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INVESTIGATIONS OF STRONG RIGHT
UPPER POROSITY AT A POINT

Abstract

We define and study, for subsets of [0,∞), several types of strong
right upper porosity at the point 0. Some characterizations of these
types of porosity are obtained, including a characterization in terms
of a universal property and a characterization in terms of a structural
property.

1 Introduction

The basic ideas concerning the notion of set porosity for the first time
appeared in some early works of Denjoy [6], [7] and Khintchine [16] and then
arose independently in the study of cluster sets in 1967 (Dolženko [8]). Denjoy
was interested in obtaining a classification of perfect sets on the real line in
terms of the relative sizes of the complementary intervals. Khintchine had
required a convenient way of describing certain arguments that use density
considerations. The notion of a set of σ-porosity was defined by E. P. Dolženko
[8]. The basic structure of porous sets and σ-porous sets has been studied in
[11], [13] and [24]. A useful collection of facts related to the notion of porosity
can be found in [23]. A number of theorems exists in the theory of cluster
sets which use the notion of σ-porosity (see, for example, [27],[28], [29], [30]).
No less important is a question about the relationship between porosity and
dimension. In many applications the information on the dimension of certain
sets is obtained via porosity. Porosity has also found interesting applications
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in connection with free boundaries [14], generalized subharmonic functions [9]
and complex dynamics [21]. Estimates of dimension in terms of porosity were
obtained for a wide variety of notions of porosity (and dimension) in [2], [10],
[17], [18], [19], [20], [22], etc. The porosity (in an appropriate sense) of many
natural sets and measures was investigated in [2], [5], [17], [25]. Moreover, the
relationship between porosity and other geometric concepts such as conical
densities and singular integrals was explored in [5], [15], [19]. Porosity is
also a property which is preserved, for example, under quasisymmetric maps
[26]. These papers show that the notion of set porosity plays a diverse role in
different questions of analysis.

Many nontrivial modifications of the notion of porosity are used at present.
A comparison of different definitions, and surveys of results can be found in
[31] and [32]. Our paper is also a contribution to this line of study and we
introduce a new subclass of subsets of R+ = [0,+∞) that are strongly porous
at 0.

Let us recall the definition of the right upper porosity at a point. Let E
be a subset of R+.

Definition 1. The right upper porosity of E at 0 is the nonnegative number

p+(E, 0) := lim sup
h→0+

λ(E, 0, h)

h
(1)

where λ(E, 0, h) is the length of the largest open subinterval of (0, h), which
could be the empty set ∅, that contains no point of E. The set E is strongly
porous on the right at 0 if p+(E, 0) = 1.

For the remaining of the paper, when the porosity is considered, it will
always be assumed to be the right upper porosity at 0.

Let τ̃ = {τn}n∈N be a sequence of real numbers. We shall say that τ̃
is eventually decreasing and eventually strictly decreasing, if the inequalities
τn+1 ≤ τn and, respectively, τn+1 < τn hold for all sufficiently large n. Write
Ẽd for the set of eventually decreasing sequences τ̃ with lim

n→∞
τn = 0 and

having τn ∈ E \ {0} for all n ∈ N.
For a set E ⊆ R+, we use the symbols ExtE and acE to denote the exterior

of E and, respectively, the set of its accumulation points (relative to the space
R+ with the standard topology).

Remark 2. The set Ẽd is empty if and only if 0 6∈ acE.

Define ĨE to be the set of sequences {(an, bn)}n∈N of open intervals (an, bn) ⊆
R+ meeting the following conditions.
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• an > 0 for each n.

• Every interval (an, bn) is a connected component of ExtE, i.e., (an, bn)∩
E = ∅ but for every (a, b) ⊇ (an, bn) we have

((a, b) 6= (an, bn))⇒ ((a, b) ∩ E 6= ∅).

• The limit relations lim
n→∞

an = 0 and lim
n→∞

bn−an
bn

= 1 hold.

Remark 3. In other words, if 0 /∈ acE, put ĨE = ∅. Otherwise, let ĨE be the
set (possibly the empty set) of all sequences of open intervals, each interval
being maximal and disjoint from E, that can be used to witness the strong
right upper porosity of E at 0.

Define also an equivalence relation � on the set of sequences of positive
numbers as follows. Let ã = {an}n∈N and γ̃ = {γn}n∈N. Then ã � γ̃ if there
are positive constants c1 and c2 > 0 such that

c1an ≤ γn ≤ c2an (2)

for all n ∈ N.
Equivalently, ã � γ̃ if the ratios an

γn
are bounded away from both 0 and ∞,

i. e.
0 < lim inf

n→∞
an
γn
≤ lim sup

n→∞

an
γn

<∞.

Definition 4. Let E ⊆ R+ and γ̃ ∈ Ẽd. The set E is γ̃-strongly porous at 0
if there is a sequence {(an, bn)}n∈N ∈ ĨE such that

γ̃ � ã (3)

where ã = {an}n∈N. The set E is completely strongly porous at 0 if E is
γ̃-strongly porous for every γ̃ ∈ Ẽd.

Remark 5. If 0 6∈ acE, then E is completely strongly porous at 0 because
Ẽd = ∅.

In what follows the set of all completely strongly porous at 0 subsets of
R+ will be denoted by CSP(0).

The main results of the paper can be informally described by the following
way.
• CSP(0) - sets are uniformly strongly porous (Theorem 27), in the sense that
the constants in (2) can be chosen independently of γ̃ ∈ Ẽd if E ∈ CSP(0).
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• If E ∈ CSP(0), then there is an universal L̃ ∈ ĨE such that for every Ã ∈ ĨE
the members of a tail of Ã are members of L̃ (Theorem 27).
• A description of the structure of strongly porous on the right at 0 sets
E ⊆ R+ having a universal L̃ ∈ ĨE (Theorem 34).
• An explicit design generating all CSP(0) - sets (Theorem 42).

Remark 6. Olli Martio’s question concerning interconnections between the
infinitesimal structure of a metric space (X, d) at a point p ∈ X and the
porosity of the distance set {d(x, p) : x ∈ X} was a starting point in our
studies of CSP(0) - sets. Some results in this direction can be found in [1],
[3] and [4].

2 The CSP(0) - sets

We start with the lemma which helps to prove the membership E ∈
CSP(0).

Lemma 7. Let E ⊆ R+, let γ̃ = {γn}n∈N and τ̃ = {τm}m∈N belong to Ẽd and
let c1, c2 ∈ (0,∞). If E is γ̃-strongly porous at 0 and for every m ∈ N there is
n = n(m) such that

c1γn ≤ τm ≤ c2γn,

then E is τ̃ -strongly porous at 0.

A simple proof is omitted here.

Using Lemma 7, we can easily construct examples of CSP(0) - sets.

Example 8. Let x̃ = {xn}n∈N be a strictly decreasing sequence of positive
real numbers with lim

n→∞
xn+1

xn
= 0. Define a set W = {0} ∪ {xn : n ∈ N}. It is

evident that the sequence {(xn+1, xn)}n∈N belongs to ĨW and W is x̃-strongly
porous at 0. Every sequence τ̃ ∈ W̃ d satisfies the condition of Lemma 7 with
W = E, γ̃ = x̃ and c1 = c2 = 1. Hence, W is τ̃ -strongly porous at 0 for every
τ̃ ∈ W̃ d. Thus, by definition, W ∈ CSP(0).

Example 9. Let q ∈ [1,∞) and let W be the set from the previous example.
Write

W (q) =
⋃

x∈W
[x, qx] = {0} ∪ {[xn, qxn] : n ∈ N}.

Let m0 ∈ N be a number such that qxn+1 < xn for every n ≥ m0. The
sequence {(qxm0+n+1, xm0+n)}n∈N belongs to ĨW (q). Write qx̃ = {qxn}n∈N.
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Then W (q) is qx̃- strongly porous at 0. Let τ̃ = {τm}m∈N ∈ W̃ d(q). It is clear
that for every m ∈ N there is n ∈ N such that

xn ≤ τm ≤ qxn. (4)

Reasoning as in Example 8, we obtain that (4) implies the membership W (q) ∈
CSP(0).

Lemma 10. Let E ⊆ R+, γ̃ ∈ Ẽd, {(an, bn)}n∈N ∈ ĨE and let ã := {an}n∈N.
The following conditions are equivalent.

(i) The equivalence γ̃ � ã holds.

(ii) The chain of inequalities

1 ≤ lim inf
n→∞

an
γn
≤ lim sup

n→∞

an
γn

<∞

hold.

(iii) We have

lim sup
n→∞

an
γn

<∞ and γn ≤ an

for all sufficiently large n.

Proof. The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are trivial. Suppose
that γ̃ � ã. Then the inequality lim sup

n→∞
an
γn

< ∞ follows. The membership

{(an, bn)}n∈N ∈ ĨE yields bn
an
→ ∞ with n → ∞. Since γ̃ � ã, the ratios an

γn

are bounded, and thus for all sufficiently large values of n we have γn
an

< bn
an

,
and hence γn < bn. From this, and the fact that γn ∈ E and (an, bn)∩E = ∅
for each n, it follows that γn ≤ an for all sufficiently large values of n.

Corollary 11. Let E ⊆ R+ and let τ̃ = {τn}n∈N ∈ Ẽd. The following state-
ments are equivalent.

(i) E is τ̃ -strongly porous at 0.

(ii) There exists a sequence {(an, bn)}n∈N ∈ ĨE such that

1 ≤ lim inf
n→∞

an
γn
≤ lim sup

n→∞

an
γn

<∞.

(iii) There exists a sequence {(an, bn)}n∈N ∈ ĨE such that

lim sup
n→∞

an
τn

<∞ and τn ≤ an

for all sufficiently large n.
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Using Corollary 11, it is easy to find a set E ⊆ R+ such that E is strongly
porous on the right at 0 but E /∈ CSP(0).

Example 12. Let {xn}n∈N be the sequence from Example 8. Write

E = {0} ∪ {[x2n+1, x2n] : n ∈ N}.
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Using Corollary 11, it is easy to find a set E ✓ R+ such that E is strongly
porous on the right at 0 but E /2 CSP(0).

Example 12. Let {xn}n2N be the sequence from Example 8. Write

E = {0} [ {[x2n+1, x2n] : n 2 N}.

Fig. 1. The set E is shaded here

The sequence {(x2n+2, x2n+1)}n2N belongs to ĨE and lim
n!1

x2n+1

x2n+2
= 1.

Hence, E is strongly porous on the right at 0. Let us consider the sequence
⌧̃ = {⌧n}n2N with ⌧n =

p
x2n+1x2n, n 2 N. It is clear that ⌧̃ 2 Ẽd. Let

{(an, bn)}n2N be an arbitrary element of ĨE and let n 2 N be such that ⌧n  an.
Since ⌧n 2 [x2n+1, x2n] ✓ E, we have ⌧n  x2n  an. If E 2 CSP(0), then E
is ⌧̃ -strongly porous at 0. Hence, by Corollary 11, we may take {(an, bn)}n2N
such that ⌧n  an for all su�ciently large n. Consequently,

lim sup
n!1

an

⌧n
� lim sup

n!1

xn

⌧n
= lim sup

n!1

r
x2n

x2n+1
= 1.

Now Corollary 11 implies that E is not ⌧̃ -strongly porous at 0, contrary to the
supposition. Thus E /2 CSP(0).

The following proposition does not have any applications in the paper but
is used in [4] to describe the structure of bounded tangent spaces to general
metric spaces.

Note that if {(an, bn)}n2N is a decreasing sequence of open intervals that
witness the strong right porosity of E at 0, then bn

an
! 1. Hence, for each

K > 1 we have (an, Kan)\E = ? for all su�ciently large n. Indeed, it is even
the case that for each k > 1 and each K > k we have (kan, Kan)\E = ? for all
su�ciently large n. Although the strength of this last statement is essentially
illusionary (simply choose the former value of K to be kK), this last statement
allows for a formulation that we can apply to ⌧̃ -strong porosity.

Proposition 13. Let E ✓ R+ and let ⌧̃ = {⌧n}n2N 2 Ẽd. The following
statements are equivalent.

(i) E is ⌧̃ -strongly porous.

Fig. 1. The set E is shaded here

The sequence {(x2n+2, x2n+1)}n∈N belongs to ĨE and lim
n→∞

x2n+1

x2n+2
= ∞.

Hence, E is strongly porous on the right at 0. Let us consider the sequence
τ̃ = {τn}n∈N with τn =

√
x2n+1x2n, n ∈ N. It is clear that τ̃ ∈ Ẽd. Let

{(an, bn)}n∈N be an arbitrary element of ĨE and let n ∈ N be such that τn ≤ an.
Since τn ∈ [x2n+1, x2n] ⊆ E, we have τn ≤ x2n ≤ an. If E ∈ CSP(0), then E
is τ̃ -strongly porous at 0. Hence, by Corollary 11, we may take {(an, bn)}n∈N
such that τn ≤ an for all sufficiently large n. Consequently,

lim sup
n→∞

an
τn
≥ lim sup

n→∞

xn
τn

= lim sup
n→∞

√
x2n
x2n+1

=∞.

Now Corollary 11 implies that E is not τ̃ -strongly porous at 0, contrary to the
supposition. Thus E /∈ CSP(0).

The following proposition does not have any applications in the paper but
is used in [4] to describe the structure of bounded tangent spaces to general
metric spaces.

Note that if {(an, bn)}n∈N is a decreasing sequence of open intervals that
witness the strong right porosity of E at 0, then bn

an
→ ∞. Hence, for each

K > 1 we have (an,Kan)∩E = ∅ for all sufficiently large n. Indeed, it is even
the case that for each k > 1 and each K > k we have (kan,Kan)∩E = ∅ for all
sufficiently large n. Although the strength of this last statement is essentially
illusionary (simply choose the former value of K to be kK), this last statement
allows for a formulation that we can apply to τ̃ -strong porosity.

Proposition 13. Let E ⊆ R+ and let τ̃ = {τn}n∈N ∈ Ẽd. The following
statements are equivalent.

(i) E is τ̃ -strongly porous.
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(ii) There is a constant k ∈ (1,∞) such that for every K ∈ (k,∞) there
exists N1(K) ∈ N such that

(kτn,Kτn) ∩ E = ∅ (5)

if n ≥ N1(K).

Proof. Suppose that E is τ̃ -strongly porous. By Corollary 11 there is a
sequence

{(an, bn)}n∈N ∈ ĨE (6)

such that lim sup
n→∞

an
τn

< ∞ and τn ≤ an for all sufficiently large n. Write

k = 1 + lim sup
n→∞

an
τn
. Then ∞ > k ≥ 2 and there is N0 ∈ N such that

τn ≤ an < kτn (7)

for n ≥ N0. LetK ∈ (k,∞).Membership (6) implies the equality lim
n→∞

bn
an

= ∞.
The last equality and (7) show that there is N1 ≥ N0 such that

an < kτn < Kτn ≤ bn

if n ≥ N1. Hence the inclusion

(kτn,Kτn) ⊆ (an, bn) (8)

holds if n ≥ N1. Since

E ∩ (an, bn) = ∅, (9)

(8) implies (5). Thus (ii) follows from (i).
Conversely, assume that statement (ii) holds. Let K > 1. Then for K = 2k

there is N0 ∈ N such that

(kτn, 2kτn) ∩ E = ∅

if n ≥ N0. Consequently, for every n ≥ N0, we can find a connected component
(an, bn) of ExtE meeting the inclusion

(kτn, 2kτn) ⊆ (an, bn). (10)

Write (an, bn) = (aN0 , bN0) for n < N0. Since, for n ≥ N0, we have

τn ∈ E, τn < kτn and (an, kτn) ∩ E = ∅,
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the double inequality τn ≤ an < kτn holds for such n. To prove (i) it is
sufficient to show that

{(an, bn)}n∈N ∈ ĨE .

All intervals (an, bn) are connected components of ExtE and lim
n→∞

an = 0

because lim
n→∞

τn = 0, so that {(an, bn)}n∈N ∈ ĨE if and only if

lim
n→∞

bn
an

=∞. (11)

Let K be an arbitrary point of (k,∞). Applying (5) we can find N1(K) ∈ N
such that

(kτn,Kτn) ⊆ (an, bn)

for n ≥ N1(K). Consequently, for such n, we have

bn
an
≥ Kτn

kτn
=
K

k
.

Letting K →∞ we see that (11) follows.

It is clear that, if there is τ̃ ∈ Ẽd such that E is τ̃ -strongly porous, then
E is strongly porous on the right at 0. Conversely we have the following

Proposition 14. Let E ⊆ R+ and 0 ∈ acE. If E is strongly porous on the
right at 0, then there is τ̃ ∈ Ẽd for which E is τ̃ -strongly porous.

The proof is immediate and can be omitted.

Remark 15. If 0 6∈ acE, then E is strongly porous on the right at 0 but there
are no τ̃ ∈ Ẽd because Ẽd = ∅.

Definition 16. Let E ⊆ R+. The set E is uniformly strongly porous at 0 if
there exists a constant c > 0 such that for every τ̃ ∈ Ẽd there is {(an, bn)}n∈N ∈
ĨE such that

1 ≤ lim inf
n→∞

an
τn
≤ lim sup

n→∞

an
τn
≤ c

for all sufficiently large n.

Remark 17. If 0 6∈ acE, then E is uniformly strongly porous at 0 since
Ẽd = ∅.
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If E is uniformly strongly porous at 0, then E ∈ CSP(0). The converse is
also true and we prove this in Theorem 27 given below.

Define, for τ̃ ∈ Ẽd, a subset ĨE(τ̃) of the set ĨE by the rule:

({(an, bn)}n∈N ∈ ĨE(τ̃))⇔

({(an, bn)}n∈N ∈ ĨE and τn ≤ an for all sufficiently largen ∈ N).

Write
C(τ̃) := inf(lim sup

n→∞

an
τn

) and C(E) := sup
τ̃∈Ẽd

0

C(τ̃) (12)

where the infimum in the left formula is taken over all {(an, bn)}n∈N ∈ ĨE(τ̃).

Remark 18. Let E ⊆ R+ and let 0 ∈ acE. The set E is strongly porous at 0
if and only if

ĨE(τ̃) 6= ∅ (13)

for every τ̃ ∈ Ẽd. The set E is completely strongly porous at 0 if and only if
C(τ̃) < ∞ for every τ̃ ∈ Ẽd. The set E is uniformly strongly porous at 0 if
and only if C(E) <∞.
Lemma 19. Let E ⊆ R+. If τ̃ = {τn}n∈N ∈ Ẽd and {(an, bn)}n∈N ∈ ĨE
are sequences such that ã � τ̃ , then ã := {an}n∈N and b̃ := {bn}n∈N are
eventually decreasing.

Proof. It suffices to show that ã is eventually decreasing. If ã is not eventu-
ally decreasing, then there is an infinite A ⊆ N such that

an+1 > an (14)

for every n ∈ A. Since (an, bn) ∩ E = ∅, inequality (14) implies that an+1 ≥
bn > an. By Lemma 10 we have an ≥ τn for all sufficiently large n. In addition,
for such n, we may suppose also τn ≥ τn+1 because τ̃ is eventually decreasing.
Consequently, we obtain

an+1 ≥ bn > an ≥ τn ≥ τn+1 (15)

for all sufficiently large n ∈ A. Inequalities (15) imply

bn
an
≤ an+1

τn+1
.

Hence

∞ = lim
n→∞,n∈A

bn
an
≤ lim sup
n→∞,n∈A

an+1

τn+1
≤ lim sup

n→∞

an+1

τn+1
,

contrary to Lemma 10.
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Proposition 20. Let E ⊆ R+, τ̃ ∈ Ẽd, and let {(a(1)n , b
(1)
n )}n∈N, {(a(2)n , b

(2)
n )}n∈N

be two sequences belonging to ĨE . If ã1 � τ̃ and ã2 � τ̃ , where ãi := {a(i)n }n∈N,
i = 1, 2, then there is N0 ∈ N such that

(a(2)n , b(2)n ) = (a(1)n , b(1)n ) (16)

for every n ≥ N0.

Proof. Let us denote by Ec the closure of E in R+. Using Remark 2 we

see that 0 ∈ acEc and τ̃ ∈ Ẽdc . Since the sequences {(a(i)n , b
(i)
n )}n∈N, i = 1, 2,

belong to ĨE , they also belong to ĨEc
. By Lemma 19, we obtain ãi ∈ Ẽdc , i =

1, 2. We also have τ̃ � ã1, and τ̃ � ã2. Consequently the equivalence ã1 � ã2

holds. Applying Lemma 10 we can find N0 ∈ N such that a
(1)
n ≤ a

(2)
n and

a
(2)
n ≤ a

(1)
n for n ≥ N0. Thus a

(1)
n = a

(2)
n for n ≥ N0 which implies (16) for

such n.

Define the set ĨdE ⊆ ĨE by the rule

({(an, bn)}n∈N ∈ ĨdE)⇔

({(an, bn)}n∈N ∈ ĨE and {an}n∈N is eventually decreasing).

Remark 21. Let E ⊆ R+. If {(an, bn)}n∈N ∈ ĨdE , then there are τ̃ = {τn}n∈N ∈
Ẽd and β̃ = {βn}n∈N ∈ Ẽd such that

lim
n→∞

τn
an

= lim
n→∞

βn
bn

= 1. (17)

Definition 22. Let Ã := {(an, bn)}n∈N ∈ ĨdE and L̃ := {(ln,mn)}n∈N ∈
ĨdE . We write Ã � L̃ if there are a natural number N1 = N1(Ã, L̃) and a
function f : NN1

→ N, where NN1
:= {N1, N1 + 1, ...}, such that

an = lf(n) (18)

for every n ∈ NN1
. We say that L̃ ∈ ĨdE is universal if Ã � L̃ for every Ã ∈ ĨdE .

In other words, Ã � L̃ means that there is N1 ∈ N such that the range
of the mapping NN1

3 n 7→ (an, bn) ∈ Com is a subset of the range of the
mapping N 3 n 7→ (ln,mn) ∈ Com where Com is the set of all connected
components of ExtE. (See also Proposition 24 and Remark 25 below for other
reformulations of Definition 22.)

If Ã is a subsequence of L̃, then the relation Ã � L̃ holds. As the following
example shows, the converse is, in general, not true.
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Example 23. Let {xn}n∈N be a strictly decreasing sequence of positive real
numbers with lim

n→∞
xn+1

xn
= 0 and let W = {0} ∪ {xn : n ∈ N}. Let us consider

the sequence Ã = {(ak, bk)}k∈N such that (ak, bk) = (xn+1, xn) if and only if
n2 ≤ k < (n+1)2. As was noted in Example 8, the membership X̃ ∈ ĨW holds
with X̃ = {(xn+1, xn)}n∈N. By Lemma 7 we obtain Ã ∈ ĨW . Definition 22
implies that Ã � L̃. It still remains to note that Ã is not a subsequence of L̃.

The first part of Definition 22 can be reformulated as the following.

Proposition 24. Let Ã = {(an, bn)}n∈N and L̃ = {(ln,mn)}n∈N belong to ĨdE .
Then Ã � L̃ if and only if there are N1 = N1(Ã, L̃)) and f : NN1

→ N such
that

bn = mf(n) for all n ∈ NN1 .

Remark 25. The universality of L̃ ∈ ĨdE can be expressed in the language of
arrows. An element L̃ ∈ ĨdE is universal if for every Ã ∈ ĨdE there are N1 ∈ N
and f : NN1 → N such the diagram

NN1

in //

f

!!

N Ã // Com

N

L̃

==

is commutative. Here in is the natural inclusion of NN1 in N defined by
in(n) = n for each n ∈ NN1

.

Recall that a reflexive and transitive binary relation on a set X is a quasi-
ordering on X. An antisymmetical quasi-ordering is a partial ordering and
a poset is a set equipped with a partial ordering (see, for example, [12, p.
31–32]).

Proposition 26. Let E ⊆ R+ be strongly porous on the right at 0 and let
0 ∈ acE. The relation � is a quasi-ordering on the set ĨdE .

Proof. We must show that � is reflexive and transitive. The reflexivity of
� is evident. To prove that � is transitive note that if Ã � L̃, then there
is an increasing function f : NN1

→ N such that (18) holds. (The existence
of an increasing f meeting (18) follows because the sequences {an}n∈N and
{ln}n∈N are eventually decreasing.) Suppose that Ã � L̃ and L̃ � T̃ , T̃ =
{(tn, pn)}n∈N ∈ ĨdE . Let f : NN1 → N and g : NN2 → N be two functions such
that

an = lf(n) for n ≥ N1 and ln = tg(n) for n ≥ N2.
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Put M := max{n ∈ N : f(n) ≤ N2}. Since f is increasing and unbounded, we
have M <∞. Define

N3 := max{M,N1}
with N3 := N1 if {n ∈ N : f(n) ≤ N2} = ∅. Then the inequality N3 < ∞
holds. In accordance with the construction, we have f(n) ≥ N2 for every
n ∈ NN3 . Consequently we obtain

an = lf(n) = tg(f(n))

for such n. Thus Ã � L̃ and L̃ � T̃ imply Ã � T̃ .

Using standard facts from the theory of ordered sets we may prove that
the quasi-ordering � generates an equivalence relation ≡ on ĨdE if we put

(Ã ≡ T̃ )⇔ (Ã � T̃ and T̃ � Ã). (19)

Passing to the quotient set induced by the equivalence relation ≡ we obtain a
poset. Then ĨdE has a universal element if and only if this poset has a largest
element.

Let L̃ = {(ln,mn)}n∈N ∈ ĨdE be universal. Let us define the quantity

M(L̃) := lim sup
n→∞

ln
mn+1

. (20)

Recall that a sequence ã = {an}n∈N, an ∈ R, is eventually strictly de-
creasing if an+1 < an for all sufficiently large n. Write ĨsdE for the set of
{(an, bn)}n∈N ∈ ĨdE having eventually strictly decreasing {an}n∈N.

Theorem 27. Let E ⊆ R+ be strongly porous on the right at 0 and let 0 ∈ acE.
The following conditions are equivalent.

(i) E is a CSP(0) - set.

(ii) ĨdE contains a universal element L̃ = {(ln,mn)}n∈N ∈ ĨsdE with

M(L̃) <∞. (21)

(iii) E is uniformly strongly porous at 0.

To prove Theorem 27 we need some additional lemmas.

Lemma 28. Let E ⊆ R+. If L̃ = {(ln,mn)}n∈N ∈ ĨdE is universal, then there
is a subsequence L̃′ = {(lnk

,mnk
)}k∈N of L̃ such that L̃′ is also universal and

L̃′ ∈ ĨsdE .
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Proof. We construct L̃′ by induction. Since {ln}n∈N is eventually decreasing,
there exists n1 ∈ N such that ln+1 ≤ ln for n ≥ n1. The limit relation lim

n→∞
ln =

0 implies that there is n ≥ n1 such that ln < ln1
. Write

n2 := min{n ∈ Nn1 : ln < ln1}.

Similarly we set
nk+1 := min{n ∈ Nnk

: ln < lnk
} (22)

for k = 2, 3, 4... . For every n ≥ n1 there is the unique k ∈ N such that

nk ≤ n < nk+1. (23)

Furthermore, the decrease of the sequence {ln}n∈Nn1
implies that

lnk
= ln (24)

if n satisfies (23). Let us define g : Nn1 → N by the rule g(n) = k where k is
the unique index satisfying (23). In fact, it was proved above that L̃ � L̃′. By
Proposition 26 the relation � is transitive. Since L̃ is universal, we have T̃ � L̃
for every T̃ ∈ ĨdE . Consequently T̃ � L̃′ for every T̃ ∈ ĨdE , i.e., L̃′ is universal.
It still remains to note that (22) implies the inequality lnk

> lnk+1
for every

k ∈ N. Hence {lnk
}k∈N is a strictly decreasing sequence. Thus L̃′ ∈ ĨsdE .

Remark 29. If L̃ = {(ln,mn)}n∈N ∈ ĨsdE and Ã = {(an, bn)}n∈N ∈ ĨsdE , then
L̃ ≡ Ã if and only if there exist N1, N2 ∈ N such that

(ln+N1 ,mn+N1) = (an+N2 , bn+N2)

for every n ∈ N, where ≡ is defined by (19).

We will not use Remark 29 in the sequel and omit the proof here.

Lemma 30. Let E be a CSP(0) - set. If L̃ = {(ln,mn)}n∈N ∈ ĨsdE is univer-
sal, then

M(L̃) = C(E) (25)

where the quantities M(L̃) and C(E) are defined by (20) and (12) respectively.

Proof. Let L̃ ∈ ĨsdE be universal. We shall first prove the inequality

M(L̃) ≥ C(E). (26)

Inequality (26) holds if and only if

M(L̃) ≥ C(τ̃) (27)
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for every τ̃ ∈ Ẽd, where C(τ̃) was defined in (12). Let τ̃ ∈ Ẽd. By the
lemma’s hypothesis, E is completely strongly porous at 0. Hence there is
{(an, bn)}n∈N ∈ ĨE such that τ̃ � ã. By Lemma 10 we have the inequality

lim sup
n→∞

an
τn

<∞ (28)

and, for all sufficiently large n, the inequality

τn ≤ an. (29)

Proposition 20 and the definition of C(τ̃) imply

C(τ̃) = lim sup
n→∞

an
τn
. (30)

Hence to prove (27) we must show that

M(L̃) ≥ lim sup
n→∞

an
τn
. (31)

Be Lemma 19 we have

Ã := {(an, bn)}n∈N ∈ ĨdE . (32)

Since L̃ is universal, from (32) follows that Ã � L̃. Consequently there are
N1 ∈ N and an increasing function f : NN1

→ N such that

an ≥ an+1 and an = lf(n) (33)

for n ≥ N1. Since L̃ = {(ln,mn)}n∈N ∈ ĨsdE , we may suppose that l̃ = {ln}∈N
is strictly decreasing. Replacing τ̃ by a suitable subsequence we may assume
that τ̃ and ã are also strictly decreasing, f is strictly increasing, and that the
relations

τ1 ≤ l1, lim
n→∞

an
τn

= lim sup
n→∞

an
τn

(34)

hold. The closed intervals [mn+1, ln], n = 1, 2, ..., together with the half-open
interval [m1,∞) form a cover of the set E0 = E \ {0}, i.e.

E0 ⊆ [m1,∞) ∪
(⋃

n∈N
[mn+1, ln]

)
.

Since the elements of this cover are pairwise disjoint and τ1 ≤ l1, for every
n ∈ N there is a unique k(n) ∈ N such that

τn ∈ [mk(n)+1, lk(n)]. (35)
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We claim that the equality
k(n) = f(n) (36)

holds for all sufficiently large n. Indeed, using (29), (33) and (35) we obtain

τn ≤ lf(n) and τn ≥ mk(n)+1.

These inequalities and

mk(n)+1 > lk(n)+1 > lk(n)+2 > lk(n)+3 > ...

imply
f(n) ≤ k(n). (37)

Suppose that the last inequality is strict for n belonging to an infinite set
A ⊆ N, i.e.

f(n) ≤ k(n)− 1 (38)

for n ∈ A. Since {an}n∈N � {τn}n∈N and an = lf(n), we can find a constant
c ∈ (0, 1) such that

clf(n) ≤ τn ≤ lf(n) (39)

for all sufficiently large n. From (35), (37) and (39) it follows that

clf(n) ≤ τn ≤ lk(n) ≤ lf(n). (40)

Since l̃ = {ln}n∈N is strictly increasing and (ln,mn) ∩ (lj ,mj) = ∅ if n 6= j,
(38) implies that

lk(n) < mk(n) ≤ lk(n)−1 ≤ lf(n) < mf(n).

These inequalities and (40) show that

clf(n) ≤ τn ≤ lk(n) < mk(n) ≤ lk(n)−1 < lf(n)

for n ∈ A. Consequently we have

1

c
= lim
n→∞

lf(n)

clf(n)
≥ lim sup
n→∞, n∈A

mk(n)

lk(n)
,

contrary to the limit relation

lim
n→∞

mn

ln
=∞.

Hence the set of n ∈ N meeting the condition f(n) < k(n) is finite. Thus (36)
holds for all sufficiently large n.
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Now it is easy to prove (31). By (33) and (36) we have

an = lf(n) = lk(n).

Relation (35) implies τn ≥ mk(n)+1. Consequently

an
τn
≤ lk(n)

mk(n)+1
.

Hence

lim sup
n→∞

an
τn
≤ lim sup

n→∞

lk(n)

mk(n)+1
≤ lim sup

n→∞

ln
mn+1

= M(L̃).

Inequality (31) follows, so that (26) is proved.
To prove the inequality

M(L̃) ≤ C(E) (41)

we take a sequence τ̃ = {τn}n∈N ∈ Ẽd such that (35) holds with k(n) = n and

lim
n→∞

mn+1

τn
= 1. (42)

A desirable τ̃ can be constructed as in the proof of Proposition 14. The set
E is τ̃ -strongly porous at 0 because this is a CSP(0) - set. Hence there is
ã � τ̃ such that {(an, bn)}n∈N ∈ ĨdE . By Lemma 19 the sequence ã is eventually
decreasing. Since τn ∈ [mn+1, ln], using (36) we obtain

an = ln

for all sufficiently large n. From (30) and (42) it follows that

C(τ̃) = lim sup
n→∞

an
τn

= lim sup
n→∞

ln
mn+1

mn+1

τn

= lim sup
n→∞

ln
mn+1

lim
n→∞

mn+1

τn
= lim sup

n→∞

ln
mn+1

= M(L̃). (43)

Since C(E) ≥ C(τ̃), inequality (41) follows.
To complete the proof, it suffices to observe that (26) and (41) imply

(25).

Directly from (43) we obtain

Corollary 31. Let E ⊆ R+ be a CSP(0) - set. If L̃ = {(ln,mn)}n∈N ∈ ĨsdE
is universal, then M(L̃) <∞.
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Remark 32. As has been shown in Lemma 30 the equality M(L̃) = C(E)
holds for every universal L̃ ∈ ĨsdE . Suppose that L̃ ∈ ĨdE is universal but L̃ 6∈ ĨsdE .
Define the set A ⊆ N by the rule

(n ∈ A)⇔ (n ∈ N and (ln+1,mn+1) = (ln,mn)).

Let L̃
′ ∈ ĨsdE be the universal element of ĨdE constructed from L̃ as in Lemma 28.

Using the definition of the set A we obtain

M(L̃) = lim sup
n→∞

ln+1

mn
= lim sup
n→∞, n∈A

ln+1

mn
∨ lim sup
n→∞, n∈N\A

ln+1

mn

= lim sup
n→∞, n∈A

ln
mn
∨M(L̃′) = 0 ∨M(L̃′) = M(L̃′).

Consequently if L̃, S̃ ∈ ĨdE are universal, then M(L̃) = M(S̃). Thus condition
(ii) of Theorem 27 can be formulated by the following equivalent way.

• The set of universal elements L̃ ∈ ĨdE is nonempty and the inequality M(L̃) <
∞ holds for every universal L̃.

Proof of Theorem 27. (i)⇒ (ii). Let E be a CSP(0) - set. We shall
first prove that there is a sequence ũ = {un}n∈N ∈ Ẽd such that for every
τ̃ = {τk}k∈N ∈ Ẽd can be found an eventually increasing function f : N→ N
satisfying the relation

{τk}k∈N � {uf(k)}k∈N. (44)

Let us define the sequence of sets Ej , j ∈ N, by the rule

E1 := E ∩ [1,∞), E2 := E ∩ [
1

2
, 1), ..., Ej := E ∩ [

1

2j−1
,

1

2j−2
). (45)

There is the unique subsequence {Ejn}n∈N of the sequence {Ej}j∈N such that

E \ {0} =
⋃

n∈N
Ejn and Ejn 6= ∅

for every n ∈ N. For convenience we set An := Ejn , n ∈ N. Let {un}n∈N be
a sequence of positive real numbers meeting the condition un ∈ An for every
n ∈ N. It is clear that {un}n∈N ∈ Ẽd. For every τ̃ = {τk}k∈N ∈ Ẽd, define
f : N→ N by the rule

f(k) = n if and only if τk ∈ An.
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The function f is well-defined because

E \ {0} =
⋃

n∈N
An and Aj ∩Ai = ∅ if i 6= j.

It follows directly from (45) that

1

2
τk ≤ uf(k) ≤ 2τk

if f(k) ≥ 2. Moreover, since τ̃ and ũ are eventually decreasing and lim
n∈N

τn = 0,

the function f : N→ N is eventually increasing and the set {k ∈ N : f(k) = 1}
is finite. Consequently there are positive constants c1 and c2 such that

c2τk ≤ uf(k) ≤ c1τk

for all k ∈ N. Thus (44) holds.
Let {un}n∈N ∈ Ẽd be the sequence constructed above. Since E is a CSP(0)

- set, E is ũ-strongly porous at 0. Hence, there is Ã := {(an, bn)}n∈N ∈ ĨE
such that

ã � ũ. (46)

Lemma 19 implies that ã is eventually decreasing, i.e., Ã ∈ ĨdE . We claim that
Ã is universal. Indeed, as was shown for every τ̃ = {τ}k∈N ∈ Ẽd there is
f : N → N such that (44) holds. The relation {un}n∈N � {an}n∈N implies
that

{uf(k)}k∈N � {af(k)}k∈N. (47)

Every interval (af(n), bf(n)) is a connected component of ExtE and, in addi-

tion, lim
n→∞

bn
an

= ∞ implies lim
k→∞

bf(k)

af(k)
= ∞ because lim

n→∞
f(n) = ∞. Conse-

quently we obtain
{(af(k), bf(k))}k∈N ∈ ĨE . (48)

Moreover, since f is eventually increasing and Ã = {(an, bn)}n∈N ∈ ĨdE , (48)
implies

{(af(k), bf(k))}k∈N ∈ ĨdE . (49)

From (44) and (47) we obtain

{τk}k∈N � {af(k)}k∈N. (50)

Using (49), (50) and Remark 21, we can prove that L̃ � Ã for every L̃ ∈ ĨdE ,
as required.
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By Lemma 28 we can find a universal element L̃ ∈ ĨsdE . In accordance with
Corollary 31 we have M(L̃) <∞. Thus condition (i) implies (ii).

The implication (iii)⇒ (i) is evident. Moreover, using Lemma 30, we can
simply verify that the implication ((i)&(ii)) ⇒ (iii) is true. Consequently to
complete the proof is suffices to show that (ii) ⇒ (i). Suppose that condition
(ii) holds. Let τ̃ = {τn}n∈N ∈ Ẽd and let L̃ = {(lk,mk)}k∈N ∈ ĨsdE be univer-
sal. As in the proof of Lemma 30 we may suppose that {ln}n∈N is a strictly
decreasing sequence and that τ1 ≤ l1. Then for every n ∈ N there is a unique
k(n) ∈ N such that

mk(n)+1 ≤ τn ≤ lk(n), (51)

(see (35)). Inequality chain (51) implies

lim sup
n→∞

lk(n)

τn
≤ lim sup

n→∞

lk(n)

mk(n)+1
≤ lim sup

k→∞

lk
mk+1

= M(L̃) <∞.

Since {(lk(n),mk(n))}n∈N ∈ ĨdE , the set E is τ̃ -strongly porous at 0 by Lemma 10.
Thus condition (i) follows from condition (ii). �

Remark 33. Conditions (i) and (iii) of Theorem 27 are equivalent for arbi-
trary E ⊆ R+. Indeed, if p+(E, 0) < 1, then both (i) and (iii) are evidently
false. If p+(E, 0) = 1 but 0 6∈ acE, then (i) and (iii) are true (see Remark 5
and Remark 17). In this connection it should be pointed out that condition
(ii) of Theorem 27 implies ĨE 6= ∅. Consequently, if (ii) holds, then 0 ∈ acE
and p+(E, 0) = 1 (see Remark 3).

Example 12 shows that the existence of a universal L̃ ∈ ĨsdE does not imply
the inequality M(L̃) <∞.

The next theorem describes the structure of sets E ⊆ R+ for which there
is a universal L̃ ∈ ĨsdE .

As in Remark 25 write Com for the set of all connected components of
ExtE.

Theorem 34. Let E ⊆ R+ be strongly porous on the right at 0 and let 0 ∈ acE.
Then ĨdE contains a universal element if and only if there is a constant c > 1
such that for every K > 1 there is t > 0 for which the inequalities t > a and
b
a > c imply the inequality b

a > K for every (a, b) ∈ Com.

Proof. Suppose that there is a universal element L̃ = {(ln,mn)}n∈N ∈ ĨdE .
We must prove that

∃ c > 1 ∀K > 1∃ t > 0 ∀ (a, b) ∈ Com :

(a < t) &

(
b

a
> c

)
⇒
(
b

a
> K

)
.

(52)
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By Lemma 28 we may assume that {ln}n∈N is strictly decreasing. Using the
limit relations

lim
n→∞

mn

ln
=∞ and lim

n→∞
ln = 0

and the strict decrease of {ln}n∈N we obtain that

∀K > 1∃ t > 0 ∀n ∈ N : (ln < t)⇒
(
mn

ln
> K

)
. (53)

If (52) does not hold, then

∀ c > 1 ∃K = K(c) > 1∀ t > 0 ∃ (a, b) ∈ Com : (t > a) &

(
c <

b

a
≤ K(c)

)
.

(54)
Using this formula with c = j and K = K(j), for j = 1, 2, ..., we see that

∀ t > 0 ∃ (aj , bj) ∈ Com : (aj < t) &

(
j ≤ bj

aj
≤ K(j)

)
. (55)

Formula (53) implies that

∀ n ∈ N ∃ tj > 0 : (ln < tj)⇒
(
mn

ln
> K(j)

)
. (56)

We can suppose also that lim
j→∞

tj = 0 and {tj}j∈N is strictly decreasing. From

(55) with t = tj it follows that

∀ j ∈ N ∃ (aj , bj) ∈ Com : (aj < tj) &

(
j ≤ bj

aj
≤ K(j)

)
. (57)

Consequently the sequence Ã := {(aj , bj)}j∈N belongs to ĨE . Using the limit
relation lim

j→∞
tj = 0 and passing to a suitable subsequence we may assume

that Ã ∈ ĨdE . Formulas (56) and (57) imply that

(aj , bj) 6= (ln,mn)

for every element (ln,mn) of L̃. Consequently L̃ is not universal, contrary to
the assumption.

Conversely, suppose that (52) holds. Let us prove that there exists a uni-
versal element in ĨdE . Let c be the constant satisfying (52). Define a subset
Com(c) of the set Com by the rule

((a, b) ∈ Com(c))⇔
(

(a, b) ∈ Com, a > 1 and
b

a
> c

)
.
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We can enumerate of the intervals (a, b) ∈ Com(c) in the sequence

(a1, b1), (a2, b2), ..., (an, bn), ...

such that {an}n∈N is strictly decreasing. Condition (52) implies that Ã =
{(an, bn)}n∈N ∈ ĨdE . The universality of Ã follows directly from Definition 22
and (52).

As in Remark 33 it should be noted that the existence of a universal L̃ ∈ ĨdE
implies that 0 ∈ acE and p+(E, 0) = 1.

An illustrative model for Theorem 34. Let E ⊆ (0, 1] be closed and let
0 ∈ acE. Write

W :=

{
ln

(
1

x

)
: x ∈ E

}
.

We can consider W as “a photograph of a one-dimensional liquid” with some
“gas bubbles”

(
ln
(
1
b

)
, ln
(
1
a

))
, where (a, b) ∈ Com, which move to +∞. The-

orem 34 means that there is a critical value ln c such that if the sizes of the
gas bubbles are greater than ln c, then these bubbles undergo an unbounded
blow up during their motion.

The following simple proposition can be considered as a limit case of The-
orem 34.

Proposition 35. Let E ⊆ R+ and L̃ = {(ln,mn)}n∈N ∈ ĨdE . Suppose that
for every (a, b) ∈ Com there is n ∈ N such that (a, b) = (ln,mn). Then L̃ is
universal.

The proof follows directly from Definition 22.

3 Another characterizations of CSP(0) - sets

Let E be a subset of R+. Define the set H̃ = H̃(E) of the sequences
h̃ = {hn}n∈N, hn > 0, lim

n→∞
hn = 0 by the rule:

(h̃ ∈ H̃)⇔
(
λ(E, 0, hn)

hn
→ p+(E, 0) with n→∞

)
(58)

where the quantities p+(E, 0) and λ(E, 0, hn) are the same as in Definition 1.

Theorem 36. Let E ⊆ R+ be strongly porous on the right at 0. Then E
is a CSP(0) - set if and only if for every τ̃ = {τn}n∈N ∈ Ẽd0 there is h̃ =
{hn}n∈N ∈ H̃(E) such that τ̃ � h̃.
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Proof. The necessity is easy to prove. Suppose E is a CSP(0) - set. Let
τ̃ ∈ Ẽd. By Theorem 27 there is a universal element L̃ = {(ln,mn)}n∈N ∈ ĨsdE
with M(L̃) < ∞. Reasoning as in the proof of Theorem 27, we can find
k(n) ∈ N such that

τn ∈ [mk(n)+1, lk(n)] (59)

for all sufficiently large n (see (35)). Membership (59) implies the inequalities

mk(n)+1 ≤ τn and
τn

mk(n)+1
≤ lk(n)

mk(n)+1
.

Thus we have

lim sup
n→∞

τn
mk(n)+1

≤ lim sup
n→∞

lk(n)

mk(n)+1
≤M(L̃) <∞.

Consequently there are c1 ≥ 1 and N1 ∈ N such that mk(n)+1 ≤ τn ≤
c1mk(n)+1 for n ≥ N1. If we set mk(n)+1 := mk(N1)+1 for n < N1, then it is
easy to see that {τn}n∈N � {mk(n)+1}n∈N. To be certain that {mk(n)+1}n∈N ∈
H̃(E), it suffices to check that

lim
n→∞

λ(E, 0,mk(n)+1)

mk(n)+1
= 1. (60)

(Indeed, p+(E, 0) = 1 because E is strongly porous on the right at 0.) Since
the quantity λ(E, 0,mk(n)+1) is the length of the largest open interval in the
set (0,mk(n)+1) ∩ ExtE and

(lk(n)+1,mk(n)+1) ⊆ (0,mk(n)+1) ∩ ExtE,

we have
mk(n)+1 − lk(n)+1

mk(n)+1
≤ λ(E, 0,mk(n)+1)

mk(n)+1
≤ 1. (61)

The sequence L̃ belongs to ĨsdE . Hence

lim
n→∞

mk(n)+1 − lk(n)+1

mk(n)+1
= 1.

The last relation and (61) imply (60).
The proof of the sufficiency is more awkward, so we divide it into several

lemmas.
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Lemma 37. Let E ⊆ R+ be strongly porous on the right at 0 and let τ̃ =
{τn}n∈N ∈ Ẽd and h̃ = {hn}n∈N ∈ H̃(E). If τ̃ � h̃, then there is {(an, bn)}n∈N ∈
ĨE such that

{τn}n∈N � {bn}n∈N. (62)

Proof. Let τ̃ � h̃. By the definition of H̃(E), for every n ∈ N, there is an
interval (a

′
n, b

′
n) ⊆ (0, hn) ∩ ExtE such that

lim
n→∞

b
′
n − a

′
n

hn
= 1. (63)

Moreover, the relation τ̃ � h̃ implies that there are constants k ∈ (0, 1) and
K ∈ (1,∞) such that

τn ∈ (khn,Khn) (64)

for every n ∈ N. Consequently

τn ∈ (0,Khn) \ (a
′
n, b

′
n). (65)

Using (63) we can show that

b′n > khn > a
′
n (66)

for all sufficiently large n. It is clear that Khn > hn ≥ b
′
n. Hence (64) – (66)

imply
τn ∈ [b

′
n,Khn) (67)

for all sufficiently large n (see Fig. 2 below).
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Lemma 37. Let E ✓ R+ be strongly porous on the right at 0 and let ⌧̃ =
{⌧n}n2N 2 Ẽd and h̃ = {hn}n2N 2 H̃(E). If ⌧̃ ⇣ h̃, then there is {(an, bn)}n2N 2
ĨE such that

{⌧n}n2N ⇣ {bn}n2N. (62)

Proof. Let ⌧̃ ⇣ h̃. By the definition of H̃(E), for every n 2 N, there is an
interval (a

0
n, b

0
n) ✓ (0, hn) \ ExtE such that

lim
n!1

b
0
n � a

0
n

hn
= 1. (63)

Moreover, the relation ⌧̃ ⇣ h̃ implies that there are constants k 2 (0, 1) and
K 2 (1,1) such that

⌧n 2 (khn, Khn) (64)

for every n 2 N. Consequently

⌧n 2 (0, Khn) \ (a
0
n, b

0
n). (65)

Using (63) we can show that

b0n > khn > a
0
n (66)

for all su�ciently large n. It is clear that Khn > hn � b
0
n. Hence (64) – (66)

imply
⌧n 2 [b

0
n, Khn) (67)

for all su�ciently large n (see Fig. 2 below).

Fig. 2

Let (an, bn) be the connected component of ExtE meeting the inclusion
(a

0
n, b

0
n) ✓ (an, bn). From (67) it follows ⌧n � bn. Hence

khn < b
0
n  bn  ⌧n < Khn (68)

for all su�ciently large n. Consequently ⌧̃ ⇣ h̃ and b̃ ⇣ h̃, so that (62) follows.
To complete the proof, it su�ces to show the membership {(an, bn)}n2N 2 ĨE .
The last relation holds if and only if

lim
n!1

an

bn
= 0. (69)

Fig. 2

Let (an, bn) be the connected component of ExtE meeting the inclusion
(a

′
n, b

′
n) ⊆ (an, bn). From (67) it follows τn ≥ bn. Hence

khn < b
′
n ≤ bn ≤ τn < Khn (68)

for all sufficiently large n. Consequently τ̃ � h̃ and b̃ � h̃, so that (62) follows.
To complete the proof, it suffices to show the membership {(an, bn)}n∈N ∈ ĨE .
The last relation holds if and only if

lim
n→∞

an
bn

= 0. (69)
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Inequalities an ≤ a′n < b′n ≤ bn imply that

0 ≤ an
bn
≤ a

′
n

b′n
. (70)

Moreover, since
b
′
n − a

′
n

hn
≤ b

′
n − a

′
n

b′n
≤ 1,

limit relation (63) yields

lim
n→∞

a
′
n

b′n
= 0.

Thus (70) follows from (69).

Remark 38. It is clear that {bn}n∈N ∈ H̃(E) for each {(an, bn)}n∈N ∈ ĨE .

The following lemmas are analogs of Lemma 19 and Proposition 20, and
have similar proofs.

Lemma 39. Let E ⊆ R+. If τ̃ ∈ Ẽd and {(an, bn)}n∈N ∈ ĨE , then the equiv-
alence b̃ � τ̃ implies that b̃ and ã are eventually decreasing.

Lemma 40. Let E ⊆ R+, τ̃ = {τn}n∈N ∈ Ẽd, and let {(a(i)n , b
(i)
n )}n∈N ∈

ĨE , i = 1, 2. If
b̃1 � τ̃ � b̃2

where b̃i = {b(i)n }n∈N, i = 1, 2, then there is N0 ∈ N such that

(a(1)n , b(1)n ) = (a(2)n , b(2)n )

for every n ≥ N0.

The next lemma is closely related to the implication (i)⇒ (ii) from Theo-
rem 27.

Lemma 41. Let E ⊆ R+ be strongly porous on the right at 0 and let 0 ∈ acE.
If for every τ̃ = {τn}n∈N ∈ Ẽd there is {(an, bn)}n∈N ∈ ĨE such that {τn}n∈N
� {bn}n∈N, then there is a universal L̃ = {(ln,mn)}n∈N ∈ ĨsdE with

M(L̃) <∞. (71)

The following proof is a modification of the corresponding part of the proof
of Theorem 27.
Proof of Lemma 41. Suppose that for every τ̃ = {τn}n∈N ∈ Ẽd there is
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{(an, bn)}n∈N ∈ ĨE such that τ̃ � b̃ = {bn}n∈N. In the proof of Theorem 27 we
have found a sequence ũ = {un}n∈N ∈ Ẽd such that for every τ̃ ∈ Ẽd there is
an eventually increasing function f : N→ N satisfying the relation

{τk}k∈N � {uf(k)}k∈N. (72)

By the supposition there is {(an, bn)}n∈N ∈ ĨE such that

ũ � b̃. (73)

Since ũ ∈ Ẽd, Lemma 39 implies that b̃ and ũ are eventually decreasing.
Consequently Ã := {(an, bn)}n∈N ∈ ĨdE . We shall show that Ã is universal. Let
L̃ = {(ln,mn)}n∈N be an arbitrary element of ĨdE . Using Definition 24 we see
that Ã is universal if and only if there are N1 ∈ N and f : NN1 → N such that

mn = bf(n) (74)

for n ∈ NN1
. It is easy to show that there is τ̃ = {τn}n∈N ∈ Ẽd such that

lim
n→∞

τn
mn

= 1. (75)

The last limit relation implies that {mn}n∈N = m̃ � τ̃ = {τn}n∈N. This
equivalence, (72) and (73) give us

{mk}k∈N � {bf(k)}k∈N.

It is clear that {(af(k), bf(k))}k∈N ∈ ĨdE . Consequently, by Lemma 40, there is
N0 ∈ N such that

(lk,mk) = (af(k), bf(k))

for all k ≥ N0. Equality (74) follows for all sufficiently large n. Hence Ã ∈ ĨdE
is universal. Using Lemma 28 we can assume that {an}n∈N and {bn}n∈N are
strictly decreasing. To complete the proof it suffices to show that M(Ã) <∞.
As in the proof of Lemma 30 we may consider the closed intervals [bn+1, an], n =
1, 2, ..., that together with the half-open interval [b1,∞) form a disjoint cover
of the set E \ {0},

E \ {0} ⊆ [b1,∞) ∪
(⋃

n∈N
[bn+1, an]

)
.

We can find a sequence τ̃ = {τn}n∈N ∈ Ẽd such that

lim
n→∞

τn
an

= 1 and τn ∈ [bn+1, an] (76)
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for every n ∈ N. Reasoning as in the proof of equality (36) we can see that

{τn}n∈N � {bn+1}n∈N,

i.e., there are positive constants c1, c2 such that

c1bn+1 ≤ τn ≤ c2bn+1.

The last inequality and (76) imply

∞ > c2 ≥ lim sup
n→∞

τn
bn+1

= lim sup
n→∞

τn
an

an
bn+1

= lim sup
n→∞

an
bn+1

= M(Ã),

and so the lemma is proved. �

It is now simple finish the proof of Theorem 36.

Proof of Theorem 36. The sufficiency. Suppose for every τ̃ = {τn}n∈N ∈
Ẽd there is h̃ = {hn}n∈N ∈ H̃(E) such that τ̃ � h̃. Then, by Lemma 37,
for every τ̃ ∈ Ẽd there is {(an, bn)}n∈N ∈ ĨE such that τ̃ � b̃. Conse-
quently, by Lemma 41, the set ĨdE has a universal element L̃ ∈ ĨsdE sat-
isfying the inequality M(L̃) < ∞. By Theorem 27 E is a CSP(0) - set.
�

Let A and B be subsets of R+. We shall write A v B if there is t =
t(A,B) > 0 such that

A ∩ (0, t) ⊆ B ∩ (0, t).

The next theorem gives a constructive description of the CSP(0) - sets.

Theorem 42. Let E ⊆ R+. Then E is a CSP(0) - set if and only if there
are q > 1 and a strictly decreasing sequence {xn}n∈N, xn > 0 for n ∈ N, such
that

lim
n→∞

xn+1

xn
= 0 (77)

and

E vW (q) (78)

where

W (q) :=
⋃

n∈N
(q−1xn, qxn). (79)
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Proof. The theorem is trivial if 0 6∈ acE. Let us consider the case when
0 ∈ acE. Suppose that there are q > 1 and a sequence {xn}n∈N of positive
real numbers such that (77) and (78) hold. Let N1 and N2 be natural numbers
such that

(q−1xn+1, qxn+1) ∩ (q−1xn, qxn) = ∅ (80)

for n ≥ N1

E ∩ (0, t) ⊆W (q) ∩ (0, t) (81)

for t ≤ xN2 . Then we have

(qxn+1, q
−1xn) ⊆ ExtE

for n ≥ N1 ∨ N2 and write, in this case, (ln,mn) for the unique connected
component of ExtE satisfying the inclusion

(ln,mn) ⊇ (qxn+1, q
−1xn). (82)

Let (ln,mn) := (lN1∨N2
,mN1∨N2

) for n < N1 ∨ N2. We claim that L̃ =
{(ln,mn)}n∈N is universal. Indeed, (82) implies that

lim inf
n→∞

mn

ln
≥ q−2 lim inf

n→∞
xn
xn+1

=∞.

Thus
lim
n→∞

mn

ln
=∞,

so that L̃ belongs to ĨdE . Let Ã = {(aj , bj)}j∈N be an arbitrary element of ĨdE .
There is N3 ∈ N such that

bj
aj

> q2 (83)

and bj < (xN1 ∨ xN2) for j ≥ N3. Let j ≥ N3. The interval (aj , bj) is a
connected component of ExtE. Consequently, there is n ≥ (N1 ∨ N2) such
that either

(aj , bj) ⊇ (qxn+1, q
−1xn) (84)

or
(aj , bj) ⊆ (q−1xn, qxn). (85)

Inclusion (85) implies
bj
aj
≤ qxn
q−1xn

= q2,

contrary to (83). Hence (84) holds. Since for every nonvoid interval (s, t) ⊆
ExtE there is a unique connected component (a, b) ⊇ (s, t), inclusions (82)
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and (84) imply the equality (ln,mn) = (aj , bj). Hence L̃ � Ã for every Ã ∈ ĨdE .
Thus L̃ is an universal element of (ĨdE ,�).

In accordance with Theorem 27 to prove that E is a CSP(0) - set it is
sufficient to show

M(L̃) = lim sup
n→∞

ln
mn+1

<∞. (86)
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and (84) imply the equality (ln, mn) = (aj , bj). Hence L̃ ⌫ Ã for every Ã 2 Ĩd
E .

Thus L̃ is an universal element of (Ĩd
E ,�).

In accordance with Theorem 27 to prove that E is a CSP(0) - set it is
su�cient to show

M(L̃) = lim sup
n!1

ln
mn+1

< 1. (86)

Fig. 3

Since, for all su�ciently large n, (ln, mn) ◆ (qxn+1, q
�1xn), (ln+1, mn+1) ◆

(qxn+2, q
�1xn+1) and ln+1 < mn+1 < ln < mn, qxn+2 < q�1xn+1 < qxn+1 <

q�1xn (see Fig. 3), we have

mn+1, ln 2 [q�1xn+1, qxn+1].

Consequently the inequality

ln
mn+1

 qxn+1

q�1xn+1
= q2

holds for all su�ciently large n. Inequality (86) follows.

Now assume that E is a CSP(0) - set. Let {(ln, mn)}n2N 2 Ĩsd
E be univer-

sal. Without loss of generality, we may suppose that the sequence {ln}n2N
is strictly decreasing. Define {xn}n2N := {mn}n2N. Using the inequality
mn+1  ln we obtain, from the definition of Ĩd

E , that

lim sup
n!1

xn+1

xn
 lim sup

n!1

ln
mn

= 0.

Thus

lim
n!1

xn+1

xn
= 0.

Fig. 3

Since, for all sufficiently large n, (ln,mn) ⊇ (qxn+1, q
−1xn), (ln+1,mn+1) ⊇

(qxn+2, q
−1xn+1) and ln+1 < mn+1 < ln < mn, qxn+2 < q−1xn+1 < qxn+1 <

q−1xn (see Fig. 3), we have

mn+1, ln ∈ [q−1xn+1, qxn+1].

Consequently the inequality

ln
mn+1

≤ qxn+1

q−1xn+1
= q2

holds for all sufficiently large n. Inequality (86) follows.
Now assume that E is a CSP(0) - set. Let {(ln,mn)}n∈N ∈ ĨsdE be univer-

sal. Without loss of generality, we may suppose that the sequence {ln}n∈N
is strictly decreasing. Define {xn}n∈N := {mn}n∈N. Using the inequality
mn+1 ≤ ln we obtain, from the definition of ĨdE , that

lim sup
n→∞

xn+1

xn
≤ lim sup

n→∞

ln
mn

= 0.

Thus

lim
n→∞

xn+1

xn
= 0.

To complete the proof it is sufficient to show that there is q > 1 such that (78)
holds. As in the proof of Lemma 30, one can easily note that

E \ {0} ⊆ [m1,∞) ∪
(⋃

n∈N
[mn+1, ln]

)
. (87)
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By formulas (20) and (21) we have

M(L̃) = lim sup
n→∞

ln
mn+1

<∞.

Let q ∈ (M(L̃),∞). Then there is N4 ∈ N such that ln
mn+1

< q for n ≥ N4.

It is clear that q > 1. Consequently the inequalities q−1mn+1 < mn+1 ≤ ln <
qmn+1 hold for n ≥ N4. These inequalities yield the inclusion [mn+1, ln] ⊆
(q−1mn+1, qmn+1). The last inclusion and (87) imply

E ∩ (0, t) ⊆
(⋃

n∈N
(q−1mn, qmn)

)
∩ (0, t)

for every t ∈ (0,mN4+1). Relation (78) follows.

In the case of the closed sets E we may modify Theorem 42 by the following
way.

Theorem 43. Let E ⊆ R+ be closed and let 0 ∈ acE. Then E is a CSP(0) -
set if and only if there are q > 1 and a strictly decreasing sequence of numbers
xn > 0, n ∈ N, such that lim

n→∞
xn+1

xn
= 0 and

W (1) v E vW (q)

where

W (a) =

(⋃

n∈N
[xn, axn]

)
, a ∈ [1,∞).

The last theorem shows that examples 8 and 9 give us, in a sense, “the
extremal elements” among the closed CSP(0) - sets with accumulation point
0. The proof of Theorem 43 is similar to the proof of Theorem 42, so we omit
it here.
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