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THE `1-DICHOTOMY THEOREM WITH
RESPECT TO A COIDEAL

Abstract

In this paper we introduce, for any coideal basis B on the set N
of natural numbers, the notions of a B-sequence, a B-subsequence of
a B-sequence, and a B-convergent sequence in a metric space. The
usual notions of a sequence, subsequence, and convergent sequence ob-
tain for the coideal B of all the infinite subsets of N. We first prove a
Bolzano-Weierstrass theorem for B-sequences: if B is a Ramsey coideal
basis on N, then every bounded B-sequence of real numbers has a B-
convergent B-subsequence; and next, with the help of this extended
Bolzano-Weierstrass theorem, we establish an extension of the funda-
mental Rosenthal’s `1-dichotomy theorem: if B is a semiselective coideal
basis on N, then every bounded B-sequence of real valued functions
(fn)n∈A has a B-subsequence (fn)n∈B , which is either B-convergent or
equivalent to the unit vector basis of `1(B).

1 Introduction

Coideals, the basic notion of this paper, have been studied among others,
by Mathias ([10]), who considered selective and Ramsey coideals, under the
name of happy families, Glasner ([6]) in connection with the Stone-Cech com-
pactification, under the name of families with the divisible property, Fursten-
berg ([5]) in connection with topological dynamics and Ramsey theory, under
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the name of Ramsey families, Farah ([2]), who introduced the semiselective
coideals, Bergelson and Downarowicz ([1]), as a notion of largeness in ergodic
theory, under the name of partition regular families and more recently by Far-
maki, Karageorgos, Koutsogiannis and Mitropoulos ([3], [4]), in connection
with topological dynamics and Ramsey theory for nets, as families generated
by coideal bases.

In Section 3, for a given coideal basis B on the set N of natural numbers we
introduce the B-sequences in a setX, the B-subsequences of a given B-sequence
inX, and the B-convergent B-sequences in a metric (or topological) space. The
usual notions of a sequence, subsequence, and convergent sequence obtain for
the coideal basis B of all infinite subsets of N. We note that a sequence may
have subsequences which are not B-subsequences. In Corollary 4 we extend
the classical Bolzano-Weierstrass theorem as follows: if B is a Ramsey coideal
basis on N, then every bounded B-sequence of real numbers has a B-convergent
B-subsequence. With the aid of the extended Bolzano-Weierstrass theorem,
we characterize (in Corollary 5) the bounded B-sequences of real numbers
which are not B-convergent.

In Section 4 we prove the main result of the present paper, Theorem 11, an
extended version of Rosenthal’s `1-dichotomy theorem: if B is a semiselective
coideal basis on the set N, then every bounded B-sequence (fn)n∈A of real
valued functions has a B-subsequence (fn)n∈B which is either B-convergent or
equivalent to the unit vector basis of `1(B). The fundamental Rosenthal’s `1-
dichotomy theorem corresponds to the coideal basis B = [N] of all the infinite
subsets of N. Granted the remarkable applications of the classical Rosenthal’s
`1-dichotomy theorem in several branches of mathematics, it is hoped that our
extended `1-dichotomy theorem will find some interesting applications too.

2 Preliminaries

In this preliminary section we will refer to the necessary notions about coideal
bases and also to a remarkable partition theorem proved by Farah ([2]) for the
infinite subsets of N with respect to a semiselective coideal basis on N (The-
orem 2), which is analogous to the classical Nash-Williams partition theorem
and has a central role in the proofs of our results.

Notation. We denote by N = {1, 2, ...} the set of all the natural numbers.
For an infinite subset M of N we denote by [M ]<∞ the set of all the finite
subsets of M and by [M ] the set of all the infinite subsets of M (considering
them as increasing sequences).

We start with the notion of a coideal on the set N of natural numbers ([10],
[2], [15], [4]).
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Definition 2.1. A non-empty subset H of the set [N] of all the infinite subsets
of N is a coideal on N if it satisfies the following two properties:

(i) If A ∪B ∈ H, then either A ∈ H or B ∈ H.

(ii) If A ∈ H and A ⊆ B ⊆ N, then B ∈ H.

Remarks 2.2.

(i) Obviously, a family H ⊆ [N] is a coideal on N if its complement is an
ideal on N.

(ii) A nonprincipal ultraflter on N is a coideal on N closed under finite inter-
sections.

(iii) The set [N] of all the infinite subsets of N is a coideal on N, which is not
an ultrafilter.

(iv) A subset of [N] is a coideal on N if and only if it is a union of ultrafilters
on N ([6], Proposition 1.1.).

(v) The set Hd = {A ∈ [N] : d∗(A) := lim supn
|A∩{1,2,...,n}|

n > 0} is a
coideal on N.

(vi) According to van der Waerden’s Theorem [16], the set AP of all the
infinite subsets of N that contain arbitrarily long arithmetic progressions
is a coideal on N.

We now define the coideal bases on N which generates coideals on N ([3]).

Definition 2.3. A non-empty subset B of the set [N] is a coideal basis on
N, if it satisfies only the following property:

If A ∪ B ∈ B, then there exists C ∈ B such that either C ⊆ A or
C ⊆ B.

Equivalently, B is a coideal basis on N if the family

LB = {A ∈ [N] : there exists B ∈ B with B ⊆ A}

is a coideal on N.

Remarks 2.4.

(i) Obviously, a coideal H on N is a coideal basis on N and LH = H.
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(ii) The set [2N] of all the infinite subsets of N that contain only even numbers
is a coideal basis on N but it is not a coideal.

In Definitions 2.5, 2.6, 2.9 below we will define the classes of Ramsey,
selective and semiselective coideal bases on N respectively. The Ramsey ultra-
filters on N were defined in [8]. Mathias in [10] defined the selective coideals
on N under the name of happy families, and later Farah in [2] introduced the
semiselective coideals on N (see also [15]).

Notation. Let A ∈ [N] and n ∈ N. We set,

[A]n = {(x1, . . . , xn) : x1 < . . . < xn ∈ A}, and A \ n = {m ∈ A : n < m}.

Definition 2.5. A coideal basis B on [N] is Ramsey if for every n, r ∈ N
and for every A ∈ LB with [A]n = C1 ∪ · · · ∪Cr, there exist B ∈ B, B ⊆ A and
1 6 i0 6 r such that [B]n ⊆ Ci0 .

Definition 2.6. A coideal basis B on N is selective, if for every decreasing
sequence (An)n∈N in LB, there exists B ∈ LB such that B \ n ⊆ An for every
n ∈ B.

A way to generate selective coideals on N is via the following theorem of
Mathias [10] (see also [15]).

Theorem 1. Let A be an infinite subset of the set [N] such that A ∩ B is
finite for every pair A,B of distinct elements of A. Let H be the set of all the
infinite subsets of N that cannot be covered up to a finite set by finitely many
members of A. Then, H is a selective coideal on N.

Example 2.7. Let P = {pn : n ∈ N} be an enumeration of all the prime
natural numbers. For each n ∈ N we set

An = {k ∈ N : the least prime divisor of k is equal to pn}.

Obviously the set An is infinite for every n ∈ N and An ∩ Am = ∅ for every
n,m ∈ N with n 6= m. According to Theorem 1, the set

Hp = {A ∈ [N] : A \
⋃
n∈F

An is infinite for every finite subset F of N}

is a selective coideal on N.
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We will now define the notion of a semiselective coideal basis on N, as found
in Todorcevic’s book ([15]). This definition is equivalent to the one originally
given by Farah in [2]. In order to define the semiselective coideal bases on N
(according to [15], [3]) we need the following definition:

Definition 2.8. Let B be a coideal basis on N and A ∈ LB. A subset R
of LB has the dense-open property in B (respectively has the dense-open
property in B on A) if it satisfies the following two conditions:

(i) For every B ∈ LB, (respectively for every B ∈ LB, B ⊆ A) there exists
C ∈ R with C ⊆ B.

(ii) If C ∈ R and B ∈ LB with B ⊆ C, then B ∈ R.

Definition 2.9. A coideal basis B on N is semiselective if it has the following
two properties:

(i) For every sequence (Rn)n∈N of subsets of LB with the dense-open prop-
erty in B and for every A ∈ LB (alternatively, for every A ∈ LB and
every sequence (Rn)n∈N of subsets of LB with the dense-open property
in B on A ) there exists B ∈ LB with B ⊆ A such that for each n ∈ N
there exist C ∈ Rn and a finite subset F of B such that B \ F ⊆ C.

(ii) For every A ∈ LB and every disjoint partition A =
⋃∞

n=1 Fn of A, where
Fn is finite for every n ∈ N, there exists B ∈ LB with B ⊆ A such that
the set B ∩ Fn has at most one element for all n ∈ N.

Remarks 2.10.

(i) A selective coideal basis on N is obviously semiselective. The inverse
implication does not hold (see [2]).

(ii) A semiselective coideal basis on N is Ramsey, according to [2] (see also
[15], [3]). The inverse implication does not hold (see [2], [15]).

(iii) The coideal [N] of all the infinite subsets of N is selective, so it is semis-
elective and consequently Ramsey.

(iv) The coideal AP (Remarks 2.2(v)) of all the subsets of N that contain
arbitrarily long arithmetic progressions is not semiselective, and conse-
quently it is not selective.

(v) The coideal Hp, defined in Example 2.7 is selective, so it is semiselective
and consequently Ramsey.



172 V. Farmaki, A. Mitropoulos

(vi) An ultrafilter is Ramsey if and only if it is semiselective and if and only
if it is selective ([9]).

Now we will recall a partition theorem for the set [N] of all the infinite
subsets of N with respect to a semiselective coideal bases on N, which follows
from a more general result proved by Farah in [2]. The analogous theorem
with respect to the coideal basis [N] is the classical Nash-Williams partition
theorem.

We say that a subset U of [N] is pointwise closed if, identifying each element
of [N] with an element of {0, 1}N, the set U is a closed subset of [N] in the
relative topology of {0, 1}N.

Theorem 2 (Farah, [2]). Let B be a semiselective coideal basis on N. For every
pointwise closed subset U of [N] and every A ∈ LB there exists B ∈ LB, B ⊆ A
such that

either [B] ⊆ U or [B] ⊆ [N] \ U .

3 Sequences and convergence with respect to a coideal
basis

For a given coideal basis B on N, we define the B-sequences in a set X as
functions from an element of LB to X and analogously we define the B-
subsequences of a given B-sequence. Consequently, we define the B-convergent
B-sequences in a metric space.

For a given Ramsey coideal basis B on N, we prove (in Corollary 4) that
every B-sequence of real numbers has a monotone B-subsequence and conse-
quently that every bounded B-sequence of real numbers has a B-convergent
B-subsequence, extending the fundamental Bolzano-Weierstrass theorem, cor-
responding to the coideal basis B = [N]. Finally, applying Corollary 4 we char-
acterize (in Proposition 5) the bounded B-sequences of real numbers which are
not B-convergent as those that have two B-subsequences which B-converge to
different limits.

We apply these results in the proof of our main result in the next section.

Definition 3.1. Let X be a nonempty set and B a coideal basis on N. A
B-sequence in X is a function a : A→ X from an element A of the coideal
LB generated by B to the set X and it is denoted by (an)n∈A.

Remarks 3.2.

(i) Every sequence in a set X is a B-sequence in X for every coideal basis
B on N, since N ∈ LB.
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(ii) Let B be a coideal basis on N. Every B-sequence in a set X is a [N]-
sequence in X (Remark 2.2(ii)).

For a given coideal basis B on N, we will define the B-subsequences of a
B-sequence in a set X.

Definition 3.3. Let B be a coideal basis on N and (an)n∈A a B-sequence in a
set X. The B-sequence (an)n∈B in X is called a B-subsequence of (an)n∈A
if B ⊆ A.

Let B be a coideal basis on N. We will say that the subsequence (akn)n∈N
of a sequence (an)n∈N corresponds to the B-subsequence (an)n∈B of (an)n∈N
if B = {kn : n ∈ N} ∈ LB. If LB is different from [N], then every sequence
has subsequences which do not correspond to B-subsequences (Remark 3.4(ii)
below).

On the other hand if (an)n∈B is a B-subsequence of a sequence (an)n∈N,
then the subsequence (akn)n∈N of (an)n∈N, where B = {kn : n ∈ N} with
kn < kn+1 for every n ∈ N, corresponds to (an)n∈B .

Remarks 3.4.

(i) A subsequence of a given sequence (an)n∈N corresponds to a [N]-subsequence
of (an)n∈N (Remark 2.2(ii)).

(ii) Let B be a coideal basis on N. If LB is different from [N], then every
sequence (an)n∈N in a set X has subsequences which do not correspond to
B-subsequences of (an)n∈N. Indeed, if A ∈ [N]\LB and A = {kn : n ∈ N}
with kn < kn+1 for every n ∈ N, then the subsequence (akn

)n∈N of
(an)n∈N does not correspond to a B-subsequence of (an)n∈N.
For example, let the coideal basis Hd (Remark 2.2(iv)) and P the set of
prime natural numbers. If P = {kn : n ∈ N} with kn < kn+1 for every
n ∈ N, then the subsequence (akn)n∈N of (an)n∈N does not correspond
to an Hd-subsequence of (an)n∈N.

(iii) Let B be a coideal basis on N. If (an)n∈B is a B-subsequence of the
B-sequence (an)n∈A and (an)n∈C is a B-subsequence of (an)n∈B , then
(an)n∈C is a B-subsequence of (an)n∈A.

For a given coideal basis B on N, we will define the B-convergent B-
sequences in a metric space. More generally, one could define the B-convergent
B-sequences in an arbitrary topological space.

Definition 3.5. Let (X, d) be a metric space and B a coideal basis on N. A
B-sequence (an)n∈B in X B-converges to the element a of X if for every
ε > 0 the set
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{n ∈ B : d(an, a) > ε}

does not contain an element of B (i.e. does not belong to LB). Also, the B-
sequence (an)n∈A in (X, d) is B-convergent if it B-converges to an element
a of X.

According to the previous definition, a B-sequence (an)n∈A of real numbers
B-converges to the real number a if for every ε > 0 the set {n ∈ A : |an−a| > ε}
does not contain an element of B (i.e. does not belong to LB).

Remarks 3.6.

1. A sequence (an)n∈N in a metric space (X, d) [N]-converges to a if and only
if (an)n∈N converges to a. Moreover, a B-sequence (an)n∈A in a metric
space (X, d), where B is a coideal basis on N, [N]-converges to a if and
only if the sequence (akn)n∈N converges to a, where {kn : n ∈ N} = A
and kn < kn+1 for every n ∈ N.

2. Let a coideal basis B on N. If a B-sequence (an)n∈A in a metric space
[N]-converges to a ∈ X, then (an)n∈A B-converges to a.

3. Let the coideal basisHd (Remark 2.2(iv)) on N and the sequence (an)n∈N

of real numbers with an =

{
1, if n is not prime

0, if n is prime.

The sequence (an)n∈N Hd-converges to 1, but it is not a convergent
sequence of real numbers.

4. Let B1,B2 be coideal bases on N with B1 ⊆ B2 and (an)n∈A a B1-
sequence in a metric space. If (an)n∈A B2-converges to a ∈ X, then
(an)n∈A B1-converges to a.

5. Let B be a coideal basis on N and (an)n∈A a B-sequence in a metric
space. The B-sequence (an)n∈A B-converges to a if and only if every
B-subsequence of (an)n∈A B-converges to a.

6. Let B be a coideal basis on N and (an)n∈N a sequence in a metric space.
If a B-subsequence (an)n∈B of (an)n∈N is B-convergent, the subsequence
(akn)n∈N corresponding to (an)n∈B is not necessarily B-convergent.

Indeed, let the coideal basis [2N] (Remark 2.4(ii)) and the sequence

(an)n∈N of real numbers with an =

{
2, if n is even

1, if n is odd

The [2N]-subsequence (an)n∈B of (an)n∈N, where B = {n ∈ N : n >
1}, [2N]-converges to 2, but the subsequence (akn

)n∈N corresponding to
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(an)n∈B , where k2n−1 = 2n and k2n = 2n + 1 for every n ∈ N, is not
[2N]-convergent.

Analogously, we define, for a coideal basis B on N, the B-sequences of real
valued functions which are pointwise B-convergent.

Definition 3.7. Let B be a coideal basis on N, A ∈ LB and fn : X → R
be a function from a set X to the set of real numbers for every n ∈ A. The
B-sequence (fn)n∈A pointwise B-converges to the function f : X → R if
and only if the B-sequence (fn(x))n∈A of real numbers B-converges to f(x) for
every x ∈ X.

We will prove that every B-sequence of real numbers has a monotone B-
subsequence in case B is a Ramsey coideal basis on N, extending the funda-
mental Bolzano-Weierstrass theorem, which corresponds to the particular case
B = [N].
We note that, for a given coideal basis B on N, a B-sequence (an)n∈A of
real numbers is increasing (respectively decreasing) if an ≤ am (respectively
an ≥ am ) for every n,m ∈ A with n < m.
Notation. For an infinite subset M of N we set

[M ]2 = {(n,m) ∈M ×M : n < m}.

Proposition 3. Let B be a Ramsey coideal basis on N. Every B-sequence of
real numbers has a monotone B-subsequence.

Proof. Let (an)n∈A be a B-sequence of real numbers. We set

F = {(n,m) ∈ [A]2 : an < am}.

Since B is a Ramsey coideal basis on N, there exists B ∈ B, B ⊆ A such that

either [B]2 ⊆ F or [B]2 ⊆ [A]2 \ F .

In case [B]2 ⊆ F , the B-subsequence (an)n∈B of (an)n∈A is increasing, while in
case [B]2 ⊆ [A]2 \F , the B-subsequence (an)n∈B of (an)n∈A is decreasing.

From Proposition 3 and Remark 3.6(i) follows that every bounded B-
sequence of real numbers, where B is a Ramsey coideal basis on N, has a
monotone, [N]-convergent B-subsequence, which, according to Remark 3.6(ii),
is also B-convergent.

Corollary 4. Let B be a Ramsey coideal basis on N. Every bounded B-
sequence of real numbers has a monotone, [N]-convergent and consequently
B-convergent B-subsequence.
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Using Corollary 4, we will characterize, in case B is a Ramsey coideal basis
on N, the bounded B-sequences of real numbers which are not B-convergent.

Corollary 5. Let B be a Ramsey coideal basis on N and (an)n∈A a bounded
B-sequence of real numbers which is not B-convergent. Then, there exist two
B-subsequences of (an)n∈A which B-converge to different limits.

Proof. The B-sequence (an)n∈A of real numbers is bounded, so, according
to Corollary 4, (an)n∈A has a monotone B-subsequence (an)n∈B1

which B-
converges to a real number a.
Since the B-sequence (an)n∈A is not B-convergent to a, there exists ε > 0 such
that

{n ∈ A : |an − a| > ε} = {n ∈ A : an > a+ ε} ∪ {n ∈ A : an 6 a− ε} ∈ LB.

Hence, either

{n ∈ A : an > a+ ε} ∈ LB or {n ∈ A : an 6 a− ε} ∈ LB.

Without loss of generality we assume that C = {n ∈ A : an > a+ ε} ∈ LB.
The B-sequence (an)n∈C of real numbers is bounded, so, according to

Proposition 3, it has a monotone B-subsequence (an)n∈B2
. The monotone and

bounded B-sequence (an)n∈B2
of real numbers [N]-converges to a real number

b with b > a + ε, according to Remark 3.6(i). According to Remark 3.6(ii),
the B-sequence (an)n∈B2 B-converges to b. Since B2 ∈ LB and B2 ⊆ C ⊆ A,
(an)n∈B2

is a B-subsequence of (an)n∈A which B-converges to a real number
b with b 6= a.

Hence, there exist two B-subsequences (an)n∈B1
and (an)n∈B2

of (an)n∈A
which B-converge to the real numbers a, b respectively with b 6= a.

4 The `1-dichotomy principle with respect to a coideal
basis

In this section, using the results of the previous sections we will prove, in
Theorem 11 below, that for a given semiselective coideal basis B on N, every
bounded B-sequence of real valued functions (fn)n∈A has a B-subsequence
(fn)n∈B which is either B-convergent or equivalent to the unit vector basis of
`1(B).

In the particular case where B = [N], Theorem 11 coincides with the fun-
damental `1- dichotomy theorem of Rosenthal ([13]) given below.
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Theorem 6 (Rosenthal, [13]). Let (fn)n∈N be a bounded sequence of functions
from an infinite set X to the set of real numbers. Then, there exists a subse-
quence (fnk

)k∈N of (fn)n∈N such that either (fnk
)k∈N is pointwise convergent,

or (fnk
)k∈N is equivalent to the unit vector basis of `1.

For a given coideal basis B on N, we will define now the B-convergent and
the independent sequences of pairs of disjoint subsets of an infinite set X.

Definition 4.1. Let B be a coideal basis on N. We say that a B-sequence
(Yn, Zn)n∈A of pairs of subsets of an infinite set X such that Yn ∩ Zn = ∅ for
every n ∈ A:

(i) is B-convergent, if for every x ∈ X either

FA
x ={n ∈ A : x ∈ Yn} does not contain an element of B ( i.e. FA

x /∈ LB) or

GAx = {n ∈ A : x ∈ Zn} does not contain an element of B ( i.e. GAx /∈ LB).

(ii) is independent, if for every choice of finite, disjoint subsets F,G of A(⋂
n∈F

Yn

)
∩

(⋂
n∈G

Zn

)
6= ∅.

It is obvious that if a B-sequence (Yn, Zn)n∈A is B-convergent (respec-
tively independent), then every B-subsequence of (Yn, Zn)n∈A is B-convergent
(respectively independent).

Now we will prove that, if B is a semiselective coideal basis on N, then every
B-sequence of pairs of disjoint subsets of an infinite set X has a B-subsequence
which is either B-convergent or independent.

Proposition 7. Let B be a semiselective coideal basis on N and (Yn, Zn)n∈A
a B-sequence of pairs of subsets of an infinite set X such that Yn ∩Zn = ∅ for
every n ∈ N. Then, there exists a B-subsequence (Yn, Zn)n∈B of (Yn, Zn)n∈A
such that either (Yn, Zn)n∈B is B-convergent, or (Yn, Zn)n∈B is independent.

Proof. We suppose that all the B-subsequences (Yn, Zn)n∈B , for every B ∈
LB, B ⊆ A, of (Yn, Zn)n∈A are not B-convergent.

For notational purposes we will denote by (−1)Yn the set Zn for every
n ∈ A. Considering an infinite subset of N as an increasing sequence in N, for
each k ∈ N we set

Uk = {N = (ni)i∈N ∈ [N] :

k⋂
i=1

(−1)iYni 6= ∅}.
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The subsets Uk of [N] for every k ∈ N are pointwise closed, as identifying each
element of [N] with an element of {0, 1}N, the sets Uk are closed subset of
[N] in the relative topology of {0, 1}N. Consequently U =

⋂
k∈N Uk is also a

pointwise closed subset of [N].
We apply Theorem 2 for the partition family U of [N] and the semiselective

coideal basis B. So, we get the existence of a B ∈ LB, B ⊆ A such that either
[B] ⊆ U or [B] ⊆ [N] \ U .

We assume that there exists B ∈ LB, B ⊆ A such that [B] ⊆ [N]\U . Since
the B-sequence (Yn, Zn)n∈B is not B-convergent there exists x0 ∈ X such that

C1 = {n ∈ B : x0 ∈ Yn} ∈ LB and C2 = {n ∈ B : x0 ∈ Zn} ∈ LB.

Hence, x0 ∈ Yn for every n ∈ C1 and x0 ∈ (−1)Yn for every n ∈ C2. So,

x0 ∈ (∩n∈C1Yn)
⋂

(∩n∈C2(−1)Yn).

We construct an infinite subset C of B such that C = {ci : i ∈ N} with
ci < ci+1, c2i ∈ C1 and c2i−1 ∈ C2 for every i ∈ N. Then,

x0 ∈
⋂

i∈N(−1)iYci ,

and consequently C = (ci)i∈N ∈ U . Thus, C ∈ U∩ [B]. This is a contradiction,
since we assumed that [B] ⊆ [N] \ U .

Hence, there exists B ∈ LB, B ⊆ A such that [B] ⊆ U . Let B = {bi : i ∈
N} with bi < bi+1 for every i ∈ N. Since B ∈ LB we have that either

B0 = {b2n : n ∈ N} ∈ LB or B1 = {b2n−1 : n ∈ N} ∈ LB.

Let B0 ∈ LB. We will prove that the B-sequence (Yn, Zn)n∈B0 is in-
dependent. Indeed, let F,G be finite, disjoint subsets of B0. There exists
N = {bki

: i ∈ N} ∈ [B] with ki < ki+1 for every i ∈ N such that

F ⊆ {bki
: i even}, G ⊆ {bki

: i odd}.

Since N = {bki : i ∈ N} ∈ [B] ⊆ U , we have that⋂k
i=1(−1)iYbki

6= ∅ for every k ∈ N,

and consequently

(
⋂

n∈F Yn) ∩ (
⋂

n∈G Zn) 6= ∅.

Hence, the B-subsequence (Yn, Zn)n∈B0
of (Yn, Zn)n∈A is independent.
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Notation. Let B be a coideal basis on N and (fn)n∈A a bounded B-sequence
of functions from an infinite set X to the set of real numbers (there exists a
real number M such that |fn(x)| ≤M for every n ∈ N and x ∈ X).
For two rational numbers p, q with p < q and n ∈ A we set

Y p
n = {x ∈ X : fn(x) < p} and Zq

n = {x ∈ X : fn(x) > q}

Obviously Y p
n ∩Zq

n = ∅ for every n ∈ A and every rational numbers p, q with
p < q. Hence, according to Proposition 7, if B is a semiselective coideal basis on
N, then for given rational numbers p, q with p < q there exists B ∈ LB, B ⊆ A
such that

either the B-sequence (Y p
n , Z

q
n)n∈B is B-convergent,

or the B-sequence (Y p
n , Z

q
n)n∈B is independent.

In the following proposition we will improve the previous dichotomy as follows:

Proposition 8. Let B be a semiselective coideal basis on N and (fn)n∈A a
bounded B-sequence of functions from an infinite set X to the set of real num-
bers. Then, there exists B ∈ LB, B ⊆ A such that either the B-sequences
(Y p

n , Z
q
n)n∈B are B-convergent for every rational numbers p, q with p < q

or there exist rational numbers p, q with p < q such that the B-sequence
(Y p

n , Z
q
n)n∈B is independent.

Proof. We consider the set

P = {(p, q) ∈ Q×Q : p < q} = {(p1, q1), (p2, q2), . . .},

where Q is the set of rational numbers.
We assume that for every B ∈ LB, B ⊆ A and for every (p, q) ∈ P the

B-sequence (Y p
n , Z

q
n)n∈B is not independent. For k ∈ N we set,

Rk = {B ∈ LB : (Y pk
n , Zqk

n )n∈B is B − convergent}.

We will first prove that the families Rk, for every k ∈ N, have the dense-open
property in B on A (Definition 2.8). Indeed, let k ∈ N.

(i) Let C ∈ LB, C ⊆ A. According to our assumption, for every D ∈ LB,
D ⊆ C the B-sequence (Y pk

n , Zqk
n )n∈D is not independent. So, according

to Proposition 7 there exists B ∈ LB, B ⊆ C such that the B-sequence
(Y pk

n , Zqk
n )n∈B is B-convergent. Thus, B ∈ Rk, and B ⊆ C.

(ii) Let B ∈ Rk and C ∈ LB with C ⊆ B. The B-sequence (Y pk
n , Zqk

n )n∈C
is B-convergent, since it is a B-subsequence of (Y pk

n , Zqk
n )n∈B , which is

B-convergent. Thus, C ∈ Rk.
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Thus, the families Rk, for every k ∈ N, have the dense-open property in B on
A.

Since B is a semiselective coideal basis (Definition 2.9) there exists B ∈
LB, B ⊆ A such that for each k ∈ N there is a C ∈ Rk and a finite subset
F of B such that B \ F ⊆ C. Hence, the B-sequences (Y pk

n , Zqk
n )n∈B are

B-convergent for every k ∈ N.

Now we will prove that in case the first alternative of the dichotomy proved
in Proposition 8 holds, it will then follow that the B-sequence (fn)n∈A has a
B-subsequence (fn)n∈B which is B-convergent.

Proposition 9. Let B be a semiselective coideal basis on N and (fn)n∈B
a bounded B-sequence of functions from an infinite set X to the set of real
numbers. If the B-sequences (Y p

n , Z
q
n)n∈B are B-convergent for every rational

numbers p, q with p < q, then the B-sequence (fn)n∈B is B-convergent.

Proof. We suppose that the B-sequence (fn)n∈B is not B-convergent. Then,
there exists x0 ∈ X such that the B-sequence (fn(x0))n∈B is not B-convergent.
According to Corollary 5 there exist B1, B2 ∈ LB with B1 ⊆ B, B2 ⊆ B and
a, b ∈ R with a 6= b such that the B-sequences (fn(x0))n∈B1

, (fn(x0))n∈B2
to

be B-convergent to a, b respectively. We can assume that a < b and let p, q be
rational numbers such that a < p < q < b. Then,

{n ∈ B1 : fn(x0) > p} /∈ LB and {n ∈ B2 : fn(x0) 6 q} /∈ LB.

Hence,

{n ∈ B : fn(x0) < p} ∈ LB and {n ∈ B : fn(x0) > q} ∈ LB,

and consequently

{n ∈ B : x0 ∈ Y p
n } ∈ LB and {n ∈ B : x0 ∈ Zq

n} ∈ LB.

This is a contradiction, since the sequence (Y p
n , Z

q
n)n∈B is B-convergent. Hence,

the B-sequence (fn)n∈B is B-convergent.

Finally we will prove that in case the second alternative of the dichotomy
proved in Proposition 8 holds, it will then follow that the bounded B-sequence
(fn)n∈A in the Banach space `∞(X) has a B-subsequence (fn)n∈B which is
equivalent to the unit vector basis of `1(B).

We note that a bounded B-sequence (xn)n∈B in the Banach space (X, ||.||),
where B is a coideal basis on N, is equivalent to the unit vector basis of `1(B) if
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there exists a real positive number K such that K
∑

i∈H |λi| 6 ||
∑

i∈H λixi||
for every B-sequence (λn)n∈B of real numbers and every nonempty finite subset
H of B.

It is obvious that a B-sequence (an)n∈B in a Banach space X is equivalent
to the unit vector basis of `1(B) if and only if the subsequence (akn

)n∈N
corresponding to (an)n∈B is equivalent to the natural basis of `1.

Proposition 10. Let B ⊆ [N] be a semiselective coideal basis on N and
(fn)n∈B a bounded B-sequence of functions from an infinite set X to the set
of real numbers. If there exist rational numbers p, q with p < q such that the
B-sequence (Y p

n , Z
q
n)n∈B is independent, then the B-sequence (fn)n∈B in the

Banach space `∞(X) is equivalent to the unit vector basis of `1(B).

Proof. Let a B-sequence (λn)n∈B of real numbers. For a finite subset H of
N we set FH = {i ∈ H : λi > 0} and GH = {i ∈ H : λi < 0}. Since the
B-sequence (Y p

n , Z
q
n)n∈B is independent there exist

y1 ∈

( ⋂
i∈FH

Xp
i

)
∩

( ⋂
i∈GH

Y q
i

)
and y2 ∈

( ⋂
i∈GH

Xp
i

)
∩

( ⋂
i∈FH

Y q
i

)
.

Since (fn)n∈B is bounded it is enough to prove that there exists K > 0 such
that K

∑
i∈H |λi| 6 ||

∑
i∈H λifi||∞ for every B-sequence (λn)n∈B of real num-

bers and every nonempty finite subset H of B. For a B-sequence (λn)n∈B of
real numbers and a nonempty finite subset H of B we have that∑

i∈H
λifi(y1) 6 p

∑
i∈FH

|λi| − q
∑
i∈GH

|λi|

and ∑
i∈H

λifi(y2) > q
∑
i∈FH

|λi| − p
∑
i∈GH

|λi|.

It follows that

(q − p)
n∑

i=1

|λi| 6 |
∑
i∈H

λifi(y2)−
∑
i∈H

λifi(y1)| 6 2||
∑
i∈H

λifi||∞

and consequently that

(q − p)
2

∑
i∈H
|λi| 6 ||

∑
i∈H

λifi||∞.

Hence, (fn)n∈B is equivalent to the unit vector basis of `1(B).
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Finally, the `1-dichotomy principle with respect to a semiselective coideal
basis on N follows from Propositions 8, 9, and 10.

We remark that the full force of the assumption that the coideal basis is
semiselective is used only in the proof of Proposition 8, while the proofs of the
remaining Propositions 9 and 10 made use only of the weaker, according to
Theorem 2, Nash-Williams property of the coideal.

Theorem 11. Let B ⊆ [N] be a semiselective coideal basis on N and (fn)n∈A
a bounded B-sequence of functions from an infinite set X to the set of real
numbers. Then, there exists a B-subsequence (fn)n∈B of (fn)n∈A such that
either (fn)n∈B is B-convergent, or (fn)n∈B is equivalent to the unit vector
basis of `1(B).

We remark that in the particular case where B = [N], a selective coideal
basis on N, Theorem 11 coincides with the fundamental `1-dichotomy theorem
of Rosenthal ([13]).

Acknowledgment. We wish to express our thanks to the anonymous
referee for a careful reading and helpful suggestions that have led to an im-
provement of the paper.
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