k

q
N− 1

q
q , where a = τ− 2k

q
Nλ− 2k

q
Nσ(EE∗).

3. The local a priori estimate via FBI

We recall some basic notions related to the Fourier-Bros-Iagolnitzer
transformation, fore more details see [10]. We consider the F.B.I.-transfor-
mation with the classical phase function

(3.1) Tu(z, λ) =
∫

R2
e−

λ
2
(z−y)2u(y)dy

where λ ≥ 1, z = (z1, z2) ∈ C2 and y = (x, t) ∈ R2. Let

ϕ0(z) = sup
y∈R2

(
− Im

(
i

2
(z − y)2

))
=

(Im z1)
2

2
+

(Im z2)
2

2

be the plurisubharmonic weight function associated to the classical phase
function. We put

ϕ0,1(z1) =
(Im z1)

2

2
and ϕ0,2(z2) =

(Im z2)
2

2
.

We also recall that T is associated to a canonical transformation HT from C4

in itself:
(w, i(z − w)) �−→ (z, i(z − w))
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such that
HT (T ∗

R
2) = Λϕ0 = {(z,−2i∂zϕ0(z))|z ∈ C

2},
HT (x, t, ξ, τ) = (x − iξ, t − iτ, ξ, τ). Λϕ0 is an I-Lagrangian, R-symplectic
(totally real) subspace in C4. If u ∈ S ′(R2) then Tu is an holomorphic
function of z ∈ C2 such that |Tu(z, λ)| ≤ Oλ(1) 〈z〉N eλϕ0(z) for some N
depending on u where 〈z〉 = (1 + |z|2)1/2 and Oλ(1) denotes a uniformly
bounded quantity when λ → +∞; moreover if u belongs to L2(R2) then
Tu ∈ L2(C2; e−λϕ0(z)L(dz)) where L(dz) is the Lebesgue measure in R4,
L(dz) = ±(2i)−2dz ∧ dz̄.

We recall briefly the characterization of analytic and C∞ wave front set in
the F.B.I. setting (see Sjöstrand [10]): a point (y0, η0) ∈ R4 does not belong
to WFa(u) if and only if there exist a positive constant ε, a neighborhood Ω
of y0 − iη0 in C2 and a positive constant CΩ, depending on Ω, such that

|Tu(z, λ)| e−λ
2
ϕ0(z) ≤ CΩ e−ελ ∀z ∈ Ω;

analogously we say that (y0, η0) /∈ WF (u) if there exists a neighborhood Ω
of y0 − iη0 in C2 such that

|Tu(z, λ)| e−λ
2
ϕ0(z) ≤ CΩ λ−N ∀N ∈ N and ∀z ∈ Ω.

A direct computation gives T (Dxu) = Dz1Tu, T (Dtu) = Dz2Tu and
T (xu) = (z1 + iλ−1Dz1)Tu; it is not more difficult to compute TP directly.

We denote by P the zero order Kohn operator, λ−2P , after the F.B.I.
and we put Σ̃ = HT (Σ) = ΣC ∩ Λϕ0 , where Σ is the characteristic set of P
before the F.B.I. transformation and ΣC denotes the complexification of Σ.

In order to study the wave front set we need an a priori estimate on
the F.B.I. side. This estimate is obtained by a technique inspired by [11].
We have an additional difficulty do to the fact that we need to work with
Hermite operators on the F.B.I. side.

Let (z0, ζ0) ∈ HT (Σ) and W a neighborhood of (z0, ζ0) such that W ∩Λϕ0

is a suitably small neighborhood of (z0, ζ0) in Λϕ0. Let F be a Cω map

F : W −→ C
4

such that

1. F is close to the identity map in the C1 norm, ‖F − I‖C1 = O(ε),
where ε is a small positive parameter; we want that F (W ∩ Λϕ0) has
a injective projection onto C2

z. Thus it is a graph.

2. There exists a real valued non negative plush function ϕ such that
ϕ(z) = ϕ1(z1) + ϕ2(z2) and

F (W ∩ Λϕ0) = Λϕ ∩ F (W )

where Λϕ = {(z,−2i∂zϕ(z))|z ∈ C2}.



A proof of hypoellipticity for Kohn’s operator via FBI 595

Moreover we put ϕ(z0) = ϕ0(z0). Then ϕ is as close as we want to ϕ0 if F
is close to the identity (in a suitable small neighborhood of (z0, ζ0).)

We remark that Λϕ is in a small tubular neighborhood of Λϕ0 .

We define L2
ϕ(Ω) as the set of all locally square integrable functions

defined on Ω equipped with the norm

‖u‖2
ϕ,Ω =

∫
Ω
|u(z)|2 e−2λϕ(z) L(dz)

and L2,2
ϕ,Ω as the set of all locally square integrable functions defined on Ω

equipped with the norm

‖|u‖|2ϕ,Ω =
∫
Ω
|u(z)|2 (d2(z) + λ−2 q−1

q )2 e−2λϕ(z)L(dz),

where d = dΣC∩Λϕ
is (d ◦ HT )|Λϕ

(d, in the last formula, is the distance
function defined in the previous section.) Since F is close to the identity we

have that p2|Λϕ
∈ S0,2

q and pk|Λϕ
∈ S

0,2+ 2k
q−1

q , i.e.

|p2|Λϕ
| � (d2 + λ−2(q−1)/q) and |pk|Λϕ

| � (d2 + λ−2(q−1)/q)
k

q−1
+1.

Let (z0, ζ0) = (0,−i, 0, 1) = HT (ρ), where ρ = (0, 0, 0, 1) ∈ Σ+, let
(z1, ζ1) = F (z0, ζ0) ∈ ΣC ∩ Λϕ, and let Ω, Ω1 be open suitably small neigh-
borhoods of z0(= z1) in C2 with Ω1 ⊂⊂ Ω. The open set Ω is strictly con-
tained in ΠC2

z
(W ), where ΠC2

z
is the projection on C2

z and W is the domain
of F in C

4
z,ζ.

For an analytic symbol q(z, ζ, λ) we define the corresponding pseudo-
differential operator acting on holomorphic functions as

(3.2) Qu(z) =

(
λ

2π

)2 ∫∫
eiλ(z−w)ζ q((z + w)/2, ζ, λ) u(w) dw∧ dζ .

The integral is taken along an integration contour of the form

(3.3) Γ := ζ =
2

i

∂ϕ

∂z

(
z + w

2

)
+ iC(z − w) with |z − w| ≤ r

where ϕ is the phase function given above, r is a small positive constant
such that dist(Ω1; �Ω) > r and C is a positive suitable constant such that∣∣∣eiλ(z−w)ζ

∣∣∣ e−λϕ(z) eλϕ(w) ≤ e−δ|z−w|
2

,

for some δ > 0.
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Since we need to work with Hermite operators on the F.B.I. side, we must
introduce an adapted integration path for this type of operators, taking into
account the anisotropic behavior of the operator P w.r.t. the x variable. We
introduce the integration contour

(3.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ1 =

2

i

∂ϕ1

∂z

(
z1 + w1

2

)
+ iC((z′1 − w′

1)
q−1 − i(z′′1 − w′′

1)
1

q−1 )

ζ2 =
2

i

∂ϕ2

∂z

(
z2 + w2

2

)
+ iC(z2 − w2)

where zj = z′j+ iz′′j , where z′j , z′′j are real, and C is a suitably small constant.
We remark, that, in the case q = 2, the above integration path is the usual
one and we only need to chose C suitably small.

Denote by Q̃ the approximate parametrix of P after the F.B.I. transfor-
mation

Q̃u(z) =

(
λ

2π

)2 3∑
j=1

∫∫
Γj

eiλ(z−w)ζ q̃j((z1 + w1)/2, ζ, λ) u(w)dw ∧ dζ

where q̃j ◦ HT = qj and the integration contour Γj is of the form (3.4) for
j = 1, 2 and of the form (3.3) for j = 3.

Let Ω2 be an open neighborhood of z0 such that

Ω2 ⊂⊂ Ω1 ⊂⊂ Ω and dist(Ω2, �Ω1) > r.

Our purpose is to obtain an estimate of the form

‖|u‖|ϕ,Ω2 � λ
2k
q

+
3(q−1)

q
− 1

q ‖Pu‖ϕ,Ω1
+ ‖|u‖|ϕ,Ω\Ω2

.

Let v be an holomorphic function on Ω, we want to show that

(3.5) ‖|Q̃v‖|ϕ,Ω2 � λ
2k
q

+
3(q−1)

q
− 1

q ‖v‖ϕ,Ω1 , .

We recall that if K is an operator defined by an integral kernel k:

Ku(z) =
∫
O

k(z, w) u(w) L(dw)

where O is a suitable complex domain, we have

‖|Ku‖|2ϕ,Ω = ‖
(
d2(·) + λ−2 q−1

q

)
Ku‖2

ϕ,Ω ≤

≤ ‖u‖2
ϕ,O

∫∫
Ω×O

e−2λ(ϕ(z)−ϕ(w))
∣∣∣∣(d2(z) + λ−2 q−1

q

)
k(z, w)

∣∣∣∣2 L(dz) L(dw).
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In order to obtain (3.5) we need to estimate kernels of the form

e−λ(ϕ(z)−ϕ(w))(d2(z) + λ−2(q−1)/q) k(z, w).

We start with Q̃3 and we want to show that

‖|Q̃3v‖|ϕ,Ω2 � ‖v‖ϕ,Ω1 .

In this situation we work with the classical integration contour. Its kernel k
has the form

eiλ(z−w)ζ q̃3

(
z1 + w1

2
, ζ, λ

)
∂ζ

∂w
.

We have that |∂wζ | ≤ const. By the Taylor expansion we can replace q̃3 in
the above formula with

q̃3

(
z1,

2

i

∂ϕ

∂z
(z), λ

)
+

∂q̃3

∂ζ1

(
z1,

2

i

∂ϕ

∂z
, λ
)(

ζ1 − 2

i

∂ϕ1

∂z1

(z)
)
+

+
∂q̃3

∂ζ2

(
z1,

2

i

∂ϕ

∂z
(z), λ

)(
ζ2 − 2

i

∂ϕ2

∂z2
(z)
)

+
∂q̃3

∂z1

(
z1,

2

i

∂ϕ

∂z
(z), λ

)(
z1 − w1

2

)
+

+ R1,λ

(
|z − w|2

)
+ R2,λ

(∣∣∣∣ζ − 2

i

∂ϕ

∂z
(z)

∣∣∣∣2),

where R1,λ, R2,λ denote holomorphic symbols which are uniformly O(λ
2
q
−1).

Since F is close to identity and the Lipschitz norm of F − I is bounded
by O(ε) we have ∇ϕ(z + h) − ∇ϕ(z) = [∇2ϕ0 + O(ε)](z − h); hence∣∣∣ζj + 2i∂zj

ϕj(z)
∣∣∣ � |zj − wj | for j = 1, 2. We have that q̃3|Λϕ

is in the class

S0,−2
q with respect to the distance function defined above; so we conclude

that |q̃3|Λϕ
| � (d2 + λ−2(q−1)/q)−1. In view of the canonical transformation

associated to the F.B.I. transformation we have that

|∂ζ1 q̃3|Λϕ
| � λ

1
q (d2 + λ−2(q−1)/q)−1.

On the other hand we have

|∂z1 q̃3|Λϕ
| � λ

1
q (d2 + λ−2(q−1)/q)−1 and |∂ζ2 q̃3|Λϕ

| � λ−1(d2 + λ−2(q−1)/q)−1.

The remainder terms give rise to an operator that is uniformly O(λ
2
q
−1)

acting from L2,2
ϕ,Ω2

to L2
ϕ,Ω1

. We can estimate ‖|Q̃3v‖|ϕ,Ω2 with

‖v‖ϕ,Ω1

(
λ

2π

)2 ∫∫
e−δλ|z−w|

2

(1 +
1

λ
|z2 − w2| + λ

1
q |z1 − w1|)2L(dz′)L(dz)

+ O(λ
2
q
−1) ‖v‖ϕ,Ω1

.

Since q is an even integer and in this way 1
q
− 1

2
is smaller or equal to zero.
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Next we want to estimate ‖|Q̃1v‖|ϕ,Ω2 where Q̃1 is realized on the inte-
gration path (3.4). Its kernel is

eiλ(z−w)ζe−
λζ2

q
(z1+iζ1)q−iλ(z1+iζ1)ζ1

∑
s

c̃s(ζ2λ)−
2k
q
s×

×
∫

R

e−iλyζ1e−
λζ2

q
yq

dy
∂ζ1

∂w1

∂ζ2

∂w2

where s < N + 1 + q−1
k

. We have that∣∣∣∣∣ ∂ζ1

∂w1

∣∣∣∣∣ ≤ C1

(
1 + (z′1 − w′

1)
q−2 + (z′′1 − w′′

1)
1

q−1
−1
)

and |∂w2ζ2| ≤ cost. On Γ, using the same technique of [4] and [5], we have∣∣∣∣eiλ(z−w)ζ−λ(ϕ(z)−ϕ(w))e−
λζ2

q
(z1+iζ1)q−iλ(z1+iζ1)ζ1

∫
R

e−iλyζ1e−
λζ2

q
yq

dy
∣∣∣∣ �

� e−λδ2|z2−w2|2e−λε1|z′1−w′
1|q−λε2|z′′1 −w′′

1 |
q

q−1

where ε1 and ε2 are suitable constants depending on the constant C in (3.4)
and q. We can conclude that

‖|Q̃1v‖|ϕ,Ω2 � λ
2k
q

+
3(q−1)

q
− 1

q ‖v‖ϕ,Ω1
.

It only remains to estimate Q̃2. We realize it with the integration
path (3.4). Its kernel is

eiλ(z−w)ζe−
λζ2

q
(z1+iζ1)q−iλ(z1+iζ1)ζ1

∑
s

c̃s(ζ2λ)−
2k
q
s×

×
∫

R

e−iλyζ1p(y, ζ2)e
−λζ2

q
yq

dy
∂ζ1

∂w1

∂ζ2

∂w2
.

where p(y, ζ2) is a polynomial of order 2k w.r.t. the variable y. Actually
p2(y, ζ2) ∼ y2kp̃2(y, ζ2). On the integral contour Γ, using the same technique
of [4] and [5], we have∣∣∣∣eiλ(z−w)ζ−λ(ϕ(z)−ϕ(w))e−

λζ2
q

(z1+iζ1)q−iλ(z1+iζ1)ζ1
∫

R

e−iλyζ1p(y, ζ2)e
−λζ2

q
yq

dy
∣∣∣∣ �

� λ− 2k
q e−λδ2|z2−w2|2e−λε1|z′1−w′

1|q−λε2|z′′1−w′′
1 |

q
q−1

.

We can conclude that

‖|Q̃2v‖|ϕ,Ω2 � λ
3(q−1)

q
− 1

q ‖v‖ϕ,Ω1
.

Then (3.5) follows.
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We replace v by Pu in (3.5) and we obtain

λ
2k
q

+
3(q−1)

q
− 1

q ‖Pu‖ϕ,Ω1 � ‖|Q̃Pu‖|ϕ,Ω2 � ‖|u‖|ϕ,Ω2 − ‖|Q̃Pu − u‖|ϕ,Ω2.

Then

(3.6) ‖|u‖|ϕ,Ω2 � λ
2k
q

+
3(q−1)

q
− 1

q ‖Pu‖ϕ,Ω1 + ‖|Q̃Pu − u‖|ϕ,Ω2;

Since the Weyl composition and the linear canonical transformation com-
mute, using (2.12), we have

Q̃#P = 1 + Ã mod (λ− 2k
q
N− 1

q ) .

The second term in the r. h. s. of (3.6) can be estimated as follows

(3.7) ‖|Q̃Pu − u‖|ϕ,Ω2 � ‖|Lu‖|ϕ,Ω2 + ‖|Ãu‖|ϕ,Ω2,

where, for a holomorphic function v defined in Ω, we set

Lv(z) = v(z) −
(

λ

2π

)2 ∫∫
eiλ(z−w)ζv(w)dwdζ,

the integral is performed along the contour ζ = −2i∂zϕ(z)− iC(z − w). Let
us estimate now the first term in the r. h. s. of (3.7). We recall that

‖|Lu‖|ϕ,Ω2 � e−λ/C‖u‖ϕ,Ω .

(See Sjöstrand [11] and [10].)

Using the Stokes theorem and the deformation argument

−2i∂zϕ(zt + (1 − t)z′) − iC(z − w),

with t ∈
[

1
2
, 1
]
, we can replace the above integration path

(−2i∂zϕ(z) − iC(z − w))

with the contour

ζ = −2i∂zϕ(
z + z′

2
) − iC(z − w).

The operator Ã is realized on the integration path (3.4) and its symbol is
λ−2kN/qζ2σ(EE∗)(z + iζ, ζ). The same technique used to estimate Q̃1 allows
us to estimate the second term in (3.7):

‖|Ãu‖|ϕ,Ω2 � λ− 2k
q
N+

3(q−1)
q

− 1
q ‖|u‖|ϕ,Ω .
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We choose N such that
2kN + 4 > 3q

e.g. 2N = 3q. Then (3.6) can be rewritten as

‖|u‖|ϕ,Ω2 � λ
2k
q

+
3(q−1)

q
− 1

q ‖Pu‖ϕ,Ω1 +
(

1

λα
+ e−λ/C

′
)
‖|u‖|ϕ,Ω;

where α = −2k
q
N + 3(q−1)

q
− 1

q
.

Let λ0 be such that λ−α
0 + e−λ0/C′

< 1. Then for every λ ≥ λ0 we have
the

Proposition 3.1. Let P be as in (1.1). Then on the F.B.I. side we have
the a priori estimate

(3.8) ‖|u‖|ϕ,Ω2 � λ
2k
q

+
3(q−1)

q
− 1

q ‖Pu‖ϕ,Ω1
+ ‖|u‖|ϕ,Ω\Ω2

.

where ϕ has been defined at the beginning of Section 2.

4. The construction of the phase function

In the next section we use a deformation argument of Holmgren type due
to J. Sjöstrand [11] and [10].

First we construct a weight function ϕ by solving a Hamilton-Jacobi
equation for small times.

Let r : W → C be a C∞ function (W is a neighborhood of (z0; ζ0) whose
space projection contains Ω.) Consider

(4.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ϕ

∂s
(s, x) = (Re r)

(
x,

2

i

∂ϕ

∂x
(s, x)

)

ϕ(0, x) = ϕ0(x),

for 0 ≤ s ≤ ε0.
The solution of the above problem is constructed using the standard

Hamilton-Jacobi theory with respect to the symplectic form

Im σ = Im (dξ ∧ dx) .

Actually, setting ϕs(x) = ϕ(s, x), we have

Λϕs = exp (sH Im σ

Re r ) Λϕ0.

The map exp (sH Im σ
Re r

) is the function F of the previous section.
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We recall that, if r is a holomorphic function on W then we have

H Im σ

Re r
= Ĥir,

where Hir is the usual complex standard Hamilton field of ir and Ĥir denotes
the real part of Hir, i.e. the real field that gives the same result as Hir when
acting on holomorphic functions.

If r is holomorphic in W and real valued on Λϕ0 the solution of the above
Hamilton-Jacobi problem is obtained as the restriction to the positive s-axis
of the solution of the complex equation

⎧⎪⎪⎨⎪⎪⎩
∂ϕ

∂s
(s, x) = r

(
x,

2

i

∂ϕ

∂x
(s, x)

)
ϕ(0, x) = ϕ0(x),

for |s| < ε0.

Since R4 and Λϕ0 are isomorphic it is easier to construct the function r
in R4 near the characteristic point (0, 0, 0, 1) ∈ Char P .

Let us choose

r(x, t, ξ, τ) = t2 + (τ − 1)2 + C
(

xq

q
+ ξ2

)
,

where C is a positive constant that makes r as positive as we desire outside Σ.
We point out that

Hr(ρ) ∈ TΣ, for ρ ∈ Σ.

Then, on Λϕ0,

r

(
z,

2

i

∂ϕ0

∂z
(z)

)
∼ |z2 − z2,0|2 + ‖z1‖2,

for every z ∈ ΠC2
z
(W ∩ Λϕ0). Here z2,0 is equal to −i and the norm ‖ · ‖ is

defined by

‖z1‖2 = z′ q1 + z′′ 21 .

We remark that

ϕs(z) = ϕ0(z) + r

(
z,

2

i

∂ϕ

∂z
(0, z)

)
s + O(s2).
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5. Proof of Theorem 1.1

We start with the assertion on the analytic wave front set. Denote by
(x0, ξ0) the point (0, 0, 0, 1) ∈ Char P .

Our purpose is to show that if (x0, ξ0) /∈ WFa(Pu) then (x0, ξ0) /∈
WFa(u). We recall estimate (3.8):

(5.1) ‖|u‖|ϕ,Ω2 ≤ C
(
λ

2k
q

+
3(q−1)

q
− 1

q ‖Pu‖ϕ,Ω1 + ‖|u‖|ϕ,Ω\Ω2

)
where Ω2 ⊂⊂ Ω1 ⊂⊂ Ω ⊂ W and z0 ∈ Ω2, z0 = x0 − iξ0.

Since u is a tempered distribution before the FBI transform, we have
that

‖u‖ϕ0,Ω ≤ CλN0 ,

for a certain N0 ∈ N.
Since Pu is real analytic at the real point (x0, ξ0) before the FBI trans-

form, we have that
‖Pu‖ϕ0,Ω3 ≤ C1e

−λ/C1 ,

for a positive constant C1; here Ω3 is a suitable neighborhood of z0. Recalling
that

ϕs(z) − ϕ0(z) ∼ s(|z2 − z2,0|2 + ‖z1‖2),

we obtain
‖Pu‖ϕs,Ω1 ≤ C̃e−λ/C̃ ,

for a positive constant C̃.
Since, on Ω \ Ω2, r ≥ α > 0, we have

ϕs|Ω\Ω2
≥ ϕ0 + α1s, α1 > 0,

so then
‖|u‖|ϕt,Ω\Ω2

≤ Ce−λ/C
′
s‖u‖ϕ0,Ω1 ≤ Cse

−λ/Cs .

Hence the a priori estimate (5.1) implies that

‖|u‖|ϕs,Ω2 ≤ C2e
−λ/C2 .

Let now Ω4 be a sufficiently small neighborhood of z0 such that

ϕs(z) < ϕ0(z) +
1

C4

on Ω4. Then
‖u‖ϕ0,Ω4 ≤ C3e

−λ/C3 ,

which means that u is real analytic at (x0, ξ0) before the FBI transform.
This proves the assertion.
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We point out that the regularity at the characteristic points in Σ− is
much easier and well known since the operator P loses microlocally only one
derivative (i.e. it is maximally hypoelliptic.)

Finally we remark that estimate (3.8) implies C∞ hypoellipticity as well.
In fact the only action we must take is to replace the exponential decay
of the (F.B.I. transform of) u with a rapidly decrease decay, i.e. Pu =
O(λ−∞) uniformly in a neighborhood of z0 ∈ Ω2. Using the same “canonical
deformation” argument yield that the error term, i.e. the second term on
the right hand side of (3.8) is exponentially decreasing. This ends the proof
of Theorem 1.1.
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