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ANALOGUES OF TRANSITIVENESS AND
DECOMPOSITION OF CONTINUITY

Abstract

We consider two conditions that weaken the closed graph condition
and we study their properties. We show that if X is a locally connected
Baire space, Y is a separable metrizable space and f : X → Y is a
w∗quasi-continuous, almost continuous and weakly Darboux function,
then f is continuous.

1 Introduction

Issues related to the decomposition of continuity have been studied in the
works of many mathematicians. Smith showed in [19] that the function f :
[0, 1] → R is continuous if and only if f is almost continuous in the sense
of Stallings, almost continuous in the sense of Husain and not of the Cesaro
type. Later, J. Smital and E. Stanova generalized in [18] this result to the
case of functions f : X → R, where X is a locally connected Baire topological
T3-space. Finally, R. Gibson replaced in [5] the almost continuity in the sense
of Stallings with the Darboux property and obtained the following result.

Theorem A. Let X be a locally connected Baire topological T3-space. A
function f : X → R is continuous if and only if
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(1) f is a Darboux function,

(2) f is almost continuous in the sense of Husain, and

(3) f is not of Cesaro type.

In [13], R. Mimna generalized a well-known result on the continuity of
the function f : R → R with connected and closed graph. He established,
using the concepts of O-connectedness and local w*continuity, the following
result: if X is a locally connected space and Y a topological space, then the
map f : X → Y is continuous if and only if f is O-connected and locally
w*continuous. Introducing the concept of transitiveness, V. Maslyuchenko
and V. Kretsu proved in [8] that a function f : R → R is continuous if and
only if f is almost continuous in the sense of Stallings and transitional. The
result of Mimna from [13] has been improved by V. Maslyuchenko and V.
Nesterenko in [11] as the following theorem.

Theorem B. Let X be a locally connected space and Y a topological space.
A function f : X → Y is continuous if and only if

1) f is a weakly Darboux function,

2) f is transitional.

Introducing the concept of w∗quasi-continuity, M. Matejdes obtained in
[12] another outcome to this thread.

Theorem C. Let X be a π-connected space, Y a topological space and f :
X → Y an O-connected function. If f is almost continuous at x and w∗quasi-
continuous at x, then f is quasi-continuous at x.

If in Theorem C the space Y is regular, then using the well-known decom-
position theorem of [16], we obtain that the function f is continuous.

In all of these results, when Y is a locally compact Hausdorff space,
the properties studied (e.g., transitiveness, local w∗continuity and w∗quasi-
continuity of a function) are all strictly weaker than the closed graph property.
These properties of functions are called analogs of transitiveness. Relations
between them are studied in sections 3 and 4.

Later in this article, we find that if Y is a second countable space and
f : X → Y is w∗quasi-continuous, then the set of points of transitiveness of f
is residual in X; see Theorem 16. We also get a local version of Theorem B;
see Theorem 18. With these tools, we obtain Theorem 20, a result on the set
of points of discontinuity of continuous mappings that have the weak Darboux
property, and Theorems 22 and 24, which develop Theorem C.
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2 Definitions

A function f : X → R is said to be upper {lower} transitional at a point
x ∈ X [11] if, for any ε > 0, there is a neighborhood U of x and a point
y ∈ (f(x), f(x) + ε) {y ∈ (f(x) − ε, f(x))} such that U ∩ f−1(y) = ∅. If a
function is upper transitional and lower transitional at a point x, then the
function is called transitional at x. A function is said to be transitional, upper
transitional or lower transitional if it is so at each point.

For a subset A of a topological space, let intA, A and frW = W \ intW
denote the interior, the closure and the boundary of A, respectively. Let X
and Y be topological spaces. A function f : X → Y is called

• transitional at x ∈ X [11] if, for each neighborhood V of f(x) in Y , there
is a neighborhood U of x in X and an open neighborhood W of f(x) in
Y such that W ⊆ V and U ∩ f−1(frW ) = ∅;

• weakly transitional at x ∈ X [11] if, for each neighborhood V of f(x) in
Y , there is a neighborhood U of x in X and a point b ∈ V such that
U ∩ f−1(b) = ∅;

• quasi-transitional at x ∈ X [11] if, for each neighborhood V of f(x) in
Y and each neighborhood U of x in X, there is an open neighborhood
W of f(x) in Y and a nonempty open subset G of X such that W ⊆ V ,
G ⊆ U and G ∩ f−1(frW ) = ∅;

• weakly quasi-transitional at x ∈ X [11] if, for each neighborhood V of
f(x) in Y and each neighborhood U of x in X, there is a nonempty open
set G in X and a point b ∈ V such that G ⊆ U and G ∩ f−1(b) = ∅.

A function is said to be transitional, weakly transitional, quasi-transitional,
weakly quasi-transitional if it is so at each point. The class of transitional maps
is very extensive. In particular, every continuous mapping is transitional, every
monotone function f : R→ R or a function with closed graph is transitional.
It is clear that a function f : X → R is weakly transitional at x if and only if
f is upper or lower transitional at x. Obviously, if a mapping is transitional
at some point, then it is quasi-transitional at that point.

Similar to as was introduced the notion of the upper or lower transitiveness
of function f : X → R can introduce the concept of upper or lower quasi-
transitiveness.

A set A is quasi-open if A ⊆ intA. A function f : X → Y is said to be

• w∗continuous [9] if f−1(frV ) is closed in X for each open set V in Y ;
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• locally w∗continuous [14] if there is a base B for Y such that f−1(frB)
is closed for any B ∈ B;

• locally relative continuous [15] if there is a base B for Y such that f−1(B)
is an open set of a subspace f−1(B) for any B ∈ B;

• w∗quasi-continuous at x ∈ X [12] if, for each neighborhood V of f(x)
in Y , there is an open neighborhood W of f(x) in Y and a quasi-open
subset A of X such that W ⊆ V , x ∈ A and A ∩ f−1(frW ) = ∅; and
w∗quasi-continuous if f is so at every point.

It is said that f : X → Y is of the Cesaro type if there exist nonempty open
subsets U of X and V of Y such that f−1(y) is dense in U for each y ∈ V . In
[11], it is shown that a function f : X → Y between topological spaces X and
Y is weakly quasi-transitional if and only if f is not of Cesaro type.

Denote by Gr(f) = {(x, f(x)) : x ∈ X} the graph of f . A function
f : X → Y is called

• almost continuous in the sense of Stallings [20] if, for any open subset O
of X×Y containing the graph of f , O contains the graph of a continuous
function g : X → Y ;

• a Darboux function [2] if f(A) is a connected subset of Y whenever A is
a connected subset of X;

• a weakly Darboux function [11] (also O-connected [13]) if f(G) is a con-
nected subset of Y whenever G is an open connected subset of X;

• almost continuous in the sense of Husain at x ∈ X [3, 6, 17] if, for
each neighborhood V of f(x) in Y , there is a subset A of X such that
x ∈ intA and f(A) ⊆ V ; and almost continuous in the sense of Husain
if f is so at any point;

• quasi-continuous at x ∈ X [7, 12] if, for each neighborhood V of f(x) in
Y and each neighborhood U of x in X, there is a nonempty open subset
G of X such that G ⊆ U and f(G) ⊆ V ; and quasi-continuous if f is so
at any point.

3 Relations between different analogues of transitiveness
which are stronger than transitiveness

First we note that local w∗continuity is a weaker condition than w∗continuity.
This is shown by the following example.
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Example 1. The function f : R→ R defined as

f(x) =

{
1, x ∈ Q
0, x /∈ Q

is locally w∗continuous, but is not w∗continuous.

In [11, Theorem 17], it was established that every locally w∗continuous
function f : X → Y between topological spaces X and Y is transitional. [11,
example 3] shows that the inverse statement is not true.

In [15], it was established that for arbitrary topological spaces X and Y , a
locally w∗continuous function f : X → Y is locally relative continuous. There
is also an example of a function f : R → R which shows that the converse
statement is not true.

Proposition 2. Let X and Y be topological spaces and f : X → Y a locally
relatively continuous function. Then f is transitional.

Proof. Assume the contrary, that f is not transitional at x0. Then there is
a neighborhood V0 of f(x0) in Y such that for each open neighborhood U of
x0 in X and for each open neighborhood W of f(x0) in Y with W ⊆ V0, we
have that U ∩ f−1(frW ) 6= ∅.

Since f is locally relatively continuous, there is a base B of open subsets
of Y such that f−1(V ) is an open subset of f−1(V ) for each V ∈ B. For
the point f(x0) and a neighborhood V0 of f(x0), there is V ∈ B such that
f(x0) ∈ V ⊆ V0. We take an arbitrary neighborhood U of x0 in X. Since f is
not transitional at x0, U ∩ f−1(frV ) 6= ∅. Then there is a point x ∈ U such
that

x ∈ f−1(frV ) = f−1(V \ V ) = f−1(V ) \ f−1(V ).

Then U ∩ f−1(V ) 6⊆ f−1(V ). This means that x0 is not an interior point
of f−1(V ) in the subspace f−1(V ). Thus, f−1(V ) is not an open subset of
f−1(V ). This contradicts the fact that f is locally relatively continuous. So
our assumption is not true.

As already noted, a transitional mapping is not required to be locally
w∗continuous [11, Example 3]. The same example shows that a transitional
mapping is not required to be locally relatively continuous.

Proposition 3. There is a transitional function f : R → R which is not
locally relatively continuous.
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Proof. Let A = (−∞,−1] =
⊔
r∈QAr, where Ar is dense in A for each r ∈ Q,

and B = [1,+∞) =
⊔
ξ∈R\QBξ, where Bξ is dense in B for each ξ ∈ R \ Q.

Let f : R→ R be defined as

f(x) =


r, x ∈ Ar
ξ, x ∈ Bξ
0, x ∈ (−1, 1)

.

The function f is transitional at an arbitrary point x ∈ R. It is clear
for points in the interval (−1, 1), because f is constant on this interval. If
x ≥ 1 and ε > 0, then there are rational numbers y1 ∈ (f(x), f(x) + ε) and
y2 ∈ (f(x)− ε, f(x)) such that

(U × {yi}) ∩Gr(f) = ∅, i = 1, 2

for the neighborhood U = (0,+∞) of x. If x ≤ −1, then for irrational numbers
y1 ∈ (f(x), f(x) + ε) and y2 ∈ (f(x) − ε, f(x)) and the neighborhood U =
(−∞, 0), we have that (U × {yi}) ∩Gr(f) = ∅, i = 1, 2.

Let B be an arbitrary base of R. Then there is a set V ∈ B such that
∅ 6= V ⊆ (1,+∞). We show that f−1(V ) is not an open subset of f−1(V ).

First, we note that V \ V 6= ∅. Indeed ∅ 6= V ⊆ V ⊆ [1,+∞) ⊂ R.
If V = V , then V is a open-closed subset of R, V 6= ∅ and V 6= R. This
contradicts the connectedness of R.

So there is y ∈ V \ V . It is clear that y 6= 0 because V ⊆ [1,+∞).

Suppose that y ∈ Q. Then f−1(y) = Ay. By construction, we have
that Ay = (−∞,−1]. We take a rational number y0 in V and consider an
arbitrary point x0 in f−1(y0) = Ay0 . Then x0 ∈ f−1(V ). We show then x0 is
not a interior point of the subset f−1(V ) of f−1(V ). Let U be an arbitrary
neighborhood of x0 in R. Since x0 ∈ Ay0 ⊆ (−∞,−1] and Ay ⊇ (−∞,−1],
x0 ∈ Ay. So U ∩Ay 6= ∅, namely there is u ∈ U ∩Ay. Then u ∈ U ∩ f−1(V )
and u 6∈ f−1(V ) because f(u) = y 6∈ V . Hence, U ∩ f−1(V ) 6⊆ f−1(V ) for
each neighborhood U of x0 ∈ f−1(V ). This shows that f−1(V ) is not an open
subset of f−1(V ).

If y ∈ R \ Q, then f−1(y) = By. By construction, we have that By =
[1,+∞). Take a irrational number y0 ∈ V and consider a point x0 ∈ f−1(y0) =
By0 . It is then easy to verify that U ∩f−1(V ) 6⊆ f−1(V ) for any neighborhood
U of x0 in R. Hence, f−1(V ) is not an open subset of f−1(V ).
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4 Relations between different analogues of transitiveness
which are weaker than transitiveness

Proposition 4. Let X and Y be topological spaces and f : X → Y a function
which is transitional at a point x0 ∈ X. Then f is w∗quasi-continuous at x0.

Proof. Let V be any neighborhood of y0 = f(x0) in Y . Since f is transitional
at x0, there is a neighborhood U of x0 in X and an open neighborhood W of y0
in Y such that U ∩ f−1(frW ) = ∅. The open set G = intU is a neighborhood
of x0 in X and G∩ f−1(frW ) = ∅ with G ⊆ U . The open set G is quasi-open
in X; hence, f is w∗quasi-continuous at x0.

In [11], it was shown that every continuous mapping is transitional. A
similar result holds for the w∗quasi-continuity.

Proposition 5. Let X and Y be topological spaces and f : X → Y a function
which is quasi-continuous at a point x ∈ X. Then f is w∗quasi-continuous at
x.

Proof. Take any neighborhood V of f(x) in Y . Put W = intV . It is clear
that W ⊆ V and W is an open neighborhood of f(x) in Y . Since f is quasi-
continuous at x, for each neighborhood U of x there is a nonempty open
subset GU of X such that GU ⊆ U and f(GU ) ⊆ intW . Consider the set
H =

⋃
{GU : U is a neighborhood of x}. It is clear that x ∈ H. It is easy to

verify that A = H∪{x} is quasi-open in X. In addition, x ∈ A, f(A) ⊆W and
W ∩ frW = ∅, because W is an open subset of Y . Hence, A∩ f−1(frW ) = ∅.
This shows that f is w∗quasi-continuous at x.

Obviously, the converse is not true. In fact, the Dirichlet function is tran-
sitional and thus w∗quasi-continuous, but is not quasi-continuous at any point
in R.

Also, the converse to Proposition 4 is not true.

Example 6. The function f : R→ R defined as

f(x) =

{
sin 1

x , x 6= 0

0, x = 0
.

is w∗quasi-continuous because f is quasi-continuous; see Proposition 5. But f
is not transitional.

Proposition 7. Let X and Y be topological spaces and f : X → Y a function
which is w∗quasi-continuous at a point x ∈ X. Then f is quasi-transitional at
x.
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Proof. Take arbitrary neighborhoods V of f(x) and U of x in Y and X,
respectively. Since f is w∗quasi-continuous at x, there is an open neighborhood
W of f(x) in Y and a quasi-open subset A of X such that W ⊆ V , x ∈ A
and A ∩ f−1(frW ) = ∅. The set A is quasi-open; therefore, x ∈ A ⊆ intA.
Since U is a neighborhood of x, G = U ∩ intA 6= ∅. The set G is open and
G ⊆ U . Since A ∩ f−1(frW ) = ∅, G ∩ f−1(frW ) = ∅. This means that f is
quasi-transitional at x.

In Proposition 12, we will show that there exists a function f : R → R
which is quasi-transitional but not w∗quasi-continuous.

In [11, Theorem 7], conditions are given for spaces X and Y in which
f : X → Y is transitional at x implies f is weakly transitional at x. The same
conditions on spaces ensure that a mapping is weakly quasi-transitional at a
point, provided that this mapping is quasi-transitional at that point.

Proposition 8. Let X be a topological space, Y a regular space, x ∈ X and
f : X → Y a function which is quasi-transitional at x such that there is a
connected neighborhood V0 of y = f(x) in Y with V0 6= {y}. Then f is weakly
quasi-transitional at x.

Proof. Suppose that V is a neighborhood of y in Y and U is a neighborhood
of x in X. By assumption, there is a point y0 ∈ V0 such that y0 6= y. It follows
from T1-axiom that there is a neighborhood V1 of y in Y such that y0 6∈ V1.
Since Y is regular space, there is a closed neighborhood V2 of y in Y such that
V2 ⊆ V ∩ V0 ∩ V1. It follows from the quasi-transitiveness of f that there is a
nonempty open subset G of X and an open neighborhood W of y in Y such
that W ⊆ V2, G ⊆ U and G ∩ f−1(frW ) = ∅. We show that frW 6= ∅. If
frW = ∅, then W is an open-closed subset of Y and W ⊆ V0. Moreover, since
y0 ∈ V0 \W , we obtain W ⊂ V0. In addition, W 6= ∅ because y ∈ W . Then
the connected set V0 is the disjoint union of two nonempy sets W and V0 \W ,
each open in V0, which is impossible.

So frW 6= ∅, and hence, there is a point b ∈ frW . Since W ⊆ V2 and
V2 is closed set, frW ⊆ V2 ⊆ V . In this case, b ∈ V and b 6∈ f(G). Hence,
G ∩ f−1(b) = ∅. This means that f is weakly quasi-transitional at x.

In [11, Theorem 1], it was established that if R \ f(X) is an everywhere
dense set for the function f : X → R, then f is transitional.

Proposition 9. Let X and Y be topological spaces and f : X → Y a function
such that Y \ f(X) = Y . Then f is weakly transitional.

Proof. Let x ∈ X and V a neighborhood of f(x) in Y . Since Y \ f(X) is an
everywhere dense subset of Y , there is a point b ∈ V ∩ (Y \ f(X)). Therefore,
X ∩ f−1(b) = ∅. Hence, f is weakly transitional at x.
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Proposition 10. Let X be a topological space. Then each weakly quasi-
transitional function f : X → R is quasi-transitional.

Proof. Let x0 ∈ X, y0 = f(x0), U an open neighborhood of x0 in X and
V = (y0 − ε, y0 + ε) a neighborhood of y0. Suppose that there is a point
x1 ∈ U such that f(x1) ∈ V1 = (y0, y0 + ε). Since f is weakly transitional at
x1, there is a nonempty open subset G1 of X and a point b1 ∈ V1 such that
G1 ⊆ U and b1 6∈ f(G1). Otherwise, for any point y ∈ (y0, y0 + ε), we obtain
y 6∈ f(U). Anyway, there is a nonempty open set G1 ⊆ U and a point b1 ∈ V1
such that b1 6∈ f(G1). Similarly, we establish that there is a nonempty open
set G2 ⊆ G1 and a point b2 ∈ V2 = (y0 − ε, y0) such that b2 6∈ f(G2).

The interval W = (b2, b1) is a neighborhood of f(x0) in R, W ⊆ V and
G2 ∩ f−1(frW ) = G2 ∩ f−1({b2, b1}) = ∅. Hence, f is quasi-transitional at
x0. This means that f is quasi-transitional.

Note that the function in Proposition 10 is real-valued; the following propo-
sition shows that this is an important hypothesis.

Proposition 11. There is a weakly transitional function f : R→ R2 (hence,
weakly quasi-transitional) which is not quasi-transitional at any point.

Proof. Let (Aα)α∈R be a system of disjoint everywhere dense subsets of R
such that

⊔
α∈RAα = R. The function f : R → R2 defined as f(x) = (α, 0),

x ∈ Aα is weakly transitional, but is not quasi-transitional at any point.
In fact, since f(R) = R× {0}, by Proposition 9 it follows that f is weakly

transitional. Take any point x ∈ R and a bounded neighborhood V of f(x)
in R2. Since R × {0} is a connected subset of R2, frW ∩ (R × {0}) 6= ∅ for
an arbitrary open neighborhood W of f(x) in R2 such that W ⊆ V . Let
(α, 0) ∈ frW ∩ (R× {0}). Then

f−1(frW ) ⊇ f−1((α, 0)) = Aα,

and therefore, f−1(frW ) is an everywhere dense subset of R. Hence, f is not
quasi-transitional at x.

Proposition 12. There is a function f : R → R which is quasi-transitional,
but not w∗quasi-continuous.

Proof. Again, let (Aα)α∈R be a system of disjoint everywhere dense subsets
of R such that

⊔
α∈RAα = R. Let f0 be the function of R to R such that

f0(x) = α for x ∈ Aα. Note that f−10 (α) = Aα is an everywhere dense subset
for any point α ∈ R; hence, f0 is not weakly quasi-transitional at any point.



364 V. Maslyuchenko and V. Nesterenko

Let Q = {rn : n ∈ N} be the set of nonzero rational numbers. Let the
function f : R→ R be given by

f(x) =

{
0, x ∈ Arn \ (− 1

n ,
1
n )

f0(x), otherwise
.

Let us prove that f is quasi-transitional, but not w∗quasi-continuous. Take
any point x ∈ R, a neighborhood U of x and a neighborhood V of f(x). There
is a positive integer n such that rn ∈ V and G = int(U \ (− 1

n ,
1
n )) 6= ∅. Then

G ∩ f−1(rn)) = ∅. So, f is weakly quasi-transitional at x. Therefore, f is
weakly quasi-transitional, and by proposition 10, it follows that f is quasi-
transitional.

We show that f is not w∗quasi-continuous at 0. Consider the neighborhood
V = (y0 − 1, y0 + 1) of y0 = f(0) and an arbitrary open neighborhood W of
y0 such that W ⊆ V . Take any quasi-open set A such that 0 ∈ A. We show
that A∩ f−1(frW ) 6= ∅. Note that if frE = ∅ for E ⊆ R, then E = intE. So
E is open-closed in R. Therefore, E = ∅ or E = R, because R is a connected
space. But ∅ 6= W and W 6= R. Hence, frW 6= ∅, and so there is a point
b ∈ frW .

Suppose that b = rn for some n. Since A ⊆ intA, 0 ∈ A and (− 1
n ,

1
n )

is a neighborhood 0 in R, Un = (− 1
n ,

1
n ) ∩ intA 6= ∅. The set Arn is dense

in R; therefore, Un ∩ Arn 6= ∅. But (− 1
n ,

1
n ) ∩ Arn = f−1(rn); therefore,

f−1(rn) ∩ intA 6= ∅. So f−1(rn) ∩ A 6= ∅. Then there is a point a ∈ A such
that f(a) = rn = b ∈ frW . Hence, A ∩ f−1(frW ) 6= ∅.

Let b ∈ (R \ Q) ∪ {0} be fixed. Since Ab is dense in R and intA 6= ∅,
intA ∩ Ab 6= ∅. So, there is a point a ∈ A such that a ∈ Ab. But b 6= rn for
each n. Hence, Ab ∩Arn = ∅ for each n. Therefore, f(a) = f0(a) = b. In this
case, we have that A ∩ f−1(frW ) 6= ∅.

Hence, f is not w∗quasi-continuous at 0.

So, for arbitrary topological spaces X and Y , we have the following impli-
cations:

w∗continuity ⇒ local w∗continuity ⇒ transitiveness ⇒
⇒ w∗quasi-continuity ⇒ quasi-transitiveness.

And none of these implications can not be reversed.

Proposition 13. If X is a topological space and Y has a basis consisting of
clopen sets, then each mapping f : X → Y is transitional.
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Proof. Indeed, for any point x ∈ X and any neighborhood V of y = f(x) in
Y , there is a clopen neighborhood W of y in Y such that W ⊆ V . Then for
the neighborhood U = X of x in X, we have that U ∩f−1(frW ) = ∅, because
frW = ∅. Hence, f is transitional at x.

In particular, all functions f : X → Y , where Y is the set of rational
numbers Q or the Sorgenfrey plane, are transitional.

Proposition 14. Each function f : Q→ R is transitional.

Proof. Take any point x ∈ Q, a neighborhood U = (x − δ, x + δ) ∩ Q of
x in Q and a neighborhood V = (f(x) − ε, f(x) + ε) of f(x) in R. We put
V1 = (f(x), f(x) + ε). By the symbol |E|, we denote the power of a set E.
Since ℵ0 = |U | < |V1| = c, there is a point y1 ∈ V1 such that y1 6∈ f(U). So, f
is upper transitional at x. Similarly, we prove that f is lower transitional at
x. Hence, f is transitional at x.

5 On the set of points of transitiveness

In [11], the following results were established.

Theorem 15. If X is a topological space, a space Y has a countable pseudo-
base and f : X → Y is a weakly quasi-transitional mapping, then {x ∈ X : f
is weakly transitional at x} is a residual subset of X.

Theorem 16. Let X be a topological space and f : X → R a weakly quasi-
transitional function. Then the set of points of transitiveness of f is residual
in X.

A similar result can be obtained for w∗quasi-continuous mappings.

Theorem 17. Let X be a topological space, Y a second countable space and
f : X → Y a w∗quasi-continuous mapping. Then the set A of points of
transitiveness of f is residual in X.

Proof. Let {Vn : n ∈ N} be a base of Y . Assume the contrary. Let E =
X \ A be a non-meagre subset of X. Then for any point x ∈ E, there is a
neighborhood V (x) of f(x) such that f(U)∩ frW 6= ∅ for each neighborhood
U of x in X and for each open neighborhood W of f(x) with W ⊆ V (x).

For each n ∈ N, consider the set

En = {x ∈ E : f(x) ∈ Vn ⊆ V (x)}.

It is clear that
⋃∞
n=1En = E. Since E is a non-meagre set, there is a positive

integer n0 such that En0
is a non-meagre set. By w∗quasi-continuity of f , it
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follows that for each point x ∈ En0 , there is an open neighborhood W (x) of
f(x) in Y and a quasi-open subset A(x) of X such that W (x) ⊆ Vn0 , x ∈ A(x)
and A(x) ∩ f−1(frW (x)) = ∅.

For each m ∈ N, we consider sets

En0,m = {x ∈ En0 : f(x) ∈ Vm ⊆W (x)}.

Then
⋃∞
m=1En0,m = En0

. Since En0
is non-meagre, there is a positive integer

m0 such that En0,m0
is dense in a nonempty open subset U0; i.e., U0 ⊆ En0,m0

.
Take a point x0 ∈ U0∩En0,m0

. Since A(x0) is quasi-open, U = U0∩intA(x0) 6=
∅. Take a point a ∈ U ∩ En0,m0

. Then U is a neighborhood of a. Since U ⊆
A(x0), f(a) ∈ Vm0 ⊆ W (x0) ⊆ Vn0 ⊆ V (a) and A(x0) ∩ f−1(frW (x0)) = ∅,
U ∩ f−1(frW (x0)) = ∅. In addition, W (x0) is an open neighborhood of f(a).
Hence, for a ∈ E, we found the neighbohood U of a and the open neighborhood
W = W (x0) of a such that W ⊆ V (a) and U ∩ f−1(frW ) = ∅. We obtained
a contradiction.

6 Main results

The following result is a local version of Theorem B.

Theorem 18. Let X be a locally connected space, Y a topological space and
f : X → Y a weakly Darboux function. Then f is continuous at x0 ∈ X if
and only if f is transitional at x0.

Proof. Since f : X → Y is continuous at x0, f is transitional at x0 for
arbitrary topological spaces X and Y [11, Theorem 5]. In fact, let V be any
neighborhood of y0 = f(x0) in Y . Put W = intV and U = f−1(W ). Then
frW = W \W , y0 ∈W ⊆ V and U is a neighborhood of x0 in X. Thus,

U ∩f−1(frW ) = f−1(W )∩f−1(W \W ) = f−1(W ∩ (W \W )) = f−1(∅) = ∅.

We establish the sufficiency. Since f is transitional at x0, there is a neigh-
borhood U of x0 in X and an open neighborhood W of f(x0) in Y such that
W ⊆ V and f(U) ⊆W t (Y \W ). There is an open connected neighborhood
U0 of x0 such that U0 ⊆ U . This neighborhood will be a connected component
of any open neighborhood G of x0 containing that point and contained in U .
It is clear that f(U0) ⊆ W t (Y \W ). Since f is a weakly Darboux function,
we obtain that f(U0) is a connected set. Then from the condition f(x0) ∈W ,
it follows that f(U0) ⊆ W . Hence, we obtain that f(U0) ⊆ V . This means
that f is continuous at x0.
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It is clear that Theorem 18 immediately implies Theorem B.
For a mapping f : X → Y , we denote by C(f) and D(f) the set of

continuity points of f and the set of discontinuity points of f , respectively.

Theorem 19. Let X be a locally connected space, Y a second countable space
and f : X → Y a w∗quasi-continuous and weakly Darboux function. Then
D(f) is a meagre subset of X.

Proof. By Theorem 17, it follows that the set E of points of transition of f
is a residual, and by Theorem 18, it follows that C(f) = E. Hence, D(f) is a
meagre subset.

Theorem 20. Let X be a locally connected space and f : X → R a weakly
quasi-transitional and weakly Darboux function. Then D(f) is meagre subset
of X.

Proof. By Theorem 16, it follows that the set E of points of transition f is
a residual, and by Theorem 18, it follows that C(f) = E. Hence, D(f) is a
meagre subset.

A function f is called almost quasi-continuous at x ∈ X [1], if for each
neighborhood V of y = f(x) in Y and for each neighborhood U of x in X,
there is a subset A of X such that A ⊆ U , intA 6= ∅ and f(A) ⊆ V ; and
almost quasi-continuous if f is so at every point. Let Y be a metric space. A
function f : X → Y , where Y is equipped with metric d, is said to be cliquish
at a point x ∈ X [21] if, for any ε > 0 and any neighborhood U of x ∈ X, there
exists a nonempty open subset G of X such that G ⊆ U and d(f(u), f(v)) < ε
for each u, v ∈ G; and cliquish if f is so at every point. We need the following
two results that are given for example in [4] and [1], respectively:

(1) for a metric space Y , a function f : X → Y is continuous if and only
if f is almost continuous in the sense of Husain and cliquish;

(2) for a metric space Y , a function f : X → Y is quasi-continuous if and
only if f is almost quasi-continuous and cliquish.

Recall that a function f : X → Y is called pointwise discontinuous if
C(f) = X. It is easy to verify that for a topological space X and a metric
space Y , each pointwise discontinuous function is cliquish.

Theorem 21. Let X be a locally connected Baire space, Y a separable metriz-
able space and f : X → Y a function satisfying

1) f is w∗quasi-continuous;
2) f is a weakly Darboux function;
3) f is almost continuous in the sense of Husain.

Then f is continuous.
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Proof. Fix a metric on the space Y which generates its topology. By Theo-
rem 19, it follows that C(f) is a residual set in X, and therefore, C(f) is an
everywhere dense subset. Then f is pointwise discontinuous, and hence, f is
cliquish. By (1), it follows that f is continuous.

Theorem 22. Let X be a locally connected Baire space and f : X → R a
function satisfying

1) f is weakly quasi-transitional;

2) f is a weakly Darboux function;

3) f is almost continuous in the sense of Husain.

Then f is continuous.

Proof. By Theorem 20, it follows that C(f) is a residual set in X. Since X
is a Baire space, C(f) = X. Then f is pointwise discontinuous, and hence, f
is cliquish. By (1), it follows that f is continuous.

Theorem 23. Let X be a locally connected Baire space, Y a separable metriz-
able space and f : X → Y a function satisfying

1) f is w∗quasi-continuous;

2) f is a weakly Darboux function;

3) f is almost quasi-continuous.

Then f is quasi-continuous.

Proof. Similar to in the proof of Theorem 21, one can establish that f is
cliquish. By (2), it follows that f is quasi-continuous.

Theorem 24. Let X be a locally connected Baire space and f : X → R a
function satisfying

1) f is weakly quasi-transitional;

2) f is a weakly Darboux function;

3) f is almost quasi-continuous.

Then f is quasi-continuous.

Proof. Similar to in the proof of Theorem 22, one can establish that f is
cliquish. By (2), it follows that f is quasi-continuous.
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