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Abstract

Let u be the attracting measure of a condensation system consisting
of a finite system of conformal mappings associated with a probabil-
ity measure v which is the image measure of an ergodic measure with
bounded distortion. We have shown that for a given r € (0,400) the
lower and the upper quantization dimensions of order r of y are bounded
below by the quantization dimension D, (v) of v and bounded above by
a unique number x, € (0,400) where xk, has a relationship with the
temperature function of the thermodynamic formalism that arises in
multifractal analysis of pu.

1 Introduction

The term ‘quantization’ in this paper refers to the process of estimating a
given probability by a discrete probability supported by a finite set. The
quantization dimension D, for r € (0, +00) of a probability measure is related
to the asymptotic rate at which the expected distance (raised to the rth power)
to the support of the quantized version of the probability goes to zero as the
support is allowed to go to infinity. Such problem originated in the information
theory and some engineering technology such as image compression and signal
processing (see [4, 16]). Graf and Luschgy studied this problem systematically
and gave a general mathematical treatment of it (see [3]). Given a Borel
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probability measure x4 on R? a number r € (0,4o0c) and a natural number
n € N, the nth quantization error of order r of u, is defined by

enp = inf{(/ d(ac,a)rdu(x))% ca C R, card(a) < n},

where d(z, «) denotes the distance from the point = to the set o with respect
to a given norm | - || on R%. We note that if [ ||z||"du(z) < oo then there is
some set « for which the infimum is achieved (see [3]). The upper and the
lower quantization dimensions of order r of y are defined by

logn logn

D,.(u) := limsup (@) := lim inf

—_— D .
n— o0 _logenﬂ' n—oo —logeén r

If D,(1) and D, (u) coincide, we call the common value the quantization di-
mension of order r of u and denote it by D,.(u).

Let {¢1, @2, -+ ,on} be a finite system of contractive conformal mappings,
and let (p;) := (po,p1,p2, - ,pn) be a probability vector and v be a proba-
bility measure on R? with the compact support E. In the parallel lines as in
[9, 10], it can be shown that there exists a unique Borel probability measure
1 with the compact support Kg such that

N N
u:pou—l—ij,uogp;l andKE:Uij(KE)UE. (1)

=1 j=1

Here p is called the inhomogeneous self-conformal measure, and Kg is called
the inhomogeneous self-conformal set associated with the list ({¢;}, (pj),v) :=
(1, y©N,D0,P1, "+ ,PN,V). Note that inhomogeneous self-conformal sets
and measures are the extensions of inhomogeneous self-similar sets and mea-
sures. Following [1, 8], we also call ({¢;}, (p;),v) a condensation system, p the
attracting measure and the set Kg the attractor of the condensation system
({@j}v <pj>7 V).

Let the iterated function system {1, v2,- -+ , N} satisty the open set con-
dition (OSC): there exists a bounded nonempty open set U C R? such that
Uév:l 0;(U) C U and ¢;(U)Ng;(U) =0 for 1 < i # j < N. Furthermore,
the system satisfies the strong open set condition (SOSC) if U can be chosen
such that U N E # (), and the strong separation condition (SSC) if p;(E) are
pairwise disjoint for j =1,2,--- , N.

For a finite system of self-similar mappings {S1, Sa,- - , Sy} satisfying the
strong separation condition, in [15], Zhu considered a condensation system
({S;}, (p;),v) where (p;) = (po,p1,Dp2, - ,Pn), and v is a self-similar measure
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which is generated by a probability vector (ti,t2,--- ,tn), where t; > 0 for
all 1 < j < N. For such a system Zhu determined the upper and the lower
quantization dimensions of the attracting measure p.

In this paper, we have considered a condensation system ({¢;}, (p;),V)
where {¢; : 1 < j < N} is a finite system of conformal mappings satisfying
the strong separation condition, (p;) = (po, p1,p2,-- ,P~), and v is the image
measure of an ergodic measure with bounded distortion over the symbolic
space {1,2,--- , N} (for the definition see next section) which has the support
the limit set generated by the conformal mappings 1, s, -+ ,¢on. Let E be
the support of v, and then E satisfies the uniqueness condition: Uj»vzlgaj (E) =
E (see [1, 5]). Thus for the support Kg of the attracting measure u, by the
uniqueness of the compact set K g, it follows that Kz = E. Under the strong
separation condition we have proved that for a given r € (0, 4+00) there exists
a unique Kk, € (0,400) such that

D, (v) < D,(p) < Dr(p) < ki,

where D,.(1) and D,.(11) are respectively the lower and the upper quantization
dimensions of order r of u, and D, (v) is the quantization dimension of the
associated measure v. Moreover, we have shown that , has a relationship with
the temperature function 5(q) of the thermodynamic formalism that arises in
multifractal analysis of p, i.e., k, satisfies: k. = fi—qg where 5(g,) = rq..

2 Basic definitions, lemmas and propositions

In this paper, R? denotes the d-dimensional Euclidean space equipped with a
metric d compatible with the Euclidean topology. Let us write

Vir(p) = inf{/d(m, a)"du(z) : a C R, card(a) < n},
Un,r (@) = inf{/d(nc7 aUU du(z) : o € R card(a) < n},

where U is a set which comes from the open set condition and U¢ denotes the
complement of U. We see that

1/r 1/r _
Uy SVl = en

We call sets o,, C R?, for which the above infimums are achieved, n-optimal
sets for ey, r, Vi, » OF Uy » respectively. If n = 1, we simply write e, V;. or u, for
€n.,rs Vn,r OF Up » Tespectively. As stated above, Graf and Luschgy have shown
that n-optimal sets exist when [ ||z||"du(z) < oo.
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Let V C R? be an open set. A C'-map ¢ : V — R? is conformal if the
differential ¢(z) : R? — R? satisfies | (z)y| = |¢'(z)| - ly| # 0 for all z € V
and y € R%, y # 0, where |¢'(x)| is the norm of the derivative at x € R<.
Furthermore, ¢ : V — R? is contracting if there exists 0 < v < 1 such that
lo(x) — p(y)| < v |z —y| for all z,y € V. We say that {p; : X — X}V isa
conformal iterated function system (conformal IFS) on a compact set X C R?
if each ; extends to an injective contracting conformal map ¢; : V — V on
an open set V O X. Let {¢;}, be a conformal IF'S on a compact set X C R¢
for which there exists 0 < s < 1 such that

d(pi(x), piy)) < sd(z,y) (2)

forall 1 <i< N and all z,y € X.
Let I = {1,2,---,N}. Let £y denote the set consisting only the empty
word (). We define

Qn::ﬁl, Q, = GQ’“ Q::ﬁ[.
k=1 k=0 k=1

For any o € Q,, if 0 = 0109 -- 01 € Q) we call k to be the length of o and is
denoted by |o|, i.e., |o| = k (k > 1); the length of the empty word is zero. Note
that if o € Q then the length of o is infinity, i.e., |o| = co. For any o € Q, U
with |o| > n > 1, we write o|,, to represent the initial segment of o of length
n, i.e., olp := 01020y, and olo = 0. If 0,7 € Q, and |o| < |7], 0 = 7|5,
then we call o a predecessor of 7 and denote this by ¢ < 7; if ¢ A 7 and
T 4 0, we say o and 7T are incomparable. For any two words o = o105 - - 0%
and 7 = TTo -+ Tp in Q,, by 0 * T := 07 we mean the concatenation of the
two words o and 7, i.e., 0T =010+ Tp. For 0 = 0103+ 0|5 € Qs let

us write,
_ { 0 if o] =1

o = :
0109+ Olgj—1 if o] > 1,

_{ Idga ifo=10
Yo Po1 ©Pgy © 0 Poy 1f|0’| > 1.

Inequality (2) implies that for all i € I,

. d(pi(y), pi(z)) . sd(z,y)
Ml = sup |oi(z)] = sup lim ———22 2222 < qup lim v —
(A zegl%( )| sup lim ==y = sl o

and hence ||¢l || < s™ for every o € Q,,, n > 1. Since given 0 = 0105+ € ,
the diameters of the compact sets 0, (X) = @5, 0 g, 0 -0 0g, (X), n > 1,
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converge to zero and since they form a descending family, the set
oo
ﬂ Poln (X)
n=1

is a singleton and therefore, if we denote its element by 7 (o), this defines the
coding map 7 : £ — X. Then the limit set of the iterated function system is

E=7)=J ) . (X). (3)

oceQdn=1

Such a set F is unique and satisfies the natural invariance equality £ =
Uév:l @;(E) (see [1, 5]), and is called the self-conformal set corresponding
to the conformal IFS {1, -+ ,pn}. Let the iterated function system
{¢1,92, - ,on} satisfy the open set condition (OSC): there exists a bounded
nonempty open set U C X such that Ujvzl ;i (U) C U and ¢;(U)Np;(U) =10
for 1 < i # j < N. Furthermore, the system satisfies the strong open set
condition (SOSC) if U can be chosen such that U N E # 0, and the strong
separation condition (SSC) if ¢;(F) are pairwise disjoint for j =1,2,--- , N.
Note that in the case of a conformal iterated function system using a finite
number of mappings open set condition implies the strong open set condition
(see [12]). If {1, 2, - , N} satisfies the strong separation condition then -
as is easily seen - it also satisfies the open set condition, and hence the strong
open set condition.

Let © be a shift-invariant ergodic measure on {2 satisfying the bounded
distortion property, i.e., there exists a constant K > 1 such that for any two
words o and T in €,

K= o([o)o([r]) < (o)) < K ([o])o([r]). (4)

For the conformal iterated function system the following two lemmas are
known.

Lemma 1. (see [11, Lemma 2.1]) There exists a constant C > 1 such that
I (y)| < Clel(z)| for all z,y € X and all o € Q,.

Lemma 2. (see [11, Lemma 2.2]) There exists a constant C' > C' such that
CHlwglld(z, y) < d(wa (@), 9o (y)) < Clig,lld(z,y)
for all z,y € X and all o € Q,.

The following lemma easily follows from Lemma 1.
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Lemma 3. Let C' > 1 be the constant as defined in Lemma 1. Then for any
two words o, T € ),

CHIRL ML < lhrll < lleg Il

Let us now state the following three propositions which can be proved in
the similar lines as in [9, 10].

Proposition 4. Let J be a compact subset of RY. Then for the given con-
formal iterated function system {p1, - ,on} there exists a unique compact
subset K; of R® such that

N

j=1

Proposition 5. Let (p;) := (po, p1,D2, -+ ,Pn) be a probability vector and let
v be a probability measure on R¢ with compact support. Then for a given con-
formal iterated function system {@1,--- , N}, there exists a unique probability

measure p such that
N

p="> pinoe;" +pov. (6)

Jj=1

Proposition 6. Let p be a unique probability measure satisfying (6) and let
J be the support of v. Then the support of u is equal to the unique nonempty
compact set Ky satisfying (5).

The unique nonempty compact set K ; given by Proposition 4 is called the
imhomogeneous self-conformal set or the attractor, and the unique measure
1 given by Proposition 5 is called the inhomogeneous self-conformal measure
or the attracting measure of the condensation system ({¢;}, (pj),v). In the
rest of the paper, we take v as the image measure under the coding map 7 of
the shift-invariant ergodic measure  given by (4), i.e., v := o7~ !. Then v
has the support the unique invariant set E which is given by (3), and which
satisfies £ = Ujvzl ©;(E). Then for the support K of the attracting measure
1, by the uniqueness of the compact set Kg, it follows that K = E. For this
attracting measure p we will determine the bounds of the lower and the upper
quantization dimensions. For 0 = 0109+ 0, € Q4, n > 1, set

E, = p,(F), and write E, = E if o is the empty word 0,

1 ifo=10
pg N pdlpﬂ'z o 'pUn lf n Z ]-
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The set E, for o € €, is called a cylinder set. If @1, @2, -+, N satisfy the
strong separation condition, then it is easy to see that for any two incomparable
words o and 7 in 2, we have u(E, N E;) = 0.

Let us now prove the following lemma.

Lemma 7. Let K > 1 be the constant arising in the bounded distortion prop-
erty. Then the probability measure v satisfies the following inequality: For any
n>1,

K_lz VO@;ISVSKZD[U]Vocpgl.
oceQ, o€Q,

PROOF. Since E = U;‘V:1 ©j(E) = Uyecq, po(E) foralln > 1, and the Borel o-
algebra on F is generated by all sets of the form ¢, (E), to prove the inequality
it is enough to prove that for any 7 € Q. with |7| > n,

-1 Z olvop, N (E,) < <KZ olvo o (E,).

o€, g€,

Let 7 € Q, with |[7| > n. Then 7 = xy for some x € Q, and y € Q;|_,, and
SO

Y dolvo e, H(Er) =K plalu(ey(E))
g€EQy

=K '0[z|oly] < Dlay] = v(E;),

and similarly, v(E;) < K Y. . D[o]vop, ' (E;). Thus the lemma is obtained.
O

We have
N

p=pov+ Y pinop;
j=1

Now substituting for p in the right-hand side of the above equation, we have

N N
—1 -1
W= DoV + ijl (p0y+ ijztu’ospp ) © ¥
Ji=1 Jj2=1
—1 -1
= poV + Z Popj Vo ;- + Z Pj152lb © Py g+
J1=1 Ji,J2=1
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Again substituting for p in the above expression successively for any n > 1,

p=pov+ Y poppvoen +t D Pobjgaavews iy, (1)

Jji=1 Jir s dn—1=1
+ . . o .71 .
Djrgn b C Py
jlv'“;jnzl

Using (7) and Lemma 7, for any n > 1, we have

p<pok( D v dvernts t >0 bl cdilvowil,,

G agn=1 Jrosgn=1
R i D]y o -1 4 ot
Pjijn-aVUnlV © Py, Pji-jntt © Pjyejn
Gy sdn=1 Jiosdn=1

and so,

w< Z {pOK(l)[jl"’jn]erjlﬁ[jZ"'jn]+"'+pj1"'jn—1l>[jn])’/ (8)

Ji, s gn=1
—1 -1
O Pji g + Djy-ejin b © <Pj1...jn] .

Similarly, for any n > 1, we have

T Z [pOKfl(ﬁ[jl-~-jn]+pj1f/[j2---jn}+~-- (9)
Ji,sin=1

+ pjlmjnflﬁ[jn]) R N T w}ll...jn} :
Let 0 = 01090y, € Oy, n > 1. Then by (8),
p(E,) < pOK(ﬁ[olag cooop] + Do Poa o]+ +p,71...,,n_119[an]) (10)
+ Doy-on
<K [po (19[0102 ceon] F po Doy op] o+ pgli..gn_lﬁ[an]>
< K(f/[alag cOp] F PoP[o2on] 4+ Poyo, P[00]
+pgl...gn),

and by (9),
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#(Es) = poK ™ (Plor -+ 0u) + Doy 0oz 0] + -+ + Doy Plon]) (1)

+ Poron,

> K oo (o1 0] 4+ P12+ 0ul + 4 By Pl
+pal...an}

> K 'po (f/[ - On] + oy P02 On] 4+ Doy, Do)
+p01...an).

Moreover, the inequality (11) implies that for all o € €,
w(Ey) > pOK_lﬁ[al e Um] = pOK_lﬁ[a] = pOK_ly(EU). (12)
Lemma 8. For any two words o, € )y, the probability measure p satisfies
W(Eor) < Kopgt i Bo)u(Er ).

PROOF. Let 0 = 01090, and T = 7472 - - - T, where n,p > 1. Then by (8),
(11) and (12),

/J'(Ea"r) < pOK< [0102 ] + Doy ﬁ[UQ e O—n} +---+ Poyon_y ﬁ[o—n]>y(E'r)
+ Doy o M Er)
< K2( [0102 - On] + Po D[o2 - op] + -+ - —I—pgl...gnflﬁ[an])u(ET)

+ Doy ooy, W(Er)
< K2 (ﬁ[alaz O]+ P Dloaon) F o+ Doy, Don]
+ Do, ) H(Er)
< K°py ! p(Eq ) Ex).
Thus the lemma is true. O

By Lemma 3, Lemma 8, and the standard theory of subadditive sequences,
the following limit exists: For any two numbers ¢,t € R,

P(g.t) = lim - logZ )4, I (13)
A"
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The above function P(q,t) is called the topological pressure corresponding to
the condensation system ({¢;}, (p;), ). The following proposition states the
well-known properties of the function P(q,t) (see [2, 11]).

Proposition 9. (i) P(q,t) : R x R — R is continuous.

(i) P(q,t) is strictly decreasing in each variable separately.

(#i1) For fized q we have limy_, 4 P(q,t) = —o0 and lim;_,_, P(q,t) =
+00.

(iv) P(q,t) is convex: if q1,q2,t1,t2 € R, a1,a2 >0, a1 + ag =1, then

P(a1qi + asqa, a1ty + aste) < a1 P(qi,t1) + a2 P(ga, t2).

Now for fixed ¢, P(g,t) is a continuous function of ¢. Its value ranges from
—o0 (when t — +00) to +00 (when ¢t — —0c0). Therefore, by the intermediate
value theorem there is a real number § such that P(gq,8) = 0. The solution
B is unique, since P(q,-) is strictly decreasing. This defines 8 implicitly as a
function of ¢: for each ¢ there is a unique 5 = S(q) such that P(q,5(q)) = 0.

The following proposition gives the well-known properties of the function

Bla) (see [2, 11]).

Proposition 10. Let 8 = §(q) be defined by P(q,[5(q)) = 0. Then
(i) B is a continuous function of the real variable q.
(it) B is strictly decreasing: if ¢1 < g2, then B(q1) > B(q2).
(#40) limgy—s oo B(q) = 00 and lim, 4o B(g) = —o0.
(iv) B is convex: if q1,q2,a1,a2 € R with a1,a2 > 0 and a1 + as = 1, then

Blarqr + azq2) < a18(q1) + a28(g2).

The function £(q) is sometimes denoted by T'(¢) and called the temperature
function. A more general discussion of this function can be found in [6], where
our f(g) function corresponds to —7(g) in their notation.

Remark 11. If ¢ =0, then P(q, 5(q)) = 0 implies

. 11180) —
oeQ

and so (0) gives the Hausdorff dimension dimp(E) of the attractor E (see
[7]). Note that

1 1
P(1,0) = leIEO Z log Z w(Ey) = kliﬁrgo Z logl =0,

and hence B(1) = 0.

In the next section we state and prove the main result of the paper.



QUANTIZATION DIMENSION ESTIMATE 327

3 Main results

The following theorem gives the bounds of the lower and the upper quanti-
zation dimensions of the attracting measure p in terms of the quantization
dimension D, (v) of the associated measure v and the temperature function

B(q)-

Theorem 12. Let p be the attracting measure of the condensation system
{e;}, (pj),v), where {¢1,--- ,on} is a conformal iterated function system
satisfying the strong separation condition, v is the image measure of an ergodic
measure with bounded distortion on the symbolic space {1,2,--- N}N. Let
B = B(q) be the temperature function of the thermodynamic formalism for the
attracting measure (. For each r € (0,+00) choose q, such that 3(q,) = rqy.
Then the lower and the upper quantization dimensions D, (u) and D,(u) of
order v of the attracting measure pu satisfy the following relation:

D, (v) < D, (1) < Dy(p) < f(_q:i

where D,.(v) is the quantization dimension of order v of v.

To prove the above theorem, we need to prove some lemmas and proposi-
tions. The following lemma plays a vital role.

Lemma 13. Let 0 < r < 400 be fired. Then there exists exactly one number
€ (0,+00) such that

i 1 og 3 (u(E)eb )7 =
e o€
ProOF. By (13), we have
P(t,rt) = IEBOEIOg g sl
(o) k

If t =0, then P(0,0) = limp_, 00 = % log dem 1 = limp_yoo & 7 log Nk =logN >
0; and if t =1,

P(1,r1) = lim flog Z el < hm log Z w(E
noree og€EQy g€y
= hm —log Z ») + rlogs
ko0 o€

=rlogs < 0.
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Since P(t,rt) is continuous and strictly decreasing, the unique ¢ € R for which
P(t,rt) = 0 must lie between 0 and 1. Then &, = ff ; satisfies the conclusion

of the lemma. O

Lemma 14. For any two words o,T € E,, we have u(E,;) >
pOK_QM(Ea)V(ET)-

PROOF. Let 0 = 01020, and 7 = 7472 - - - 7, where n,p > 1. Then by (9),
(10) and (12),

1(Eq7)

> pokK ! (ﬁ[alag co0p] F poyPloa - on] e+ pgl...gnflf/[anDy(ET)
+ Doy oy W(Er)

> poK ! (Do10s 0] + Do, 902 O]+ By, Plon] ) (E)
+ Poyo,PoK V()

= poK ! (19[0102 s Op] F Doy Po2 o]+ F Poyo, 1 P[00
+pal-~on>V(ET)

> poK p(Eq)v(E;),

which yields the lemma. O
From the above lemma the following corollary can be deduced.

Corollary 15. Let 0 < r < +oo be fired. Then there exists a constant
0 < A <1 such that for all o € Q., we have p(E,)| ¢, || > Ap(E,- )|l _[I".

PrROOF. Let L = min{v(E1)||@i|", -, v(En)|lN]|"}. Write
A =pyK 2LC~", and then 0 < A < 1. Thus, using Lemma 3 and Lemma 14,
we have

WE)@o " = poK 2C™" W B0 (Es , )I¢o-II"llr, I
> poK 2 LC™" W(Ep-)ll,-1I"
which yields the corollary. O

We call I' C Q. a finite maximal antichain if T is a finite set of words
in €, such that every sequence in € is an extension of some word in I', but
no word of I' is an extension of another word in I'. Of course, this requires
that the index set {1,2,---, N} is finite. We will make this assumption in the
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remainder of this paper. By |T'| we denote the cardinality of I'. Note that from
the definition of T' it follows that finite maximal antichain does not contain
the empty word ) as all words are extension of §.

Remark 16. Let 0 < r < +o0 be fized and K, be as in Lemma 13. We assume
that there exists a constant C, > 1 such that for any finite maximal antichain

F’ K
> (Bl IT) ™ <G

oel

This assumption we need to prove Proposition 20.
Lemma 17. Let T’ be a finite mazimal antichain. Then for all o € Q,,
" S Z {pOK(ﬁ[gl .. .O-‘O'd +pa_1f/[o'2 . .a'lo_‘] + .-
oel
+ pal--~a|a‘_1ﬁ[a|o’|]) vo 90;1 + Poy-op o W © 50;1] .
PROOF. Let m = max{|o|: o € I'}. Since E = U;V:1 i (E) = Uyeq, po(E)
for all n > 1, and the Borel o-algebra on E is generated by all sets of the form

o (F), to prove the inequality it is enough to prove that for any 7 € Q. with
|7 > m,

pE) S Y oK (Blor- e ojo)] + pasPloa - o) -
0'1"'0'\5\61—\

+ pO’l"'J\a\—lﬁ[o‘U”)y o 90;11~~-a"(,‘ + Doy--o1p K O @;llmaw (Er).

Let 7 € Q, with |7| > m. As T is a finite maximal antichain, corresponding
to 7 there exist € I and y € Q. such that 7 = zy. Then by (8), we have

Z {pOK(ﬁ[O—l."o"al]+p0’1ﬁ[o—2”'0—‘0‘] +...
o105 €T
Do P10101] ) 0 05+ Do 10 857, | ()
= Do (Pl g+ Do Ploa 2]+ By Pl) V(B
+pw1...$‘z‘u(Ey)
> N(Er)a

and thus the lemma is true. O
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Lemma 18. Let I’ C Q. be a finite maximal antichain, n € N with n > T,
and 0 < r < +oo. Then for any sequence {n, : o € I'} of natural numbers
satisfying 1 < ng, Y cpNe < n, we have

Vano (1) < C7 3 [0 Kb 17 (911 - 0101] + Doy plora -+ 1] 4+
oel’

+ Posevota 1 710101]) Vi r (V) + Py |91 Vo (1)

PROOF. Suppose n, > 1 for each o € T', and ZUGF nye <n. Foreach o € I' let
o, be an ny-optimal set for V;,_ ,(v) and 8, be an n,-optimal set for V,,_ - (1).
Since | Uger @o (s U By)| < 2n, by the previous lemma, we have

Vano () < [ dla, | (g U 80 )

oel

<3 (oK (9o 010 + o #lon 01+ Doy, Vo1
oel

[ dtepatan)y o 0@ + oy,
[ dtaspata)y e o7 @)
<Cy. [poKH%IIT(ﬁ[Ul Olo|] + Doy Ploa - opg ] 4
oel

+pal"'ff\a\—1ﬁ[0|a\])Vna,T(V) + Poi--01g ”‘p:rHTVno,T(M) :

Hence the lemma. O

Lemma 19. There exists a constant D > 1 such that V,, .(v) < DV, ,.(u) for
alln > 1.

PROOF. Let a be an optimal set for V, ,(u) and 0 < r < +o00. Since p =
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pov + Zjvzl Py o w;l, by Lemma 2, we have
Vo) = [ dla,)"du(a)

N
= d(z,a)"dv(z) + i | d(z, o) d(po J_l)(ac)
Po / ;p / pow
N
>0 [ dla.a)dv@) +C S pi I [ dloes o) duta)

N
Z pOer(V) + C_T ij ||<P; ||TV7177‘(IU’>

j=1

Since @; are conformal mappings, ¢; € C*, |¢(x)] # 0 for all 1 < j < N and
all x € X. Moreover, X is compact. Therefore, there exists a number R € R,
such that 0 < R < |¢}(z)| < [|¢)]| < s <1foralll <j < N andall z € X.
Thus we have,

N
Vn,r(,u) Z pOVn,r(V) + éir ijRT‘/n,r (,u)

j=1

Take D = (1—C~" X, pjR")/po, and note that D > (1— 527 p;)/po = 1
to obtain the assertion of the lemma. O

Proposition 20. Let 0 < r < +o0 be fized and K, be as in Lemma 13. Then
under the assumption of Remark 16, we have

lim sup nVohy (1) < +00.

n—oo

PRrROOF. Let 0 < A < 1 be the constant as defined in Corollary 15, and C). be
the constant as defined in Remark 16. Fix m € N. Choose any n € N so that
m < AC; !, and set e = C, A7, Then 0 < e < 1. Let

laZs

D =1(0) ={o € 2t (1B, )7 < e < (B, )7 ).

Then by Remark 16 and Corollary 15, we have

Cr 2> (W(Eq) gyl = AT Y (u(Ep- gl 1) 75 > AelT,
el el
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which implies |T| < Cr(Ae)™t = 2 < o0, i.e., I' is a finite maximal antichain
and n > |T'jm. Then by Lemma 18 and Lemma 19, and then by (11), we have

Van,r(11)
<C" Y [poKllgh I (9los -+ 01o1] + Py ploa - 01 + -+

el

+ Pore-oroy 1 D101 ) Vinr (0) + Do oo 60 1 Vi (10)]

<C'DY. [pOK(”[Ul T R A R P +pa1-~aw_ﬂff|a|]>
oel
+ Poseeopo | 15 1 Vi, (1)
< C"DK Z [po (1?[0'1 s 0"(7|] + po, Vo - U‘U‘] + - +pgl...g‘olilﬂ[()’|g|]>

oel

+ Porevaro | |61 Vinr ()

< C"DE? Y w(E) |l Vinr (1)
oel
< C"DK> Y~ (W(ENI@, M) (B b ") T Vi (1),
oel’
and thus,

Vanr (1) < C"DE? 3" (u(Eo) |, I7) 75 €55 Vi1 (1)
ocel’

which implies

Vanr (1) < CTDK2Cres Vi 1 (1) = C"DE2C, (CL A1) (%) 5 Vi (1),

yielding 2”‘/2:1%;7»(/1) < Q(CTDK2CT)TCTA_1mVnﬁ(u). Since for fixed m,
this inequality holds for all but a finite number of n, we have

Kp
T

lim sup 2n1/2;TiT(u) < Q(C'TDK2CT) CTA_lmVy,jT,TT(u) < 400,

n—oo

and thus the proposition is obtained.
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Remark 21. In [13], Roychowdhury determined the quantization dimension

D, (v) of the image measure v. But, from there it is not known whether

liminf,, _ o neﬁ';(y)(u) > 0. Using the parallel arguments as in [14], it can

be shown that liminf,,_, neﬁ}(y)(u) > 0.

Let us now prove the following proposition.

Proposition 22. Let the conformal mappings {p; : 1 < j < N} satisfy
the strong separation condition and let 0 < r < 4+o0o. Moreover, let D, (v)

be the quantization dimension of order r of the probability measure v. Then

Hm inf o0 nes 3 (1) > 0.

PROOF. Since D,(v) is the quantization dimension of order r of the image

measure v, by Remark 21, we have liminf,,_, ne,?}(”)(u) > 0. By Lemma 19,

1 1
for any n > 1, we have e, (1) = Vi (v) < D7 Vi (1) = D7 ey (). Hence,
D’f‘

W ..
= liminf ne?7®) (v) > 0.
n—00 ’

lim inf neﬁ;(”) (u) > D~

n— oo

Proof of Theorem 12.

By Proposition 11.3 of [3], we know:
(a) f0<t< D, <sthen

lim nefL » = +o00 and liminfne] ,. = 0.
n—00 ’ n— 00 ’

(b) If0 <t < D, < s then

. t o : s __
limsup ne;, . = +oo and lim nej;, . = 0.
n— 00 n—co

From (a) and Proposition 22, we have D,.(v) < D, (). By (b) and Propo-
sition 20, we have D,(u) < k,. Hence, D,(v) < D,(n) < D,(u) < .. Note
that if ¢, = ri;r then by Lemma 13, 8(¢.) = rq,-. Thus it follows that
Blar)
q

kyr = §—. Hence the proof of the theorem.
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