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AVOIDING RATIONAL DISTANCES

Abstract

We show that for any set of reals X there is a Y ⊆ X such X and Y
have same Lebesgue outer measure and the distance between any two
distinct points in Y is irrational.

1 Introduction

Péter Komjáth has asked the following question in [1]: Let X be a subset
of Euclidean space Rn. Is there always a Y ⊆ X such that X and Y have
same outer measure and the distance between any two distinct points of Y is
irrational? In [2] he showed that Rn can be colored by countably many colors
such that the distance between any two points of the same color is irrational. It
follows that one can always find a subset of positive outer measure that avoids
rational distances. Under the assumption that there is no weakly inaccessible
cardinal below the continuum, he also showed in [1] that in dimension one
we can always find a subset Y of full outer measure in X, avoiding rational
distances. Moti Gitik and Saharon Shelah showed the following in [4], [5]:
For any sequence 〈An : n ∈ ω〉 of sets of reals, there is disjoint refinement of
full outer measure; i.e., there is a sequence 〈Bn : n ∈ ω〉 of pairwise disjoint
sets such that Bn ⊆ An and they have the same outer measure. It follows
that one can omit integer distances in dimension one while preserving outer
measure. Their proof employs one of their results about forcing with ideals
that says that forcing with a sigma ideal cannot be isomorphic to a product of
Cohen and Random forcings. Here we answer Komjáth’s question positively
in dimension one.
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2 A theorem of Gitik and Shelah

Suppose A is a subset of Rn. We say that B ⊆ A is full in A if the difference
of env(A) and env(B) is null, where by env(X) we denote a Gδ measurable
envelope of X; i.e., env(X) is a Gδ set containing X such that the inner
measure of env(X)\X is zero. Note that if the outer measure of A is finite, a
subset B ⊆ A is full in A iff A and B have same outer measure.

Let T be a subtree of ω<ω such that every node in T has at least two
children; i.e., for every σ ∈ T , |{n ∈ ω : σn ∈ T }| ≥ 2.

Definition 2.1. Call a family 〈Aσ : σ ∈ T 〉 of subsets of a set A, a full tree
on A if:

• A = Aφ, and for every σ ∈ T ,

• Aσ is a disjoint union of Aσn’s where σn ∈ T and

• Aσ is full in A.

The following application of Theorem 2.3 is implicit in [4]:

Theorem 2.2. Let A ⊆ Rn and let 〈Aσ : σ ∈ T 〉 be a full tree on A. Then
there is a B ⊆ A full in A such that for every σ ∈ T , Aσ\B is full in Aσ.

This theorem is a consequence of the following theorem in [5]:

Theorem 2.3. Suppose I is a sigma ideal over a set X. Then forcing with I
cannot be isomorphic to Cohen × Random.

Let us explain how Theorem 2.2 follows from Theorem 2.3. It is clearly
enough to show that there is a non null X ⊆ A such that Aσ\X is full in Aσ for
every σ ∈ T , for then the union B of a maximal family {Xn : n ∈ ω} of such
sets with pairwise disjoint envelopes will be as required. Suppose that this
fails so that for every non null X ⊆ A, there is some σ ∈ T such that env(Aσ)
is strictly larger than env(Aσ\X). Consider the map that sends every positive
outer measure subset X ⊆ A to the supremum, in the complete Boolean
algebra Cohen × Random, of all pairs (σ,E) where σ ∈ T and E is a positive
measure Borel subset of env(A) such that E is disjoint with env(Aσ\X). This
gives a dense embedding from P(A)/Null to Cohen × Random contradicting
the fact that they cannot be forcing isomorphic.
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3 The main result

Theorem 3.1. Let X ⊂ R be a set of positive outer measure. Then there is a
Y ⊆ X such that Y is full in X and the distance of any pair of distinct points
in Y is irrational.

Proof of Theorem 3.1: Let X0 be a set of representatives from the partition
on X induced by the equivalence relation x ∼ y iff x − y is rational. Let
〈rn : n ≥ 0〉 be a list of all rationals with r0 = 0. For each n ≥ 0, let
fn : X0 → R be defined by fn(x) = x+rn, if x+rn ∈ X, otherwise fn(x) = x,
also put Xn = range(fn). For m,n ≥ 0, let Fmn = fn ◦ f−1

m : Xm → Xn. Note
that fn = F 0

n . Also note that for every m,n ≥ 0, x ∈ Xm, Fmn (x) = x+ r, for
some r ∈ {0, rn,−rm, rn − rm}. This will allow us to use Lemma 3.3 below
with k ≤ 4.

We will inductively define a sequence 〈Kn : n ≥ 0〉 of pairwise disjoint
subsets of X0 such that for each n ≥ 0, fn[Kn] is full in Xn. Theorem 3.1 will
immediately follow by setting Y =

⋃
{fn[Kn] : n ∈ ω}. We need a definition

for our next lemma.

Definition 3.2. Let Y ⊆ R and F : Y → R. We say that F is fullness
preserving if whenever W is a full subset of Y , F [W ] is a full subset of F [Y ].

Observe that if F : Y → R is fullness preserving, then for any W ⊆ Y full
in Y , F �W is also fullness preserving.

Lemma 3.3. Suppose F : Y → R acts by translating k many pieces of Y ;
i.e., there are a partition {T1, T2, . . . , Tk} of Y and reals s1, s2, . . . , sk such
that for every x ∈ Ti, F (x) = x+ si. Then, there is another partition of size
k, {Yi : 1 ≤ i ≤ k} of Y , such that for every i ≤ k,

• Yi is full in Y and

• F � Yi is fullness preserving.

Proof of Lemma 3.3: We will make several uses of the following result
of Lusin: Any set of reals X can be partitioned into two full subsets ([6]).
Use induction on k. If k = 1, Y1 = Y works. So assume k = l + 1. Let
Z =

⋃
{Ti : 1 ≤ i ≤ l}. Let {Zi : 1 ≤ i ≤ l} be a partition of Z such

that each Zi is full in Z and F � Zi is fullness preserving. Let E1 = env(Z),
E2 = env(Tk) and D = E1

⋂
E2. Let W1, W2 be a partition of Z1

⋂
(E1\D)

into two full subsets. Let {Vj : 1 ≤ j ≤ k} be a partition of Tk
⋂

(E2\D) into
k full subsets. Set Y1 = W1

⋃
(Z1

⋂
D)

⋃
V1. For 2 ≤ i ≤ l, put Yi = Zi

⋃
Vi

and let Yk = W2

⋃
(D

⋂
Tk)

⋃
Vk. Then {Yi : 1 ≤ i ≤ k} is a partition of Y

with the required properties. This finishes the proof of Lemma 3.3.
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Claim 3.4. There exists K0 ⊆ X0, such that K0 is full in X0 and for every
n ≥ 1, Xn\fn[K0] is full in Xn.

Proof of Claim 3.4: Using Lemma 3.3, construct a full tree 〈Yσ : σ ∈ 2<ω〉
on Y = X0 such that for each n ≥ 1, σ ∈ 2n, fn � Yσ is fullness preserving.

Now Theorem 2.2 will imply that there is some K0 ⊆ X0, full in X0,
such that for every σ ∈ 2<ω, Yσ\X0 is full in Yσ. Fix any n ≥ 1. Since
for each σ ∈ 2n, fn � Yσ is fullness preserving, we get that fn[Yσ\X0] is full
in fn[Yσ]. It follows that Xn\fn[K0] =

⋃
{fn[Yσ\X0] : σ ∈ 2n} is full in⋃

{fn[Yσ] : σ ∈ 2n} = Xn. This finishes the proof of Claim 3.4.
Next suppose that for some N ≥ 1, we have a pairwise disjoint family

{Ki : 0 ≤ i < N} of subsets of X0 such that

• for each 0 ≤ i < N , fi[Ki] is full in Xi and

• for each j ≥ N , fj [X0\
⋃
{Ki : 1 ≤ i < N}] is full in Xj .

Following the arguments in the proof of Claim 3.4, we first construct, using
Lemma 3.3, a full tree 〈Yσ : σ ∈ 4<ω〉 on Y = fN [X0\

⋃
{Ki : 1 ≤ i < N}]

such that for each n ≥ 1, σ ∈ 2n, FNN+n � Yσ is fullness preserving. Using
Theorem 2.2, we get some K ⊆ Y , full in Y , such that for every σ ∈ 4<ω,
Yσ\K is full in Yσ. Putting KN = f−1

N [K] it follows that

• for each 0 ≤ i < N , Ki ∩KN = φ,

• fN [KN ] is full in XN and

• for each j ≥ N + 1, fj [X0\
⋃
{Ki : 1 ≤ i ≤ N}] is full in Xj .

This concludes the proof of Theorem 3.1.

4 Concluding remarks

One can easily see that the above arguments can be applied to avoid any
countable set of distances by replacing the rationals with the additive subgroup
generated by this countable set. One can also obtain a category analogue in
the following sense: Let X ⊆ R. Then there is a subset Y ⊆ X such that
Y is everywhere non meager in X and the distance between any two distinct
points of Y is irrational. Here we call a subset Y ⊆ X everywhere non meager
in X if for every open set U , if X ∩ U is non meager then Y ∩ U is also non
meager. The proof follows essentially the same lines except that one has to use
a category analogue of Theorem 2.2 which depends on the following result of
Gitik and Shelah ([3]): Suppose I is a sigma ideal over a set X. Then forcing
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with I cannot be isomorphic to Cohen forcing. We do not know the answer
to Komjáth’s question (and its category analogue) in higher dimensions.
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