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EQUILATERAL WEIGHTS ON THE UNIT
BALL OF Rn

Abstract

An equilateral set (or regular simplex) in a metric space X is a set
A such that the distance between any pair of distinct members of A is a
constant. An equilateral set is standard if the distance between distinct
members is equal to 1. Motivated by the notion of frame functions, as
introduced and characterized by Gleason in [6], we define an equilateral
weight on a metric space X to be a function f : X −→ R such that∑

i∈I f(xi) = W for every maximal standard equilateral set {xi : i ∈ I}
in X, where W ∈ R is the weight of f . In this paper, we characterize the
equilateral weights associated with the unit ball Bn of Rn as follows:
For n ≥ 2, every equilateral weight on Bn is constant.

1 Introduction

Equilateral sets have been extensively studied in the literature for a number
of metric spaces [2]. An equilateral set (or regular simplex) in a metric space
X is a set A such that the distance between any pair of distinct members of
A is ρ, where ρ 6= 0 is a constant. The equilateral dimension of X is defined
to be sup{|A| : A is an equilateral set in X}.

Suppose that {x1, . . . , xk} is an equilateral set in Rn (equipped with the
`2-norm). Then the vectors vi := xi+1 − x1 for i = 1, . . . , k − 1 are linearly
independent. Indeed, let A be the (k − 1) × (k − 1) matrix (aij) defined by
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aij := 〈vi, vj〉. Then aij = ρ2

2 (1 + δij), where ρ 6= 0 is a constant and δij is
the Kronecker delta. Let {e1, . . . , en} be the canonical basis of Rn and let
B be the n × (k − 1) matrix (bij) defined by bij := 〈vj , ei〉. Since A = B∗B
and A is clearly non-singular, we deduce that B is non-singular; i.e. the
vectors vi := xi+1 − x1 for i = 1, . . . , k − 1 are linearly independent and
therefore k ≤ n + 1. The equilateral dimension of Rn (equipped with the
`2-norm) is n+ 1. To see this, observe that the set {x1− c, . . . , xk − c}, where

c := 1
k

∑k
i=1 xi, has linear dimension k − 1 and so if k < n + 1, then there

exists a unit vector u ∈ Rn such that u⊥xi − c for each i = 1, . . . , k, and
therefore the set {x1, . . . , xk} can be enlarged to a bigger equilateral set in
Rn. Let us only mention here that the situation is far more complicated for
the other `p-norms [11, 9, 1] (and others).

An equilateral set in Rn is standard if the distance between distinct points
is equal to 1. If {x1, . . . , xk} is a standard equilateral set in Rn, its centre
1
k

∑k
i=1 xi will be denoted by c(x1, . . . , xk). Let us denote by βk the radius of

{x1, . . . , xk}. A simple calculation yields

βk =
∥∥∥xi − c(x1, . . . , xk)

∥∥∥ =
1

k

∥∥∥ ∑
1≤j≤k
j 6=i

(xj − xi)
∥∥∥

=
1

k

√
k − 1 +

(k − 1)(k − 2)

2
=

√
k − 1

2k
.

If xk+1 is another point in Rn such that {x1, . . . , xk, xk+1} is again a standard
equilateral set, then xk+1 − c(x1, . . . , xk) is orthogonal to xi − c(x1, . . . , xk)
for every i = 1, . . . , k, and thus

∥∥∥xk+1 − c(x1, . . . , xk)
∥∥∥ =

√
1− β2

k =

√
k + 1

2k
.

We will call αk+1 :=
√

k+1
2k the perpendicular height of {x1, . . . , xk, xk+1}.

We shall now introduce the notion of equilateral weights. The motivation
behind this definition is the notion of frame functions. These were intro-
duced and characterized by Gleason [6] in his famous theorem describing the
measures on the closed subspaces of a Hilbert space. Gleason’s Theorem is of
utmost importance in the laying down of the foundations of quantum mechan-
ics [12, 10, 7, 4, 8] (and others). Let S(0, 1) denote the unit sphere of a Hilbert
space H. A function f : S(0, 1)→ R is called a frame function on H if there is
a number w(f), called the weight of f , such that

∑
i∈I f(ui) = w(f) for every

orthonormal basis {ui : i ∈ I} of H. We recall that a bounded operator T on
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H is of trace-class if the series
∑
i∈I〈Tui, ui〉 converges absolutely for any or-

thonormal basis {ui : i ∈ I} of H. (It is well-known that if the series converges
for an orthonormal basis {ui : i ∈ I}, then it converges for any orthonormal
basis and the sum does not depend on the choice of the basis.) Clearly, if T is
self-adjoint and of trace-class, then the function fT (x) = 〈Tx, x〉 (x ∈ S(0, 1))
defines a continuous frame function on H. Gleason’s Theorem says that when
dimH ≥ 3, every bounded frame function arises in this way. The heart of
the proof of Gleason’s Theorem is the treatment of the case when H is the
real three-dimensional Hilbert space R3. In fact, all the other cases can be
reduced to this case. Thus, as a matter of fact, it can be said that the crux of
this theorem can be rendered to the following statement: For every bounded
frame function f on R3 there exists a symmetric matrix T on R3 such that
f(u) = 〈Tu, u〉 for every unit vector u ∈ R3. The notion of frame functions
and the fact that an orthonormal basis of R3 is simply a maximal equilateral
set on the unit sphere of R3 suggest the following definition:

Definition 1. Let X be a metric space and let W ∈ R. An equilateral weight
on X with weight W is a function f : X −→ R such that∑

i∈I
f(xi) = W

whenever {xi : i ∈ I} is a maximal standard equilateral set in X.

Given a metric space, can one describe the equilateral weights associated
with it?

Example 2. Every equilateral weight on R2 is constant. First observe that for
every pair of points x and y in R2 there are points x1, x2, . . . , xn in R2 such
that ‖x1−x‖ = ‖xi+1−xi‖ = ‖y−xn‖ = 1 for every i = 1, . . . , n−1. Thus, it
suffices to show that f(x) = f(y) for all x, y ∈ R2 satisfying ‖x− y‖ = 1. Let
x, y ∈ R2 such that ‖x− y‖ = 1. Observe that if {a, b, c} and {d, b, c} are the
vertices of two unit equilateral triangles and f is an equilateral weight, then
f(a) = f(d). Thus, f takes the constant value f(x) on the circle with centre
x and radius

√
3 and the constant value f(y) on the circle with centre y and

radius
√

3. Since these circles intersect, it follows that f(x) = f(y). Using
a similar argument, but replacing

√
3 with 2αn+1, one can easily show that

every equilateral weight on Rn is constant. The same cannot be said for R –
it is easy to find non-trivial equilateral weights on R.

Example 3. Let S be the sphere in a Hilbert space H with centre 0 and radius
1/
√

2. Two vectors u and v in S satisfy ‖u− v‖ = 1 if and only if 〈u, v〉 = 0.
Thus, each maximal standard equilateral set in S corresponds to a rescaling of
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some orthonormal basis of H by a factor of 1/
√

2. It is clear, therefore, that
the equilateral weights on S correspond to the frame-functions on H (composite
with a rescaling by a factor of

√
2). Thus, in view of Gleason’s Theorem, if

dimH ≥ 3 and f is a bounded equilateral weight on S, then there exists a
self-adjoint, trace-class operator T such that

f(u) = 〈Tu, u〉

for all u ∈ S. Let us emphasize that such a description does not hold when
dimH = 2 and that the assumption of boundedness is not redundant when
dimH is finite. It known that Rn admits frame functions that are unbounded
and that therefore cannot be described by such an equation (see [4, Proposition
3.2.4]).

By contrast, the boundedness assumption is superfluous when the space is
infinite dimensional. This surprising result is due to Dorofeev and Sherstnev
[3] and allows us to describe the equilateral weights associated with the met-
ric space S of an infinite dimensional Hilbert space directly from Gleason’s
Theorem.

Proposition 4. Let H be an infinite dimensional Hilbert space, and let S be
the sphere in H with centre 0 and radius 1/

√
2. If f is an equilateral weight

on S, then there exists a self-adjoint, trace-class operator T on H such that
f(u) = 〈Tu, u〉 for every vector u in S.

The aim of the present paper is to describe the equilateral weights associ-
ated with another bounded metric space; namely the unit ball of Rn.

2 Standard equilateral sets in the unit ball of Rn

In what follows, we will be interested in standard equilateral sets contained
in the (closed) unit ball of Rn, denoted by Bn. It is clear that the equilateral
dimension of Bn is equal to that of Rn. We start by exhibiting some properties
of standard equilateral sets in Bn.

Proposition 5. Let {x1, . . . , xk} (k ≤ n+ 1) be a standard equilateral set in
Bn. Then ‖c(x1, . . . , xk)‖ ≤ αk+1.

Proof. First observe that

2〈xi, xj〉 = ‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2 ≤ 1,
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and therefore,

‖c(x1, . . . , xk)‖2 = k−2
〈 k∑
i=1

xi,

k∑
i=1

xi

〉

= k−2
[ k∑
i=1

‖xi‖2 +
∑

1≤i, j≤k
i 6=j

〈xi, xj〉
]

≤ k−2
[
k +

k(k − 1)

2

]
= α2

k+1.

In the extremal case k = n + 1, the bound obtained in Proposition 5 can
be improved as shown in Proposition 7 below. This improvement is needed to
prove Proposition 8. We first prove a lemma.

Lemma 6. Let {x1, x2, . . . , xn+1} be a maximal standard equilateral set in Rn

with centre at the origin and let x ∈ Rn satisfy 〈x, xi〉 ≥ 0 for i = 2, 3, . . . , n+1.
If ‖x‖ ≥ 1, then 〈x, x2 + x3 + · · ·+ xn+1〉 ≥ 1/2.

Proof. Let v := x2 + x3 + · · ·+ xn+1 and let

K :=
{
x ∈ Rn : 〈x, v〉 ≤ 1/2, 〈x, xi〉 ≥ 0 for each i = 2, 3, . . . , n+ 1

}
.

K is the intersection of half-spaces, and therefore a point of K is an extreme
point if and only if it is the intersection of n hyperplanes whose normals form a
basis of Rn. Using the fact that 〈xi, xj〉 is independent of i, j (when i 6= j) it is
easy to see that the extreme points of K are {0, x2−x1, x3−x1, . . . , xn+1−x1}.
The norm, being a strictly convex function, i.e.

‖λx+ (1− λ)y‖ < max(‖x‖, ‖y‖), x 6= y, 0 < λ < 1 (?)

takes a maximum value at an extremal point, and therefore, since ‖xi−x1‖ = 1
(i = 2, 3, . . . , n + 1), it follows that ‖x‖ ≤ 1 for every x ∈ K. From the
strict inequality of (?) and from the fact that each of the vectors xi − x1
(i = 2, 3, . . . , n+1) lies in the hyperplane 〈x, v〉 = 1/2, it follows that if x ∈ Rn
satisfies 〈x, xi〉 ≥ 0 (i = 2, 3, . . . , n+ 1) and 〈x, v〉 < 1/2, then ‖x‖ < 1.

Proposition 7. Let {u1, . . . , un+1} be a standard equilateral set in Bn. Then
‖c(u1, . . . , un+1)‖ ≤ βn+1.
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Proof. Let {u1, u2, . . . , un+1} be a maximal standard equilateral set in Bn.
Then {0, u2 − u1, . . . , un+1 − u1} is again a maximal standard equilateral set
in Bn. Let us denote its centre by c. Note that ‖c‖ = βn+1. For each
i = 1, 2, . . . , n+ 1, let xi := ui − u1 − c. Then {x1, x2, . . . , xn+1} is a maximal
standard equilateral set with centre at the origin. Note that

c(u1, u2, . . . , un+1) = c(x1, x2, . . . , xn+1) + u1 + c = u1 + c.

Thus

‖c(u1, u2, . . . , un+1)‖2 = ‖u1 + c‖2 = ‖u1‖2 + ‖c‖2 + 2〈u1, c〉,

and therefore, for the proposition to hold, we require〈
−u1
‖u1‖

, c

〉
≥ ‖u1‖

2
. (?)

To this end, we calculate

1 ≥ ‖ui‖2 =‖xi + c‖2 + ‖u1‖2 + 2〈u1, xi + c〉
=1 + ‖u1‖2 + 2〈u1, xi〉+ 2〈u1, c〉,

which implies 〈
−u1
‖u1‖

, xi

〉
≥ ‖u1‖

2
−
〈
−u1
‖u1‖

, c

〉
(??).

for each i = 2, 3, . . . , n+ 1. Now, if the right hand side of (??) is ≤ 0, then (?)
is satisfied. On the other-hand, if the right hand side of (??) is greater than
0, then Lemma 6 can be applied to conclude

‖u1‖
2
≤ 1

2
≤
〈
−u1
‖u1‖

, x2 + x3 + · · ·+ xn+1

〉
=

〈
−u1
‖u1‖

,−x1
〉

=

〈
−u1
‖u1‖

, c

〉
,

which completes the proof.

Proposition 8. Every standard equilateral set in Bn can be enlarged to one
having size n+ 1 such that its members all lie in Bn.

Proof. Let {x1, . . . , xk} (1 ≤ k ≤ n) be a standard equilateral set in Bn.
We show that there exists a vector xk+1 ∈ Bn such that {x1, . . . , xk, xk+1} is
a standard equilateral set. The proof will then follow by induction.

Let N := span{xi − c(x1, . . . , xk) : 1 ≤ i ≤ k} and set

a := (I − PN )c(x1, . . . , xk),
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where PN is the projection of Rn into N and I is the identity. The intersection
of Bn with the translation a + N is a (k − 1)-dimensional ball with centre a
and radius

√
1− ‖a‖2. The set {x1, . . . , xk} is a standard equilateral set in

(a+N) ∩Bn, and thus, in view of Proposition 7, it follows that

‖c(x1, . . . , xk)− a‖ ≤ βk.

Set u := −αk+1v, where v := a/‖a‖ if a 6= 0 and any unit vector in N⊥

if a = 0. Then ‖a + u‖ ≤ ‖u‖ = αk+1 since αk+1 ≥ βk = ‖c(x1, . . . , xk}‖ ≥
‖a‖. Put xk+1 := c(x1, . . . , xk) + u. The set {x1, . . . , xk, xk+1} is a standard
equilateral set in Rn. Moreover,

‖xk+1‖2 = ‖c(x1, . . . , xk) + u‖2

=
∥∥c(x1, . . . , xk)− a

∥∥2 + ‖a+ u‖2

≤ β2
k + α2

k+1

= 1.

3 Equilateral weights on Bn

In this section, we shall prove that the only admissible equilateral weights on
the unit ball of Rn are those that take a constant value.

For any linear subspace M of Rn, a ∈M and r > 0, we denote the closed
ball in M with centre a and radius r by BM (a, r); i.e.

BM (a, r) = {x ∈M : ‖x− a‖ ≤ r}.

We will also denote by SM (a, r) the sphere in M with centre a and radius r;
i.e. SM (a, r) = {x ∈ M : ‖x − a‖ = r}. We will write B(a, r) (resp. S(a, r))
instead of BR

n

(a, r) (resp. SR
n

(a, r). We will need the following definition.

Definition 9. Let a, b ∈ Bn, a 6= b and N := (b − a)⊥. For any subspace
M 6= {0} of Rn, define

γM (a, b) := sup

{
r > 0 :

a+ b

2
+BM∩N (0, r) ⊆ Bn

}
.

Note that the set involved in the definition of γM (a, b) is not empty and
bounded above by 1. Instead of γR

n

(a, b), we will simply write γ(a, b). It
is easy to see that γM (a, b) is in fact equal to the maximum of the set of its
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definition. In addition, if M1 and M2 are subspaces of Rn such that M1 ⊆M2,
then γM2(a, b) ≤ γM1(a, b). The motivation behind this definition lies in the
following observation.

Lemma 10. Let a, b ∈ Bn such that ‖b− a‖ = 2αn+1 and γ(a, b) ≥ βn. Then
f(a) = f(b) for every equilateral weight f on Bn.

Proof. Let N := (b− a)⊥ and let {x1, . . . , xn} be a standard equilateral set
in

a+ b

2
+ SN (0, βn) ⊆ Bn.

Each xi can be written as (a+ b)/2 +ni, where ni ∈ N and ‖ni‖ = βn. Thus,

‖xi − a‖2 =

∥∥∥∥b− a2
+ ni

∥∥∥∥2 = α2
n+1 + β2

n = 1.

Similarly, ‖xi − b‖ = 1, i.e. {a, x1, . . . , xn} and {b, x1, . . . , xn} are maximal
standard equilateral sets in Bn, and therefore,

f(a) +

n∑
i=1

f(xi) = f(b) +

n∑
i=1

f(xi)

for every equilateral weight f on Bn.

Lemma 11. Let a, b ∈ Bn, a 6= b, and let T be a two-dimensional subspace
of Rn containing a and b. Then γT (a, b) = γ(a, b).

Proof. We show that γ(a, b) ≥ γT (a, b). Let u be a unit vector in T such
that 〈u, b − a〉 = 0 and 〈u, b + a〉 ≥ 0. Set x0 := (a + b)/2. Let r > 0 such
that ‖x0 + ru‖ ≤ 1, and let x ∈ (b− a)⊥ such that ‖x‖ ≤ r. Then PTx = λu,
where |λ| ≤ ‖x‖ ≤ r. Hence,

‖x0 + x‖2 = ‖x0‖2 + ‖x‖2 + 2〈x0, x〉
≤ ‖x0‖2 + ‖x‖2 + 2|〈PTx0, x〉|
= ‖x0‖2 + ‖x‖2 + 2|λ|〈x0, u〉
≤ ‖x0‖2 + r2 + 2r〈x0, u〉
= ‖x0 + ru‖2

≤ 1,

and therefore, γ(a, b) ≥ γT (a, b) as required.
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Lemma 12. Let f be an equilateral weight on Bn, where n ≥ 2. There exists
0 ≤ λn < 1 such that f is constant in {x ∈ Bn : ‖x‖ ≥ λn}.

Proof. It suffices to show that there exists 0 ≤ λn < 1 such that f is constant
in {x ∈ Bn ∩ T : ‖x‖ ≥ λn} for every two-dimensional subspace T of Rn.

Fix an arbitrary two-dimensional subspace T , and let D denote the closed
unit disc Bn ∩T . To make calculations easier, we fix a rectangular coordinate
system in D with origin o at the centre of D (see Figure 1.). Consider the
points w(0,−1), x(−1, 0), y(0, 1) and z(1, 0). Let Cw (resp. Cx, Cy, Cz) be
the circular arc with centre w (resp. x, y, z) and radius 2αn+1. The arcs
Cw and Cx meet in D at the point a, the coordinates of which can be easily
calculated:

a

(−1 +
√

8α2
n+1 − 1

2
,
−1 +

√
8α2

n+1 − 1

2

)
.

Similarly, let b, c, d ∈ D such that Cx∩Cy = {b}, Cy∩Cz = {c} and Cz∩Cw =
{d}. Let Ca (resp. Cb, Cc and Cd) denote the circular arc in D having centre
a and radius 2αn+1 (see Figure 1 below).

o
x z

y

w

Cw

Cx

D

ad

bc
g

h

l

Ca

Figure 1

First we show that γT (a,w) ≥ βn. Let g be the point
(√

3
2 ,−

1
2

)
. Since

2αn+1 ≤
√

3, it easy to see that the circular arc in D having centre g and
radius 1 intersects Cw, say at h. Observe that if l is the midpoint of the line
segment wh, then |lg| = βn. So to show that γT (w, a) ≥ βn, it suffices to show

that the angle ôwa is less than or equal to the angle ôwh. To this end, it is
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enough to show that sin ôwa ≤ sin ôwh. Since d̂oa = π
2 , we have

sin ôwa = sin(π/4− ôaw)

=
1√
2

(
cos ôaw − sin ôaw

)
.

Applying the sine rule for triangle oaw we deduce that

sin ôaw =
sin 3π/4

2αn+1
=

1

2

√
n

n+ 1
and cos ôaw =

1

2

√
3n+ 4

n+ 1
.

Thus,

sin ôwa =
1

2
√

2

(√
3 +

1

n+ 1
−
√

1− 1

n+ 1

)
.

On the other-hand,

sin ôwh = sin(π/3− l̂wg)

=
1

2
(
√

3 cos l̂wg − sin l̂wg)

=
1

2
(
√

3αn+1 − βn)

=
1

2
√

2

(√
3 +

3

n
−
√

1− 1

n

)
.

Thus, sin ôwa ≤ sin ôwh and therefore γT (w, a) ≥ βn.

It is clear (see Figure 1.) that γT (u, a) ≥ γT (w, a) for every u ∈ Ca. Thus,
in view of Lemma 10 and Lemma 11, it follows that f is constant on Ca. By
symmetry, it follows that f is constant on the circuit Ca ∪ Cb ∪ Cc ∪ Cd. If
{w′, x′, y′, z′} is another quadruple of points on the circumference of D such
that w′y′ and x′z′ are perpendicular, then we can repeat the same argument
as above to deduce that f is constant on the corresponding circuit joining the
points w′, x′, y′ and z′. Moreover, since any two such circuits intersect, it
follows that f is constant in the annulus {u ∈ D : |ou| ≥ 2αn+1 − |oa|}. Let
λn := 2αn+1 − |oa|. From the coordinates of a one can calculate

λn =
1√
2

(
1 +

√
4 +

4

n
−
√

3 +
4

n

)
.
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For each ρ ∈ [βn, 1], define ηn(ρ) := αn+1 −
√
ρ2 − β2

n. Observe that the
value ηn(ρ) decreases strictly from αn+1 (when ρ = βn) to 0 (when ρ = 1), and
ηn(ρ) = ρ if and only if ρ = βn+1. Thus, ηn(ρ) ≥ ρ for every ρ ∈ [βn, βn+1],
and ηn(ρ) < ρ when ρ ∈ (βn+1, 1]. The geometric meaning of ηn(ρ) becomes
apparent from the following lemma.

Lemma 13. (a) Let 1 ≥ ρ ≥ βn, and let x ∈ Bn such that ‖x‖ = ηn(ρ). Then
there exists a standard equilateral set {x1, x2, . . . , xn} such that ‖xi‖ = ρ
and ‖xi − x‖ = 1 for every i = 1, 2, . . . , n.

(b) Conversely, if {x1, x2, . . . , xn+1} is a maximal standard equilateral set
in Bn and ‖xi‖ = ρ for every i = 1, 2, . . . , n, then ρ ≥ βn, and if
conv(x1, . . . , xn+1) contains 0, then ‖xn+1‖ = ηn(ρ).

Proof. (a) First note that if ρ = 1, then 0 = ηn(ρ) = ‖x‖, and therefore, the
statement is true in this case. Suppose that βn ≤ ρ < 1. Let {u1, u2, . . . , un}
be a maximal standard equilateral set in x⊥ with centre 0. Then ‖ui‖ = βn.
It is easy to check that the vectors

xi := ui −
√
ρ2 − β2

n

x

‖x‖
(i = 1, 2, . . . , n)

satisfy the required conditions.
(b) The locus of points inRn equidistant from each of the xi’s (i = 1, . . . , n)

is the line passing through 0 and parallel to xn+1 − c(x1, . . . , xn). The point
on this line with shortest distance from any (and therefore from each) of the
xi’s (i = 1, . . . , n) is that with position vector c(x1, . . . , xn). Thus,

βn =
∥∥c(x1, . . . , xn)− xi

∥∥ ≤ ‖xi‖ = ρ (i = 1, 2, . . . , n).

If 0 ∈ conv(x1, . . . , xn+1), then 0 = λxn+1 + (1− λ)c(x1, . . . , xn) for some
λ ∈ [0, 1]. Thus,

αn+1 =
∥∥xn+1 − c(x1, . . . , xn)

∥∥ = ‖xn+1‖+
∥∥c(x1, . . . , xn)

∥∥
= ‖xn+1‖+

√
ρ2 − β2

n.

Lemma 14. Let f be an equilateral weight on Bn taking the constant value δ
in {x ∈ Bn : ‖x‖ ≥ ρ0}, where ρ0 ∈ [βn, 1]. Then f takes the constant value
W − nδ in B(0, ηn(ρ0)), where W is the weight of f . If ρ0 ≤ βn+1, then f
takes the constant value W

n+1 in Bn.
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Proof. Let x ∈ B(0, ηn(ρ0)). The inequality 0 ≤ ‖x‖ ≤ ηn(ρ0) implies
that there exists 1 ≥ ρ ≥ ρ0 such that ηn(ρ) = ‖x‖. Thus, by Lemma 13,
there are vectors {x1, x2, . . . , xn} such that ‖xi‖ = ρ for 1 ≤ i ≤ n and
such that {x, x1, x2, . . . , xn} is a maximal standard equilateral set in Bn. So,
f(x) + nδ = W .

If ρ0 ≤ βn+1, then ηn(ρ0) ≥ ρ0, i.e.

{x ∈ Bn : ‖x‖ ≥ ρ0} ∩B(0, ηn(ρ0)) 6= ∅,

and thus, W − nδ = δ.

We are now ready to prove the result announced in the abstract.

Theorem 15. Let n ≥ 2. Every equilateral weight on Bn is constant.

Proof. Set µn(ρ) := 1 − ηn(ρ) and νn(ρ) := ρ − µn(ρ) when ρ ∈ [βn, 1].
Observe that µn is strictly increasing with range [1 − αn+1, 1]. It is easy to
check that νn is strictly decreasing and that νn(1) = 0. Thus, µn(ρ) < ρ for
all ρ ∈ [βn, 1).

Let f be an equilateral weight on Bn. In view of Lemma 12, we can define

θ := inf{ρ : f is constant in Bn \B(0, ρ)}

and note that θ ≤ λn. In view of Lemma 14, the proof would be complete
if we could show that θ < βn+1. So we suppose that θ ≥ βn+1 and seek a
contradiction. Let ε be a positive real number satisfying

ε < min{νn(λn), βn+1 − βn}.

Then θ − ε > βn > 1 − αn+1, and thus, µ−1n (θ − ε) is defined. In addition, it
follows that µ−1n (θ − ε) > θ, for if µ−1n (θ − ε) ≤ θ, then (since µn is strictly
increasing) we would have θ − ε ≤ µn(θ) and this would lead to ε ≥ νn(θ) ≥
νn(λn), which contradicts our choice of ε.

Fix ρ0 := µ−1n (θ− ε). Then, since µ−1n (θ− ε) > θ, f takes a constant value,
say δ, in the annulus {x ∈ Bn : ‖x‖ ≥ ρ0}, and therefore, by virtue of Lemma
14, f takes the constant value W − nδ in B(0, ηn(ρ0)), where W is the weight
of f . We show that f then must take the constant value δ in the annulus
{x ∈ Bn : ‖x‖ ≥ µ(ρ0)}. This would contradict the definition of θ and thus
conclude the proof.

To this end, fix an arbitrary vector u ∈ Bn such that

1− ηn(ρ0) = µn(ρ0) ≤ ‖u‖ ≤ ρ0, (?)
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and let v = − 1−‖u‖
‖u‖ u. Then v ∈ Bn and 1 = ‖u− v‖ = ‖u‖+ ‖v‖. From the

inequalities
1− ηn(ρ0) + ‖v‖ ≤ ‖u‖+ ‖v‖ = 1 ≤ ρ0 + ‖v‖

we obtain 1 − ρ0 ≤ ‖v‖ ≤ ηn(ρ0), and therefore, in virtue of Lemma 14,
we obtain f(v) = W − nδ. We can now apply Proposition 8 to obtain an
enlargement {x1, . . . , xn−1, u, v} of {u, v} to a maximal standard equilateral
set in Bn. Let w := (u+ v)/2. For each i = 1, 2, . . . , n− 1, we have

‖xi‖2 = ‖xi − w‖2 + ‖w‖2 =
3

4
+

∣∣∣∣‖u‖ − 1

2

∣∣∣∣2.
If ηn(ρ0) > 1

2 , then ρ20 < 5/4− αn+1, and thus,

‖xi‖2 ≥
3

4
>

5

4
− 1√

2
>

5

4
− αn+1 > ρ20.

On the other-hand, if ηn(ρ0) ≤ 1
2 , then (?) implies

1

2
≤ 1− ηn(ρ0) ≤ ‖u‖

, and therefore,

‖xi‖2 =
3

4
+

∣∣∣∣‖u‖ − 1

2

∣∣∣∣2
≥ 3

4
+

(
1

2
− ηn(ρ0)

)2

= 1− ηn(ρ0) + ηn(ρ0)2

= (1− 2αn+1)

(√
ρ20 − β2

n − αn+1

)
+ ρ20

≥ ρ20.

So in both cases we conclude that f(xi) = δ for each i = 1, 2, . . . , n − 1, and
therefore,

f(u) =W − f(v)−
n−1∑
i=1

f(xi)

=W − (W − nδ)− (n− 1)δ = δ,

as required. This completes the proof.
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Remark 16. (i) It follows immediately from the theorem proved here that
an equilateral weight on a connected subset of Rn that is the union of
unit balls is constant.

(ii) Our method of the proof should work also to show that an equilateral
weight on an n-dimensional (closed) ball with radius greater than αn+1

is constant. What is not completely clear to us is the case when the radius
lies in the interval (βn+1, αn+1].

(iii) Although we have defined equilateral weights as real-valued functions, it
is apparent from the proof that the same conclusion can be drawn if one
considers group-valued equilateral weights on the unit ball of Rn.
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