Emmanuel Chetcuti, Department of Mathematics, Faculty of Science, University of Malta, Msida MSD 2080, Malta.

email: emanuel.chetcuti@um.edu.mt

Joseph Muscat, Department of Mathematics, Faculty of Science, University of Malta, Msida MSD 2080, Malta. email: joseph.muscat@um.edu.mt

EQUILATERAL WEIGHTS ON THE UNIT BALL OF \mathbb{R}^n

Abstract

An equilateral set (or regular simplex) in a metric space X is a set A such that the distance between any pair of distinct members of A is a constant. An equilateral set is standard if the distance between distinct members is equal to 1. Motivated by the notion of frame functions, as introduced and characterized by Gleason in [6], we define an equilateral weight on a metric space X to be a function $f: X \longrightarrow \mathbb{R}$ such that $\sum_{i \in I} f(x_i) = W$ for every maximal standard equilateral set $\{x_i : i \in I\}$ in X, where $W \in \mathbb{R}$ is the weight of f. In this paper, we characterize the equilateral weights associated with the unit ball B^n of \mathbb{R}^n as follows: For $n \geq 2$, every equilateral weight on B^n is constant.

1 Introduction

Equilateral sets have been extensively studied in the literature for a number of metric spaces [2]. An equilateral set (or regular simplex) in a metric space X is a set A such that the distance between any pair of distinct members of A is ρ , where $\rho \neq 0$ is a constant. The equilateral dimension of X is defined to be $\sup\{|A|: A \text{ is an equilateral set in } X\}$.

Suppose that $\{x_1, \ldots, x_k\}$ is an equilateral set in \mathbb{R}^n (equipped with the ℓ_2 -norm). Then the vectors $v_i := x_{i+1} - x_1$ for $i = 1, \ldots, k-1$ are linearly independent. Indeed, let A be the $(k-1) \times (k-1)$ matrix (a_{ij}) defined by

Mathematical Reviews subject classification: Primary: 26A03, 26A04; Secondary: 26A05 Key words: Equilateral set, Equilateral weight

Received by the editors August 11, 2012 Communicated by: Marianna Csörnyei $a_{ij} := \langle v_i, v_j \rangle$. Then $a_{ij} = \frac{\rho^2}{2}(1 + \delta_{ij})$, where $\rho \neq 0$ is a constant and δ_{ij} is the Kronecker delta. Let $\{e_1, \ldots, e_n\}$ be the canonical basis of \mathbb{R}^n and let B be the $n \times (k-1)$ matrix (b_{ij}) defined by $b_{ij} := \langle v_j, e_i \rangle$. Since $A = B^*B$ and A is clearly non-singular, we deduce that B is non-singular; i.e. the vectors $v_i := x_{i+1} - x_1$ for $i = 1, \ldots, k-1$ are linearly independent and therefore $k \leq n+1$. The equilateral dimension of \mathbb{R}^n (equipped with the ℓ_2 -norm) is n+1. To see this, observe that the set $\{x_1-c,\ldots,x_k-c\}$, where $c := \frac{1}{k} \sum_{i=1}^k x_i$, has linear dimension k-1 and so if k < n+1, then there exists a unit vector $u \in \mathbb{R}^n$ such that $u \perp x_i - c$ for each $i = 1, \ldots, k$, and therefore the set $\{x_1,\ldots,x_k\}$ can be enlarged to a bigger equilateral set in \mathbb{R}^n . Let us only mention here that the situation is far more complicated for the other ℓ_p -norms [11, 9, 1] (and others).

An equilateral set in \mathbb{R}^n is standard if the distance between distinct points is equal to 1. If $\{x_1,\ldots,x_k\}$ is a standard equilateral set in \mathbb{R}^n , its centre $\frac{1}{k}\sum_{i=1}^k x_i$ will be denoted by $c(x_1,\ldots,x_k)$. Let us denote by β_k the radius of $\{x_1,\ldots,x_k\}$. A simple calculation yields

$$\beta_k = \left\| x_i - c(x_1, \dots, x_k) \right\| = \frac{1}{k} \left\| \sum_{\substack{1 \le j \le k \\ j \ne i}} (x_j - x_i) \right\|$$
$$= \frac{1}{k} \sqrt{k - 1 + \frac{(k - 1)(k - 2)}{2}} = \sqrt{\frac{k - 1}{2k}}.$$

If x_{k+1} is another point in \mathbb{R}^n such that $\{x_1, \ldots, x_k, x_{k+1}\}$ is again a standard equilateral set, then $x_{k+1} - c(x_1, \ldots, x_k)$ is orthogonal to $x_i - c(x_1, \ldots, x_k)$ for every $i = 1, \ldots, k$, and thus

$$||x_{k+1} - c(x_1, \dots, x_k)|| = \sqrt{1 - \beta_k^2} = \sqrt{\frac{k+1}{2k}}.$$

We will call $\alpha_{k+1} := \sqrt{\frac{k+1}{2k}}$ the perpendicular height of $\{x_1, \dots, x_k, x_{k+1}\}$.

We shall now introduce the notion of equilateral weights. The motivation behind this definition is the notion of frame functions. These were introduced and characterized by Gleason [6] in his famous theorem describing the measures on the closed subspaces of a Hilbert space. Gleason's Theorem is of utmost importance in the laying down of the foundations of quantum mechanics [12, 10, 7, 4, 8] (and others). Let S(0,1) denote the unit sphere of a Hilbert space H. A function $f: S(0,1) \to \mathbb{R}$ is called a frame function on H if there is a number w(f), called the weight of f, such that $\sum_{i \in I} f(u_i) = w(f)$ for every orthonormal basis $\{u_i: i \in I\}$ of H. We recall that a bounded operator T on

H is of trace-class if the series $\sum_{i\in I} \langle Tu_i, u_i \rangle$ converges absolutely for any orthonormal basis $\{u_i: i\in I\}$ of H. (It is well-known that if the series converges for an orthonormal basis $\{u_i: i\in I\}$, then it converges for any orthonormal basis and the sum does not depend on the choice of the basis.) Clearly, if T is self-adjoint and of trace-class, then the function $f_T(x) = \langle Tx, x \rangle$ $(x \in S(0, 1))$ defines a continuous frame function on H. Gleason's Theorem says that when $\dim H \geq 3$, every bounded frame function arises in this way. The heart of the proof of Gleason's Theorem is the treatment of the case when H is the real three-dimensional Hilbert space \mathbb{R}^3 . In fact, all the other cases can be reduced to this case. Thus, as a matter of fact, it can be said that the crux of this theorem can be rendered to the following statement: For every bounded frame function f on \mathbb{R}^3 there exists a symmetric matrix T on \mathbb{R}^3 such that $f(u) = \langle Tu, u \rangle$ for every unit vector $u \in \mathbb{R}^3$. The notion of frame functions and the fact that an orthonormal basis of \mathbb{R}^3 is simply a maximal equilateral set on the unit sphere of \mathbb{R}^3 suggest the following definition:

Definition 1. Let X be a metric space and let $W \in \mathbb{R}$. An equilateral weight on X with weight W is a function $f: X \longrightarrow \mathbb{R}$ such that

$$\sum_{i \in I} f(x_i) = W$$

whenever $\{x_i : i \in I\}$ is a maximal standard equilateral set in X.

Given a metric space, can one describe the equilateral weights associated with it?

Example 2. Every equilateral weight on \mathbb{R}^2 is constant. First observe that for every pair of points x and y in \mathbb{R}^2 there are points x_1, x_2, \ldots, x_n in \mathbb{R}^2 such that $||x_1-x|| = ||x_{i+1}-x_i|| = ||y-x_n|| = 1$ for every $i=1,\ldots,n-1$. Thus, it suffices to show that f(x) = f(y) for all $x, y \in \mathbb{R}^2$ satisfying ||x-y|| = 1. Let $x, y \in \mathbb{R}^2$ such that ||x-y|| = 1. Observe that if $\{a,b,c\}$ and $\{d,b,c\}$ are the vertices of two unit equilateral triangles and f is an equilateral weight, then f(a) = f(d). Thus, f takes the constant value f(x) on the circle with centre x and radius $\sqrt{3}$ and the constant value f(y) on the circle with centre y and radius $\sqrt{3}$. Since these circles intersect, it follows that f(x) = f(y). Using a similar argument, but replacing $\sqrt{3}$ with $2\alpha_{n+1}$, one can easily show that every equilateral weight on \mathbb{R}^n is constant. The same cannot be said for \mathbb{R} – it is easy to find non-trivial equilateral weights on \mathbb{R} .

Example 3. Let S be the sphere in a Hilbert space H with centre 0 and radius $1/\sqrt{2}$. Two vectors u and v in S satisfy ||u-v|| = 1 if and only if $\langle u,v \rangle = 0$. Thus, each maximal standard equilateral set in S corresponds to a rescaling of

some orthonormal basis of H by a factor of $1/\sqrt{2}$. It is clear, therefore, that the equilateral weights on S correspond to the frame-functions on H (composite with a rescaling by a factor of $\sqrt{2}$). Thus, in view of Gleason's Theorem, if $\dim H \geq 3$ and f is a bounded equilateral weight on S, then there exists a self-adjoint, trace-class operator T such that

$$f(u) = \langle Tu, u \rangle$$

for all $u \in S$. Let us emphasize that such a description does not hold when $\dim H = 2$ and that the assumption of boundedness is not redundant when $\dim H$ is finite. It known that \mathbb{R}^n admits frame functions that are unbounded and that therefore cannot be described by such an equation (see [4, Proposition 3.2.4]).

By contrast, the boundedness assumption is superfluous when the space is infinite dimensional. This surprising result is due to Dorofeev and Sherstnev [3] and allows us to describe the equilateral weights associated with the metric space S of an infinite dimensional Hilbert space directly from Gleason's Theorem.

Proposition 4. Let H be an infinite dimensional Hilbert space, and let S be the sphere in H with centre 0 and radius $1/\sqrt{2}$. If f is an equilateral weight on S, then there exists a self-adjoint, trace-class operator T on H such that $f(u) = \langle Tu, u \rangle$ for every vector u in S.

The aim of the present paper is to describe the equilateral weights associated with another bounded metric space; namely the unit ball of \mathbb{R}^n .

2 Standard equilateral sets in the unit ball of \mathbb{R}^n

In what follows, we will be interested in standard equilateral sets contained in the (closed) unit ball of \mathbb{R}^n , denoted by B^n . It is clear that the equilateral dimension of B^n is equal to that of \mathbb{R}^n . We start by exhibiting some properties of standard equilateral sets in B^n .

Proposition 5. Let $\{x_1, \ldots, x_k\}$ $(k \le n+1)$ be a standard equilateral set in B^n . Then $||c(x_1, \ldots, x_k)|| \le \alpha_{k+1}$.

PROOF. First observe that

$$2\langle x_i, x_j \rangle = ||x_i||^2 + ||x_j||^2 - ||x_i - x_j||^2 \le 1,$$

and therefore,

$$||c(x_1, \dots, x_k)||^2 = k^{-2} \left\langle \sum_{i=1}^k x_i, \sum_{i=1}^k x_i \right\rangle$$

$$= k^{-2} \left[\sum_{i=1}^k ||x_i||^2 + \sum_{\substack{1 \le i, j \le k \\ i \ne j}} \langle x_i, x_j \rangle \right]$$

$$\le k^{-2} \left[k + \frac{k(k-1)}{2} \right]$$

$$= \alpha_{k+1}^2.$$

In the extremal case k=n+1, the bound obtained in Proposition 5 can be improved as shown in Proposition 7 below. This improvement is needed to prove Proposition 8. We first prove a lemma.

Lemma 6. Let $\{x_1, x_2, \ldots, x_{n+1}\}$ be a maximal standard equilateral set in \mathbb{R}^n with centre at the origin and let $x \in \mathbb{R}^n$ satisfy $\langle x, x_i \rangle \geq 0$ for $i = 2, 3, \ldots, n+1$. If $||x|| \geq 1$, then $\langle x, x_2 + x_3 + \cdots + x_{n+1} \rangle \geq 1/2$.

PROOF. Let $v := x_2 + x_3 + \cdots + x_{n+1}$ and let

$$K := \{ x \in \mathbb{R}^n : \langle x, v \rangle \le 1/2, \langle x, x_i \rangle \ge 0 \text{ for each } i = 2, 3, \dots, n+1 \}.$$

K is the intersection of half-spaces, and therefore a point of K is an extreme point if and only if it is the intersection of n hyperplanes whose normals form a basis of \mathbb{R}^n . Using the fact that $\langle x_i, x_j \rangle$ is independent of i, j (when $i \neq j$) it is easy to see that the extreme points of K are $\{0, x_2 - x_1, x_3 - x_1, \dots, x_{n+1} - x_1\}$. The norm, being a strictly convex function, i.e.

$$\|\lambda x + (1 - \lambda)y\| < \max(\|x\|, \|y\|), \quad x \neq y, \ 0 < \lambda < 1$$
 (*)

takes a maximum value at an extremal point, and therefore, since $||x_i-x_1||=1$ $(i=2,3,\ldots,n+1)$, it follows that $||x||\leq 1$ for every $x\in K$. From the strict inequality of (\star) and from the fact that each of the vectors x_i-x_1 $(i=2,3,\ldots,n+1)$ lies in the hyperplane $\langle x,v\rangle=1/2$, it follows that if $x\in\mathbb{R}^n$ satisfies $\langle x,x_i\rangle\geq 0$ $(i=2,3,\ldots,n+1)$ and $\langle x,v\rangle<1/2$, then ||x||<1.

Proposition 7. Let $\{u_1, \ldots, u_{n+1}\}$ be a standard equilateral set in B^n . Then $||c(u_1, \ldots, u_{n+1})|| \leq \beta_{n+1}$.

PROOF. Let $\{u_1, u_2, \ldots, u_{n+1}\}$ be a maximal standard equilateral set in B^n . Then $\{0, u_2 - u_1, \ldots, u_{n+1} - u_1\}$ is again a maximal standard equilateral set in B^n . Let us denote its centre by c. Note that $||c|| = \beta_{n+1}$. For each $i = 1, 2, \ldots, n+1$, let $x_i := u_i - u_1 - c$. Then $\{x_1, x_2, \ldots, x_{n+1}\}$ is a maximal standard equilateral set with centre at the origin. Note that

$$c(u_1, u_2, \dots, u_{n+1}) = c(x_1, x_2, \dots, x_{n+1}) + u_1 + c = u_1 + c.$$

Thus

$$||c(u_1, u_2, \dots, u_{n+1})||^2 = ||u_1 + c||^2 = ||u_1||^2 + ||c||^2 + 2\langle u_1, c \rangle,$$

and therefore, for the proposition to hold, we require

$$\left\langle \frac{-u_1}{\|u_1\|}, c \right\rangle \ge \frac{\|u_1\|}{2}. \quad (\star)$$

To this end, we calculate

$$1 \ge ||u_i||^2 = ||x_i + c||^2 + ||u_1||^2 + 2\langle u_1, x_i + c\rangle$$
$$= 1 + ||u_1||^2 + 2\langle u_1, x_i\rangle + 2\langle u_1, c\rangle,$$

which implies

$$\left\langle \frac{-u_1}{\|u_1\|}, x_i \right\rangle \ge \frac{\|u_1\|}{2} - \left\langle \frac{-u_1}{\|u_1\|}, c \right\rangle \quad (\star\star).$$

for each $i=2,3,\ldots,n+1$. Now, if the right hand side of $(\star\star)$ is ≤ 0 , then (\star) is satisfied. On the other-hand, if the right hand side of $(\star\star)$ is greater than 0, then Lemma 6 can be applied to conclude

$$\frac{\|u_1\|}{2} \le \frac{1}{2} \le \left\langle \frac{-u_1}{\|u_1\|}, x_2 + x_3 + \dots + x_{n+1} \right\rangle = \left\langle \frac{-u_1}{\|u_1\|}, -x_1 \right\rangle = \left\langle \frac{-u_1}{\|u_1\|}, c \right\rangle,$$

which completes the proof.

Proposition 8. Every standard equilateral set in B^n can be enlarged to one having size n + 1 such that its members all lie in B^n .

PROOF. Let $\{x_1, \ldots, x_k\}$ $(1 \le k \le n)$ be a standard equilateral set in B^n . We show that there exists a vector $x_{k+1} \in B^n$ such that $\{x_1, \ldots, x_k, x_{k+1}\}$ is a standard equilateral set. The proof will then follow by induction.

Let
$$N := \text{span}\{x_i - c(x_1, ..., x_k) : 1 \le i \le k\}$$
 and set

$$a := (I - P_N)c(x_1, \dots, x_k),$$

where P_N is the projection of \mathbb{R}^n into N and I is the identity. The intersection of B^n with the translation a+N is a (k-1)-dimensional ball with centre a and radius $\sqrt{1-\|a\|^2}$. The set $\{x_1,\ldots,x_k\}$ is a standard equilateral set in $(a+N)\cap B^n$, and thus, in view of Proposition 7, it follows that

$$||c(x_1,\ldots,x_k)-a|| \le \beta_k.$$

Set $u := -\alpha_{k+1}v$, where $v := a/\|a\|$ if $a \neq 0$ and any unit vector in N^{\perp} if a = 0. Then $\|a + u\| \leq \|u\| = \alpha_{k+1}$ since $\alpha_{k+1} \geq \beta_k = \|c(x_1, \ldots, x_k)\| \geq \|a\|$. Put $x_{k+1} := c(x_1, \ldots, x_k) + u$. The set $\{x_1, \ldots, x_k, x_{k+1}\}$ is a standard equilateral set in \mathbb{R}^n . Moreover,

$$||x_{k+1}||^2 = ||c(x_1, \dots, x_k) + u||^2$$

$$= ||c(x_1, \dots, x_k) - a||^2 + ||a + u||^2$$

$$\leq \beta_k^2 + \alpha_{k+1}^2$$

$$= 1.$$

3 Equilateral weights on B^n

In this section, we shall prove that the only admissible equilateral weights on the unit ball of \mathbb{R}^n are those that take a constant value.

For any linear subspace M of \mathbb{R}^n , $a \in M$ and r > 0, we denote the closed ball in M with centre a and radius r by $B^M(a, r)$; i.e.

$$B^{M}(a,r) = \{x \in M : ||x - a|| \le r\}.$$

We will also denote by $S^M(a,r)$ the sphere in M with centre a and radius r; i.e. $S^M(a,r) = \{x \in M : ||x-a|| = r\}$. We will write B(a,r) (resp. S(a,r)) instead of $B^{\mathbb{R}^n}(a,r)$ (resp. $S^{\mathbb{R}^n}(a,r)$). We will need the following definition.

Definition 9. Let $a, b \in B^n$, $a \neq b$ and $N := (b - a)^{\perp}$. For any subspace $M \neq \{0\}$ of \mathbb{R}^n , define

$$\gamma^M(a,b):=\sup\biggl\{r>0\,:\,\frac{a+b}{2}+B^{M\cap N}(0,r)\subseteq B^n\biggr\}.$$

Note that the set involved in the definition of $\gamma^M(a,b)$ is not empty and bounded above by 1. Instead of $\gamma^{\mathbb{R}^n}(a,b)$, we will simply write $\gamma(a,b)$. It is easy to see that $\gamma^M(a,b)$ is in fact equal to the maximum of the set of its

definition. In addition, if M_1 and M_2 are subspaces of \mathbb{R}^n such that $M_1 \subseteq M_2$, then $\gamma^{M_2}(a,b) \leq \gamma^{M_1}(a,b)$. The motivation behind this definition lies in the following observation.

Lemma 10. Let $a, b \in B^n$ such that $||b-a|| = 2\alpha_{n+1}$ and $\gamma(a,b) \ge \beta_n$. Then f(a) = f(b) for every equilateral weight f on B^n .

PROOF. Let $N := (b-a)^{\perp}$ and let $\{x_1, \ldots, x_n\}$ be a standard equilateral set in

$$\frac{a+b}{2} + S^N(0,\beta_n) \subseteq B^n.$$

Each x_i can be written as $(a+b)/2 + n_i$, where $n_i \in N$ and $||n_i|| = \beta_n$. Thus,

$$||x_i - a||^2 = \left\|\frac{b - a}{2} + n_i\right\|^2 = \alpha_{n+1}^2 + \beta_n^2 = 1.$$

Similarly, $||x_i - b|| = 1$, i.e. $\{a, x_1, \dots, x_n\}$ and $\{b, x_1, \dots, x_n\}$ are maximal standard equilateral sets in B^n , and therefore,

$$f(a) + \sum_{i=1}^{n} f(x_i) = f(b) + \sum_{i=1}^{n} f(x_i)$$

for every equilateral weight f on B^n .

Lemma 11. Let $a, b \in B^n$, $a \neq b$, and let T be a two-dimensional subspace of \mathbb{R}^n containing a and b. Then $\gamma^T(a, b) = \gamma(a, b)$.

PROOF. We show that $\gamma(a,b) \geq \gamma^T(a,b)$. Let u be a unit vector in T such that $\langle u,b-a\rangle = 0$ and $\langle u,b+a\rangle \geq 0$. Set $x_0 := (a+b)/2$. Let r>0 such that $||x_0+ru|| \leq 1$, and let $x \in (b-a)^{\perp}$ such that $||x|| \leq r$. Then $P_T x = \lambda u$, where $|\lambda| \leq ||x|| \leq r$. Hence,

$$||x_0 + x||^2 = ||x_0||^2 + ||x||^2 + 2\langle x_0, x \rangle$$

$$\leq ||x_0||^2 + ||x||^2 + 2|\langle P_T x_0, x \rangle|$$

$$= ||x_0||^2 + ||x||^2 + 2|\lambda|\langle x_0, u \rangle$$

$$\leq ||x_0||^2 + r^2 + 2r\langle x_0, u \rangle$$

$$= ||x_0 + ru||^2$$

$$\leq 1,$$

and therefore, $\gamma(a,b) \geq \gamma^T(a,b)$ as required.

Lemma 12. Let f be an equilateral weight on B^n , where $n \geq 2$. There exists $0 \leq \lambda_n < 1$ such that f is constant in $\{x \in B^n : ||x|| \geq \lambda_n\}$.

PROOF. It suffices to show that there exists $0 \le \lambda_n < 1$ such that f is constant in $\{x \in B^n \cap T : ||x|| \ge \lambda_n\}$ for every two-dimensional subspace T of \mathbb{R}^n .

Fix an arbitrary two-dimensional subspace T, and let D denote the closed unit disc $B^n \cap T$. To make calculations easier, we fix a rectangular coordinate system in D with origin o at the centre of D (see Figure 1.). Consider the points w(0,-1), x(-1,0), y(0,1) and z(1,0). Let C_w (resp. C_x , C_y , C_z) be the circular arc with centre w (resp. x, y, z) and radius $2\alpha_{n+1}$. The arcs C_w and C_x meet in D at the point a, the coordinates of which can be easily calculated:

$$a\left(\frac{-1+\sqrt{8\alpha_{n+1}^2-1}}{2}, \frac{-1+\sqrt{8\alpha_{n+1}^2-1}}{2}\right).$$

Similarly, let $b, c, d \in D$ such that $C_x \cap C_y = \{b\}$, $C_y \cap C_z = \{c\}$ and $C_z \cap C_w = \{d\}$. Let C_a (resp. C_b , C_c and C_d) denote the circular arc in D having centre a and radius $2\alpha_{n+1}$ (see Figure 1 below).

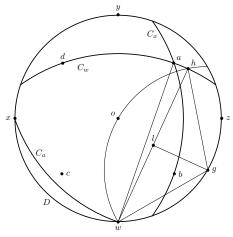


Figure 1

First we show that $\gamma^T(a, w) \geq \beta_n$. Let g be the point $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$. Since $2\alpha_{n+1} \leq \sqrt{3}$, it easy to see that the circular arc in D having centre g and radius 1 intersects C_w , say at h. Observe that if l is the midpoint of the line segment wh, then $|lg| = \beta_n$. So to show that $\gamma^T(w, a) \geq \beta_n$, it suffices to show that the angle \widehat{owa} is less than or equal to the angle \widehat{owh} . To this end, it is

enough to show that $\sin \widehat{owa} \leq \sin \widehat{owh}$. Since $\widehat{doa} = \frac{\pi}{2}$, we have

$$\sin \widehat{owa} = \sin(\pi/4 - \widehat{oaw})$$
$$= \frac{1}{\sqrt{2}} (\cos \widehat{oaw} - \sin \widehat{oaw}).$$

Applying the sine rule for triangle oaw we deduce that

$$\sin \widehat{oaw} = \frac{\sin 3\pi/4}{2\alpha_{n+1}} = \frac{1}{2}\sqrt{\frac{n}{n+1}} \quad \text{ and } \quad \cos \widehat{oaw} = \frac{1}{2}\sqrt{\frac{3n+4}{n+1}}.$$

Thus,

$$\sin \widehat{owa} = \frac{1}{2\sqrt{2}} \left(\sqrt{3 + \frac{1}{n+1}} - \sqrt{1 - \frac{1}{n+1}} \right).$$

On the other-hand,

$$\sin \widehat{owh} = \sin(\pi/3 - \widehat{lwg})$$

$$= \frac{1}{2} (\sqrt{3} \cos \widehat{lwg} - \sin \widehat{lwg})$$

$$= \frac{1}{2} (\sqrt{3} \alpha_{n+1} - \beta_n)$$

$$= \frac{1}{2\sqrt{2}} \left(\sqrt{3 + \frac{3}{n}} - \sqrt{1 - \frac{1}{n}} \right).$$

Thus, $\sin \widehat{owa} \leq \sin \widehat{owh}$ and therefore $\gamma^T(w, a) \geq \beta_n$.

It is clear (see Figure 1.) that $\gamma^T(u,a) \geq \gamma^T(w,a)$ for every $u \in C_a$. Thus, in view of Lemma 10 and Lemma 11, it follows that f is constant on C_a . By symmetry, it follows that f is constant on the circuit $C_a \cup C_b \cup C_c \cup C_d$. If $\{w',x',y',z'\}$ is another quadruple of points on the circumference of D such that w'y' and x'z' are perpendicular, then we can repeat the same argument as above to deduce that f is constant on the corresponding circuit joining the points w', x', y' and z'. Moreover, since any two such circuits intersect, it follows that f is constant in the annulus $\{u \in D : |ou| \geq 2\alpha_{n+1} - |oa|\}$. Let $\lambda_n := 2\alpha_{n+1} - |oa|$. From the coordinates of a one can calculate

$$\lambda_n = \frac{1}{\sqrt{2}} \left(1 + \sqrt{4 + \frac{4}{n}} - \sqrt{3 + \frac{4}{n}} \right).$$

For each $\rho \in [\beta_n, 1]$, define $\eta_n(\rho) := \alpha_{n+1} - \sqrt{\rho^2 - \beta_n^2}$. Observe that the value $\eta_n(\rho)$ decreases strictly from α_{n+1} (when $\rho = \beta_n$) to 0 (when $\rho = 1$), and $\eta_n(\rho) = \rho$ if and only if $\rho = \beta_{n+1}$. Thus, $\eta_n(\rho) \ge \rho$ for every $\rho \in [\beta_n, \beta_{n+1}]$, and $\eta_n(\rho) < \rho$ when $\rho \in (\beta_{n+1}, 1]$. The geometric meaning of $\eta_n(\rho)$ becomes apparent from the following lemma.

- **Lemma 13.** (a) Let $1 \ge \rho \ge \beta_n$, and let $x \in B^n$ such that $||x|| = \eta_n(\rho)$. Then there exists a standard equilateral set $\{x_1, x_2, \ldots, x_n\}$ such that $||x_i|| = \rho$ and $||x_i x|| = 1$ for every $i = 1, 2, \ldots, n$.
- (b) Conversely, if $\{x_1, x_2, \ldots, x_{n+1}\}$ is a maximal standard equilateral set in B^n and $||x_i|| = \rho$ for every $i = 1, 2, \ldots, n$, then $\rho \geq \beta_n$, and if $\operatorname{conv}(x_1, \ldots, x_{n+1})$ contains 0, then $||x_{n+1}|| = \eta_n(\rho)$.

PROOF. (a) First note that if $\rho = 1$, then $0 = \eta_n(\rho) = ||x||$, and therefore, the statement is true in this case. Suppose that $\beta_n \leq \rho < 1$. Let $\{u_1, u_2, \ldots, u_n\}$ be a maximal standard equilateral set in x^{\perp} with centre 0. Then $||u_i|| = \beta_n$. It is easy to check that the vectors

$$x_i := u_i - \sqrt{\rho^2 - \beta_n^2} \frac{x}{\|x\|}$$
 $(i = 1, 2, \dots, n)$

satisfy the required conditions.

(b) The locus of points in \mathbb{R}^n equidistant from each of the x_i 's (i = 1, ..., n) is the line passing through 0 and parallel to $x_{n+1} - c(x_1, ..., x_n)$. The point on this line with shortest distance from any (and therefore from each) of the x_i 's (i = 1, ..., n) is that with position vector $c(x_1, ..., x_n)$. Thus,

$$\beta_n = ||c(x_1, \dots, x_n) - x_i|| \le ||x_i|| = \rho$$
 $(i = 1, 2, \dots, n).$

If $0 \in \text{conv}(x_1, \dots, x_{n+1})$, then $0 = \lambda x_{n+1} + (1 - \lambda)c(x_1, \dots, x_n)$ for some $\lambda \in [0, 1]$. Thus,

$$\alpha_{n+1} = ||x_{n+1} - c(x_1, \dots, x_n)|| = ||x_{n+1}|| + ||c(x_1, \dots, x_n)||$$
$$= ||x_{n+1}|| + \sqrt{\rho^2 - \beta_n^2}.$$

Lemma 14. Let f be an equilateral weight on B^n taking the constant value δ in $\{x \in B^n : ||x|| \ge \rho_0\}$, where $\rho_0 \in [\beta_n, 1]$. Then f takes the constant value $W - n\delta$ in $B(0, \eta_n(\rho_0))$, where W is the weight of f. If $\rho_0 \le \beta_{n+1}$, then f takes the constant value $\frac{W}{n+1}$ in B^n .

PROOF. Let $x \in B(0, \eta_n(\rho_0))$. The inequality $0 \le ||x|| \le \eta_n(\rho_0)$ implies that there exists $1 \ge \rho \ge \rho_0$ such that $\eta_n(\rho) = ||x||$. Thus, by Lemma 13, there are vectors $\{x_1, x_2, \dots, x_n\}$ such that $||x_i|| = \rho$ for $1 \le i \le n$ and such that $\{x, x_1, x_2, \dots, x_n\}$ is a maximal standard equilateral set in B^n . So, $f(x) + n\delta = W$.

If $\rho_0 \leq \beta_{n+1}$, then $\eta_n(\rho_0) \geq \rho_0$, i.e.

$$\{x \in B^n : ||x|| \ge \rho_0\} \cap B(0, \eta_n(\rho_0)) \ne \emptyset,$$

and thus, $W - n\delta = \delta$.

We are now ready to prove the result announced in the abstract.

Theorem 15. Let $n \geq 2$. Every equilateral weight on B^n is constant.

PROOF. Set $\mu_n(\rho) := 1 - \eta_n(\rho)$ and $\nu_n(\rho) := \rho - \mu_n(\rho)$ when $\rho \in [\beta_n, 1]$. Observe that μ_n is strictly increasing with range $[1 - \alpha_{n+1}, 1]$. It is easy to check that ν_n is strictly decreasing and that $\nu_n(1) = 0$. Thus, $\mu_n(\rho) < \rho$ for all $\rho \in [\beta_n, 1)$.

Let f be an equilateral weight on B^n . In view of Lemma 12, we can define

$$\theta := \inf\{\rho : f \text{ is constant in } B^n \setminus B(0,\rho)\}$$

and note that $\theta \leq \lambda_n$. In view of Lemma 14, the proof would be complete if we could show that $\theta < \beta_{n+1}$. So we suppose that $\theta \geq \beta_{n+1}$ and seek a contradiction. Let ϵ be a positive real number satisfying

$$\epsilon < \min\{\nu_n(\lambda_n), \beta_{n+1} - \beta_n\}.$$

Then $\theta - \epsilon > \beta_n > 1 - \alpha_{n+1}$, and thus, $\mu_n^{-1}(\theta - \epsilon)$ is defined. In addition, it follows that $\mu_n^{-1}(\theta - \epsilon) > \theta$, for if $\mu_n^{-1}(\theta - \epsilon) \leq \theta$, then (since μ_n is strictly increasing) we would have $\theta - \epsilon \leq \mu_n(\theta)$ and this would lead to $\epsilon \geq \nu_n(\theta) \geq \nu_n(\lambda_n)$, which contradicts our choice of ϵ .

Fix $\rho_0 := \mu_n^{-1}(\theta - \epsilon)$. Then, since $\mu_n^{-1}(\theta - \epsilon) > \theta$, f takes a constant value, say δ , in the annulus $\{x \in B^n : ||x|| \ge \rho_0\}$, and therefore, by virtue of Lemma 14, f takes the constant value $W - n\delta$ in $B(0, \eta_n(\rho_0))$, where W is the weight of f. We show that f then must take the constant value δ in the annulus $\{x \in B^n : ||x|| \ge \mu(\rho_0)\}$. This would contradict the definition of θ and thus conclude the proof.

To this end, fix an arbitrary vector $u \in B^n$ such that

$$1 - \eta_n(\rho_0) = \mu_n(\rho_0) \le ||u|| \le \rho_0, \tag{*}$$

and let $v = -\frac{1-\|u\|}{\|u\|}u$. Then $v \in B^n$ and $1 = \|u-v\| = \|u\| + \|v\|$. From the inequalities

$$1 - \eta_n(\rho_0) + ||v|| \le ||u|| + ||v|| = 1 \le \rho_0 + ||v||$$

we obtain $1 - \rho_0 \le ||v|| \le \eta_n(\rho_0)$, and therefore, in virtue of Lemma 14, we obtain $f(v) = W - n\delta$. We can now apply Proposition 8 to obtain an enlargement $\{x_1, \ldots, x_{n-1}, u, v\}$ of $\{u, v\}$ to a maximal standard equilateral set in B^n . Let w := (u+v)/2. For each $i = 1, 2, \ldots, n-1$, we have

$$||x_i||^2 = ||x_i - w||^2 + ||w||^2 = \frac{3}{4} + \left|||u|| - \frac{1}{2}\right|^2.$$

If $\eta_n(\rho_0) > \frac{1}{2}$, then $\rho_0^2 < 5/4 - \alpha_{n+1}$, and thus,

$$||x_i||^2 \ge \frac{3}{4} > \frac{5}{4} - \frac{1}{\sqrt{2}} > \frac{5}{4} - \alpha_{n+1} > \rho_0^2.$$

On the other-hand, if $\eta_n(\rho_0) \leq \frac{1}{2}$, then (\star) implies

$$\frac{1}{2} \le 1 - \eta_n(\rho_0) \le ||u||$$

, and therefore,

$$||x_i||^2 = \frac{3}{4} + \left|||u|| - \frac{1}{2}\right|^2$$

$$\geq \frac{3}{4} + \left(\frac{1}{2} - \eta_n(\rho_0)\right)^2$$

$$= 1 - \eta_n(\rho_0) + \eta_n(\rho_0)^2$$

$$= (1 - 2\alpha_{n+1})\left(\sqrt{\rho_0^2 - \beta_n^2} - \alpha_{n+1}\right) + \rho_0^2$$

$$\geq \rho_0^2.$$

So in both cases we conclude that $f(x_i) = \delta$ for each i = 1, 2, ..., n - 1, and therefore,

$$f(u) = W - f(v) - \sum_{i=1}^{n-1} f(x_i)$$

= W - (W - n\delta) - (n - 1)\delta = \delta,

as required. This completes the proof.

- **Remark 16.** (i) It follows immediately from the theorem proved here that an equilateral weight on a connected subset of \mathbb{R}^n that is the union of unit balls is constant.
 - (ii) Our method of the proof should work also to show that an equilateral weight on an n-dimensional (closed) ball with radius greater than α_{n+1} is constant. What is not completely clear to us is the case when the radius lies in the interval $(\beta_{n+1}, \alpha_{n+1}]$.
- (iii) Although we have defined equilateral weights as real-valued functions, it is apparent from the proof that the same conclusion can be drawn if one considers group-valued equilateral weights on the unit ball of \mathbb{R}^n .

Acknowledgment. The authors wish to thank the referees for their constructive critique of the first draft.

References

- [1] N. Alon and P. Pudlák, Equilateral sets in ℓ_p^n , Geom. Funct. Anal., 13 (2003), 467–482.
- [2] L. M. Blumenthal, Theory and applications of distance geometry, Clarendon Press, Oxford, 1953.
- [3] S.V. Dorofeev and A.N. Sherstnev, Frame-type functions and their applications, Izv. vuzov matem, no. 4 (1990), 23–29 (in Russian).
- [4] A. Dvurečenskij, Gleason's Theorem and Its Applications, Kluwer Acad. Pub., Dordrecht, 1993.
- [5] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Kluwer Acad. Pub., Dordrecht, 2000.
- [6] A.M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6 (1957), 885–893.
- [7] S. P. Gudder, Quantum Probability, Academic Press Inc., New York, 1988.
- [8] J. Hamhalter, Quantum Measure Theory, Kluwer Acad. Pub., Dordrecht, 2003.
- [9] J. Koolen, M. Laurent and A. Schrijver, Equilateral dimension of the rectilinear space, Des. Codes Cryptogr., 21 (2000), 149–164.

- [10] P. Pták and S. Pulmannová, Orthomodular Structures as Quantum Logics, Kluwer Acad. Pub., Dordrecht, 1991.
- [11] C. M. Petty, Equilateral sets in Minkowski spaces, Proc. Amer. Math. Soc., 29 (1971), 369–374.
- [12] V. S. Varadarajan, Geometry of Quantum Theory, Springer-Verlag, New York, 1985.