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Abstract

Smoothness conditions on a function f : R2 → R that are weaker
than being differentiable or Lipschitz at a point are defined and studied.

1 Introduction

The definition of the ordinary derivative of a real valued function f of a real
variable x can be written in two different ways. Fix x. We may either write

f ′ (x) = lim
h→0

f (x+ h)− f (x)

h
, (1)

or say that f ′ (x) is the number that must be substituted for d in the linear
expression

L (h) = f (x) + dh

to make the line L approximate f to better than linear order, i.e. when
d = f ′ (x),

f (x+ h)− L (h) = o (h) as h→ 0. (2)
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We consider two notions of smoothness for a function f : R2 → R. Fix
a point x = (x1, x2). From the first form of the one dimensional derivative
comes the existence of the gradient function at x,

∇f(x) =

(
∂f

∂x
(x) ,

∂f

∂y
(x)

)
.

From the second form comes the property of being differentiable at x, namely
the existence of a tangent plane

T (h) = f (x) +∇f(x) · h=f (x) +
∂f

∂x1
(x)h1 +

∂f

∂x2
(x)h2,

where h = (h1, h2), which approximates f to better than linear order, i.e.

f (x+ h)− T (h) = o (‖h‖) as ‖h‖ =
√
h21 + h22 → 0.

The existence of the gradient is a much weaker condition than differentiability,
the existence of the tangent plane.

We define another smoothness condition, that of being (locally) Lipschitz
at x. This means that

f (x+ h)− f (x) = O (‖h‖) as ‖h‖ → 0,

i.e., we define f to be Lipschitz at x if

C = C (x) = lim sup
‖h‖→0

|f (x+ h)− f (x)|
‖h‖

<∞.

Differentiability at x immediately implies being Lipschitz at x, since

|f (x+ h)− f (x)| = |∇f(x) · h+o (‖h‖)|
≤ ‖∇f(x)‖ ‖h‖+o (‖h‖)
= O (‖h‖) + o (‖h‖) = O (‖h‖) .

The following theorem appeared in more general form in [3], where the
proof of the special case that is our Theorem 1 is correctly reported to be part
of the 1951 University of Chicago thesis of H. William Oliver [4]. A second
proof of Theorem 1 that appeared in [2] needs to be slightly augmented by
Theorem 3 of [1].

Theorem 1. If a function f on Rd is Lipschitz of order n at each point of
a (Lebesgue) measurable set E of Rd, then there is a subset Fof E such that
|E\F | = 0 and such that f is differentiable relative to F of order n at every
point of F .
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This well known result says that the property of being Lipschitz is generi-
cally equivalent to being differentiable in the sense that for every measurable
function, the set E of points where the function is Lipschitz (relative to E)
but not differentiable (relative to E) has measure 0. This theorem provides
a powerful tool for proving that various conditions that are pointwise weaker
than differentiability are generically equivalent to differentiability. Its avail-
ability was the motivation for our defining three directional smoothness no-
tions which, although obviously weaker than differentiability (see the simple
Examples 2 and 3 below), would turn out to generically imply being Lipschitz,
and thus, by Theorem 1, generically equivalent to differentiability. Theorem 4
below shows that these smoothness conditions do not generically imply being
Lipschitz. Although this spoils the original plan, it does discover the existence
of new, generically more general, smoothness conditions.

2 Definitions and examples

Let U =
{
x ∈ R2 : ‖x‖ = 1

}
be the unit circle. Let x ∈ R2 and u ∈ U. Say

that a function f : R2 → R is differentiable at x in the direction u, if there is
a constant vector (a (x, u) , b (x, u)) such that, as η → 0+,

f (x+ ηu) = f (x) + (a, b) · ηu+o (η) ;

and that f is Lipschitz at x in the direction u with Lipschitz constant C (x,u),
if

f (x+ ηu) = f (x) +O (η) as η → 0+,

where

C (x,u) = lim
η→0+

sup
|f (x+ ηu)− f (x)|

η
.

Further define f to be directional Lipschitz at x with directional Lipschitz
constant Cd (x) if

Cd (x) = sup
u∈U

C (x,u) <∞.

Example 2. Let uθ = (cos θ, sin θ), for θ ∈ [0, 2π), and let g be any real
function defined on [0, 2π). For all x = ρuθ ∈ R2, let

f (x) =

{
g (θ) ρ , if x 6= 0,

0 , if x = 0.

Then
f (0 + ηu) = f (0) +O (η) as η → 0+.
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For a fixed θ, f is Lipschitz at x = 0 in the direction uθ with Lipschitz constant

lim
η→0+

sup
|f (ηu)|

η
= lim
η→0+

|g (θ) η|
η

= |g (θ)| ;

f is actually differentiable in every direction uθ. However, if g is unbounded,
f is not directional Lipschitz at x = 0.

The next example involves the characteristic function of the two-dimensional
set represented in the picture below.

x

y

ρ = 1, θ ∈ I1

ρ = 1
2 , θ ∈ I2 ρ = 1

3 , θ ∈ I3

. . .

Example 3. Decompose the interval (0, 2π] into a disjoint union of intervals

(0, 2π] =

∞⋃
n=1

(
2π

2n
,

2π

2n−1

]
=

∞⋃
n=1

In.

Let {gn}n≥1 be a sequence functions gn : [0,∞)→ R defined as

gn = χ{ 1
n}

the characteristic function of the single element set
{

1
n

}
. Note that gn is

identically equal to zero in a neighborhood of 0, so gn is differentiable at zero
and g′n(0) = 0.

Consider the map f : R2 → R, defined at x = ρuθ, for ρ ≥ 0, by

f (x) = gn (ρ) , if θ ∈ In, for n = 1, 2, . . . .
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This implies that f(0) is unambiguously equal to 0. The directional derivative
of f satisfies

Duθf(0) = lim
ρ→0+

f(0 + ρuθ)− f(0)

ρ

= g′n (0) , if θ ∈ In, for some n,

= 0.

This implies that f has directional derivative 0 in every direction at the origin
and thus is Lipschitz at the origin with Lipschitz constant C(u) = 0 in any
direction u. This makes f directional Lipschitz at x = 0 with directional
Lipschitz constant Cd = 0.

On the other hand, for any sequence {θn}n≥1, with θn ∈ In, for all n,

lim
n→∞

f

(
1

n
uθn

)
= lim
n→∞

1 = 1 6= 0 = f(0),

so f is not continous at x = 0; a fortiori, f is neither Lipschitz nor differen-
tiable at x = 0.

3 Main result

This section is devoted to proving the following theorem, which is the main
result of this note.

Theorem 4. There is a function χ and a set E ⊂ R2 of positive measure such
that χ is differentiable in almost every direction at each point of E, but χ is
not Lipschitz a.e. on E.

To prove the theorem, we construct χ and E using several steps.

3.1

Let B (x, r) denote an open disc of radius r centered at a point x ∈ R2. Before
making the construction, we point out two facts.

Lemma 5. Let y ∈ R2 be an exterior point to the ball B = B (x, r), and let
D = |xy|. Then the angle θ that B subtends when viewed from y satisfies

θ < π
r

D
.

Proof. Let yz be one of the two tangents from y to B. Then triangle 4xyz
has angles π

2 at z, and θ
2 at y. The sine function is concave-down in the first
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quadrant, so its graph stays above the segment from (0, 0) to
(
π
2 , 1
)
. This

means that
2

π
t < sin t, for t ∈

(
0,
π

2

)
.

In particular, for t =
θ

2
, this leads to

2

π

(
θ

2

)
< sin

(
θ

2

)
=
|xz|
|xy|

=
r

D
.

Lemma 6 (Borel-Cantelli). If {Ai} are measurable sets satisfying
∑∞
i=1 |Ai| <

∞, then |{x : x ∈ infinitely many Ai}| = 0.

Here is the very well known, very short proof of this.

Proof. For every natural number k,

|{x : x ∈ infinitely many Ai}| =

∣∣∣∣∣
∞⋂
k=1

∞⋃
i=k

Ai

∣∣∣∣∣ ≤
∣∣∣∣∣
∞⋃
i=k

Ai

∣∣∣∣∣ ≤
∞∑
i=k

|Ai| .

3.2

Let Q = {qj : j = 1, 2, . . . } be a countable dense subset of R2. We first in-
ductively construct a countable union A =

⋃∞
i=1Ai of pairwise disjoint open

discs Ai = Bi (qni , ri), so that A is dense in R2 and the radii are decreasing
so rapidly that

∞∑
i=1

(
2iri

)2
<∞. (3)

Choose n1 = 1 and r1 = 3−1. Choose n2 to be the index of the first q ∈ Q
such that q /∈ A1. the closure of A1, and r2 = min

{
3−2, dist (qn2 , A1)

}
.

Choose n3 to be the index of the first q ∈ Q such that q /∈ A1 ∪ A2 and r3 =
min

{
3−3, dist (qn3

, A1 ∪A2)
}

. Proceed inductively. It is clear that Q ⊂ A so

that R2 = Q ⊂ A, and A is dense. Also
∑∞
i=1

(
2iri

)2 ≤∑∞i=1

(
2i3−i

)2
<∞.

Let χ be the characteristic function of A. Since A is open, at each x ∈ A,
χ is identically 1 in a neighborhood of x, thus has derivative 0 at x, and a
fortiori has directional derivative 0 in a.e. direction at x.

3.3

Let Ri = 2iri, for i = 1, 2, . . . , and form

B =

∞⋃
i=1

Bi, where each Bi = Bi (qni , Ri) .



Directional Differentiability in the Euclidean Plane 191

The discs here may no longer be disjoint, and each Bi is a superset of Ai that
is much bigger than Ai; nevertheless, because of condition (3), |B| is finite.
Thus C = R2 \B has positive (in fact, infinite) measure. Fix x ∈ C. For each
i, x /∈ Bi, so the distance Di from x to the center qni of Bi satisfies Di ≥ Ri.
Since qni is also the center of Ai, by Lemma 5, the measure of the set Ti of
directions from x that point toward Ai satisfies

|Ti| ≤ π
ri
Di
≤ π ri

Ri
= π2−i.

Thus
∑∞
i=1 |Ti| is finite, so by Lemma 6 the set of directions seeing infinitely

many Ai has measure 0 and the set of directions seeing finitely many Ai has
full measure 2π. For any Ai, the distance from x to Ai is strictly positive, and
the infimum of a finite number of positive numbers is positive. So the distance
from x to A is positive in a.e. direction. Then χ is identically 0 for a positive
distance in a.e. direction and, in particular, χ has a directional derivative 0
in a.e. direction at every point of C.

3.4

Let E = A ∪ C. Although χ has directional derivative 0 in a.e. direction
at every x ∈ E, on a subset of E of positive measure, namely C, χ is not
Lipschitz relative to E. In fact it is not even continuous relative to E. For let
x ∈ C. Approach x along any direction in which χ has a directional derivative
to see that

lim inf
y→x,y∈E

χ (y) = 0.

But since A is dense, there are points of A arbitrarily close to x. These are
points of E where χ = 1, so

lim sup
y→x,y∈E

χ (y) = 1.

4 Conjecture

The assumption of Theorem 4 allows bad behavior in a thin (measure zero)
set of directions. The example takes full advantage of this misbehavior. It
therefore gives no direct insight into the following conjecture.

Conjecture 7. Let E = {x ∈ R2 : f is Lipschitz in every direction at x}.
Then f is Lipschitz a.e. on E.
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Evidence in favor of the conjecture. If a function of one real variable has two
Peano derivatives a.e., it does not follow that it has two ordinary derivatives
a.e. But if it has two Peano derivatives everywhere and is bounded above, it
does have two ordinary derivatives everywhere; see [5]. This is a pretty weak
argument, perhaps only an analogy.

Evidence against the conjecture. If the hypothesis “every direction” is
weakened to “a.e. direction,” the result is false, as shown by Theorem 4
above. As we just mentioned, the proof of Theorem 4 makes critical use of a
hypothesis that exempts a measure zero set of directions from consideration
at each point, so this argument is also not very strong.
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