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QUANTIZATION DIMENSION ESTIMATE
FOR CONDENSATION SYSTEMS OF

CONFORMAL MAPPINGS

Abstract

Let µ be the attracting measure of a condensation system consisting
of a finite system of conformal mappings associated with a probabil-
ity measure ν which is the image measure of an ergodic measure with
bounded distortion. We have shown that for a given r ∈ (0,+∞) the
lower and the upper quantization dimensions of order r of µ are bounded
below by the quantization dimension Dr(ν) of ν and bounded above by
a unique number κr ∈ (0,+∞) where κr has a relationship with the
temperature function of the thermodynamic formalism that arises in
multifractal analysis of µ.

1 Introduction

The term ‘quantization’ in this paper refers to the process of estimating a
given probability by a discrete probability supported by a finite set. The
quantization dimension Dr for r ∈ (0,+∞) of a probability measure is related
to the asymptotic rate at which the expected distance (raised to the rth power)
to the support of the quantized version of the probability goes to zero as the
support is allowed to go to infinity. Such problem originated in the information
theory and some engineering technology such as image compression and signal
processing (see [4, 16]). Graf and Luschgy studied this problem systematically
and gave a general mathematical treatment of it (see [3]). Given a Borel
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probability measure µ on Rd, a number r ∈ (0,+∞) and a natural number
n ∈ N, the nth quantization error of order r of µ, is defined by

en,r := inf{(
∫
d(x, α)rdµ(x))

1
r : α ⊂ Rd, card(α) ≤ n},

where d(x, α) denotes the distance from the point x to the set α with respect
to a given norm ‖ · ‖ on Rd. We note that if

∫
‖x‖rdµ(x) < ∞ then there is

some set α for which the infimum is achieved (see [3]). The upper and the
lower quantization dimensions of order r of µ are defined by

Dr(µ) := lim sup
n→∞

log n

− log en,r
; Dr(µ) := lim inf

n→∞

log n

− log en,r
.

If Dr(µ) and Dr(µ) coincide, we call the common value the quantization di-
mension of order r of µ and denote it by Dr(µ).

Let {ϕ1, ϕ2, · · · , ϕN} be a finite system of contractive conformal mappings,
and let 〈pj〉 := (p0, p1, p2, · · · , pN ) be a probability vector and ν be a proba-
bility measure on Rd with the compact support E. In the parallel lines as in
[9, 10], it can be shown that there exists a unique Borel probability measure
µ with the compact support KE such that

µ = p0ν +

N∑
j=1

pjµ ◦ ϕ−1
j and KE =

N⋃
j=1

ϕj(KE) ∪ E. (1)

Here µ is called the inhomogeneous self-conformal measure, and KE is called
the inhomogeneous self-conformal set associated with the list ({ϕj}, 〈pj〉, ν) :=
(ϕ1, · · · , ϕN , p0, p1, · · · , pN , ν). Note that inhomogeneous self-conformal sets
and measures are the extensions of inhomogeneous self-similar sets and mea-
sures. Following [1, 8], we also call ({ϕj}, 〈pj〉, ν) a condensation system, µ the
attracting measure and the set KE the attractor of the condensation system
({ϕj}, 〈pj〉, ν).

Let the iterated function system {ϕ1, ϕ2, · · · , ϕN} satisfy the open set con-
dition (OSC): there exists a bounded nonempty open set U ⊂ Rd such that⋃N
j=1 ϕj(U) ⊂ U and ϕi(U)

⋂
ϕj(U) = ∅ for 1 ≤ i 6= j ≤ N . Furthermore,

the system satisfies the strong open set condition (SOSC) if U can be chosen
such that U ∩ E 6= ∅, and the strong separation condition (SSC) if ϕj(E) are
pairwise disjoint for j = 1, 2, · · · , N .

For a finite system of self-similar mappings {S1, S2, · · · , SN} satisfying the
strong separation condition, in [15], Zhu considered a condensation system
({Sj}, 〈pj〉, ν) where 〈pj〉 = (p0, p1, p2, · · · , pN ), and ν is a self-similar measure
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which is generated by a probability vector (t1, t2, · · · , tN ), where tj > 0 for
all 1 ≤ j ≤ N . For such a system Zhu determined the upper and the lower
quantization dimensions of the attracting measure µ.

In this paper, we have considered a condensation system ({ϕj}, 〈pj〉, ν)
where {ϕj : 1 ≤ j ≤ N} is a finite system of conformal mappings satisfying
the strong separation condition, 〈pj〉 = (p0, p1, p2, · · · , pN ), and ν is the image
measure of an ergodic measure with bounded distortion over the symbolic
space {1, 2, · · · , N}N (for the definition see next section) which has the support
the limit set generated by the conformal mappings ϕ1, ϕ2, · · · , ϕN . Let E be
the support of ν, and then E satisfies the uniqueness condition: ∪Nj=1ϕj(E) =
E (see [1, 5]). Thus for the support KE of the attracting measure µ, by the
uniqueness of the compact set KE , it follows that KE = E. Under the strong
separation condition we have proved that for a given r ∈ (0,+∞) there exists
a unique κr ∈ (0,+∞) such that

Dr(ν) ≤ Dr(µ) ≤ Dr(µ) ≤ κr,

where Dr(µ) and Dr(µ) are respectively the lower and the upper quantization
dimensions of order r of µ, and Dr(ν) is the quantization dimension of the
associated measure ν. Moreover, we have shown that κr has a relationship with
the temperature function β(q) of the thermodynamic formalism that arises in

multifractal analysis of µ, i.e., κr satisfies: κr = β(qr)
1−qr where β(qr) = rqr.

2 Basic definitions, lemmas and propositions

In this paper, Rd denotes the d-dimensional Euclidean space equipped with a
metric d compatible with the Euclidean topology. Let us write

Vn,r(µ) = inf{
∫
d(x, α)rdµ(x) : α ⊂ Rd, card(α) ≤ n},

un,r(µ) = inf{
∫
d(x, α ∪ U c)rdµ(x) : α ⊂ Rd, card(α) ≤ n},

where U is a set which comes from the open set condition and U c denotes the
complement of U . We see that

u1/r
n,r ≤ V 1/r

n,r = en,r.

We call sets αn ⊂ Rd, for which the above infimums are achieved, n-optimal
sets for en,r, Vn,r or un,r respectively. If n = 1, we simply write er, Vr or ur for
en,r, Vn,r or un,r respectively. As stated above, Graf and Luschgy have shown
that n-optimal sets exist when

∫
‖x‖rdµ(x) <∞.
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Let V ⊂ Rd be an open set. A C1-map ϕ : V → Rd is conformal if the
differential ϕ′(x) : Rd → Rd satisfies |ϕ′(x)y| = |ϕ′(x)| · |y| 6= 0 for all x ∈ V
and y ∈ Rd, y 6= 0, where |ϕ′(x)| is the norm of the derivative at x ∈ Rd.
Furthermore, ϕ : V → Rd is contracting if there exists 0 < γ < 1 such that
|ϕ(x)− ϕ(y)| ≤ γ · |x− y| for all x, y ∈ V . We say that {ϕi : X → X}Ni=1 is a
conformal iterated function system (conformal IFS) on a compact set X ⊂ Rd
if each ϕi extends to an injective contracting conformal map ϕi : V → V on
an open set V ⊃ X. Let {ϕi}Ni=1 be a conformal IFS on a compact set X ⊂ Rd
for which there exists 0 < s < 1 such that

d(ϕi(x), ϕi(y)) ≤ sd(x, y) (2)

for all 1 ≤ i ≤ N and all x, y ∈ X.
Let I = {1, 2, · · · , N}. Let Ω0 denote the set consisting only the empty

word ∅. We define

Ωn :=

n∏
k=1

I, Ω∗ :=

∞⋃
k=0

Ωk, Ω :=

∞∏
k=1

I.

For any σ ∈ Ω∗, if σ = σ1σ2 · · ·σk ∈ Ωk we call k to be the length of σ and is
denoted by |σ|, i.e., |σ| = k (k ≥ 1); the length of the empty word is zero. Note
that if σ ∈ Ω then the length of σ is infinity, i.e., |σ| =∞. For any σ ∈ Ω∗ ∪Ω
with |σ| ≥ n ≥ 1, we write σ|n to represent the initial segment of σ of length
n, i.e., σ|n := σ1σ2 · · ·σn, and σ|0 = ∅. If σ, τ ∈ Ω∗ and |σ| ≤ |τ |, σ = τ ||σ|,
then we call σ a predecessor of τ and denote this by σ ≺ τ ; if σ 6≺ τ and
τ 6≺ σ, we say σ and τ are incomparable. For any two words σ = σ1σ2 · · ·σk
and τ = τ1τ2 · · · τp in Ω∗, by σ ∗ τ := στ we mean the concatenation of the
two words σ and τ , i.e., στ = σ1 · · ·σkτ1 · · · τp. For σ = σ1σ2 · · ·σ|σ| ∈ Ω∗ let
us write,

σ− =

{
∅ if |σ| = 1
σ1σ2 · · ·σ|σ|−1 if |σ| > 1,

ϕσ =

{
IdRd if σ = ∅
ϕσ1
◦ ϕσ2

◦ · · · ◦ ϕσ|σ| if |σ| ≥ 1.

Inequality (2) implies that for all i ∈ I,

‖ϕ′i‖ = sup
x∈X
|ϕ′i(x)| = sup

x∈X
lim
y→x

d(ϕi(y), ϕi(x))

d(y, x)
≤ sup
x∈X

lim
y→x

sd(x, y)

d(x, y)
= s,

and hence ‖ϕ′σ‖ ≤ sn for every σ ∈ Ωn, n ≥ 1. Since given σ = σ1σ2 · · · ∈ Ω,
the diameters of the compact sets ϕσ|n(X) = ϕσ1

◦ ϕσ2
◦ · · · ◦ ϕσn(X), n ≥ 1,
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converge to zero and since they form a descending family, the set

∞⋂
n=1

ϕσ|n(X)

is a singleton and therefore, if we denote its element by π(σ), this defines the
coding map π : Ω→ X. Then the limit set of the iterated function system is

E := π(Ω) =
⋃
σ∈Ω

∞⋂
n=1

ϕσ|n(X). (3)

Such a set E is unique and satisfies the natural invariance equality E =⋃N
j=1 ϕj(E) (see [1, 5]), and is called the self-conformal set corresponding

to the conformal IFS {ϕ1, · · · , ϕN}. Let the iterated function system
{ϕ1, ϕ2, · · · , ϕN} satisfy the open set condition (OSC): there exists a bounded

nonempty open set U ⊂ X such that
⋃N
j=1 ϕj(U) ⊂ U and ϕi(U)

⋂
ϕj(U) = ∅

for 1 ≤ i 6= j ≤ N . Furthermore, the system satisfies the strong open set
condition (SOSC) if U can be chosen such that U ∩ E 6= ∅, and the strong
separation condition (SSC) if ϕj(E) are pairwise disjoint for j = 1, 2, · · · , N .
Note that in the case of a conformal iterated function system using a finite
number of mappings open set condition implies the strong open set condition
(see [12]). If {ϕ1, ϕ2, · · · , ϕN} satisfies the strong separation condition then -
as is easily seen - it also satisfies the open set condition, and hence the strong
open set condition.

Let ν̂ be a shift-invariant ergodic measure on Ω satisfying the bounded
distortion property, i.e., there exists a constant K ≥ 1 such that for any two
words σ and τ in Ω∗,

K−1ν̂([σ])ν̂([τ ]) ≤ ν̂([στ ]) ≤ Kν̂([σ])ν̂([τ ]). (4)

For the conformal iterated function system the following two lemmas are
known.

Lemma 1. (see [11, Lemma 2.1]) There exists a constant C ≥ 1 such that
|ϕ′σ(y)| ≤ C|ϕ′σ(x)| for all x, y ∈ X and all σ ∈ Ω∗.

Lemma 2. (see [11, Lemma 2.2]) There exists a constant C̃ ≥ C such that

C̃−1‖ϕ′σ‖d(x, y) ≤ d(ϕσ(x), ϕσ(y)) ≤ C̃‖ϕ′σ‖d(x, y)

for all x, y ∈ X and all σ ∈ Ω∗.

The following lemma easily follows from Lemma 1.



322 M. K. Roychowdhury

Lemma 3. Let C ≥ 1 be the constant as defined in Lemma 1. Then for any
two words σ, τ ∈ Ω∗,

C−1‖ϕ′σ‖‖ϕ′τ‖ ≤ ‖ϕ′στ‖ ≤ ‖ϕ′σ‖‖ϕ′τ‖.

Let us now state the following three propositions which can be proved in
the similar lines as in [9, 10].

Proposition 4. Let J be a compact subset of Rd. Then for the given con-
formal iterated function system {ϕ1, · · · , ϕN} there exists a unique compact
subset KJ of Rd such that

KJ =

N⋃
j=1

ϕj(KJ) ∪ J. (5)

Proposition 5. Let 〈pj〉 := (p0, p1, p2, · · · , pN ) be a probability vector and let
ν be a probability measure on Rd with compact support. Then for a given con-
formal iterated function system {ϕ1, · · · , ϕN}, there exists a unique probability
measure µ such that

µ =

N∑
j=1

pjµ ◦ ϕ−1
j + p0ν. (6)

Proposition 6. Let µ be a unique probability measure satisfying (6) and let
J be the support of ν. Then the support of µ is equal to the unique nonempty
compact set KJ satisfying (5).

The unique nonempty compact set KJ given by Proposition 4 is called the
inhomogeneous self-conformal set or the attractor, and the unique measure
µ given by Proposition 5 is called the inhomogeneous self-conformal measure
or the attracting measure of the condensation system ({ϕj}, 〈pj〉, ν). In the
rest of the paper, we take ν as the image measure under the coding map π of
the shift-invariant ergodic measure ν̂ given by (4), i.e., ν := ν̂ ◦ π−1. Then ν
has the support the unique invariant set E which is given by (3), and which

satisfies E =
⋃N
j=1 ϕj(E). Then for the support KE of the attracting measure

µ, by the uniqueness of the compact set KE , it follows that KE = E. For this
attracting measure µ we will determine the bounds of the lower and the upper
quantization dimensions. For σ = σ1σ2 · · ·σn ∈ Ω∗, n ≥ 1, set

Eσ = ϕσ(E), and write Eσ = E if σ is the empty word ∅,

pσ =

{
1 if σ = ∅
pσ1pσ2 · · · pσn if n ≥ 1.
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The set Eσ for σ ∈ Ω∗ is called a cylinder set. If ϕ1, ϕ2, · · · , ϕN satisfy the
strong separation condition, then it is easy to see that for any two incomparable
words σ and τ in Ω∗ we have µ(Eσ ∩ Eτ ) = 0.

Let us now prove the following lemma.

Lemma 7. Let K ≥ 1 be the constant arising in the bounded distortion prop-
erty. Then the probability measure ν satisfies the following inequality: For any
n ≥ 1,

K−1
∑
σ∈Ωn

ν̂[σ]ν ◦ ϕ−1
σ ≤ ν ≤ K

∑
σ∈Ωn

ν̂[σ]ν ◦ ϕ−1
σ .

Proof. Since E =
⋃N
j=1 ϕj(E) =

⋃
σ∈Ωn

ϕσ(E) for all n ≥ 1, and the Borel σ-
algebra on E is generated by all sets of the form ϕσ(E), to prove the inequality
it is enough to prove that for any τ ∈ Ω∗ with |τ | ≥ n,

K−1
∑
σ∈Ωn

ν̂[σ]ν ◦ ϕ−1
σ (Eτ ) ≤ ν(Eτ ) ≤ K

∑
σ∈Ωn

ν̂[σ]ν ◦ ϕ−1
σ (Eτ ).

Let τ ∈ Ω∗ with |τ | ≥ n. Then τ = xy for some x ∈ Ωn and y ∈ Ω|τ |−n, and
so

K−1
∑
σ∈Ωn

ν̂[σ]ν ◦ ϕ−1
σ (Eτ ) =K−1ν̂[x]ν(ϕy(E))

=K−1ν̂[x]ν̂[y] ≤ ν̂[xy] = ν(Eτ ),

and similarly, ν(Eτ ) ≤ K
∑
σ∈Ωn

ν̂[σ]ν◦ϕ−1
σ (Eτ ). Thus the lemma is obtained.

We have

µ = p0ν +

N∑
j=1

pjµ ◦ ϕ−1
j .

Now substituting for µ in the right-hand side of the above equation, we have

µ = p0ν +

N∑
j1=1

pj1

(
p0ν +

N∑
j2=1

pj2µ ◦ ϕ−1
j2

)
◦ ϕ−1

j1

= p0ν +
∑
j1=1

p0pj1ν ◦ ϕ−1
j1

+
∑

j1,j2=1

pj1j2µ ◦ ϕ−1
j1j2

.
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Again substituting for µ in the above expression successively for any n ≥ 1,

µ = p0ν +
∑
j1=1

p0pj1ν ◦ ϕ−1
j1

+ · · ·+
∑

j1,··· ,jn−1=1

p0pj1···jn−1ν ◦ ϕ−1
j1···jn−1

(7)

+
∑

j1,··· ,jn=1

pj1···jnµ ◦ ϕ−1
j1···jn .

Using (7) and Lemma 7, for any n ≥ 1, we have

µ ≤ p0K
( ∑
j1,··· ,jn=1

ν̂[j1 · · · jn]ν ◦ ϕ−1
j1···jn +

∑
j1,··· ,jn=1

pj1 ν̂[j2 · · · jn]ν ◦ ϕ−1
j1···jn

+ · · ·+
∑

j1,··· ,jn=1

pj1···jn−1
ν̂[jn]ν ◦ ϕ−1

j1···jn

)
+

∑
j1,··· ,jn=1

pj1···jnµ ◦ ϕ−1
j1···jn

and so,

µ ≤
∑

j1,··· ,jn=1

[
p0K

(
ν̂[j1 · · · jn] + pj1 ν̂[j2 · · · jn] + · · ·+ pj1···jn−1 ν̂[jn]

)
ν (8)

◦ ϕ−1
j1···jn + pj1···jnµ ◦ ϕ−1

j1···jn

]
.

Similarly, for any n ≥ 1, we have

µ ≥
∑

j1,··· ,jn=1

[
p0K

−1
(
ν̂[j1 · · · jn] + pj1 ν̂[j2 · · · jn] + · · · (9)

+ pj1···jn−1
ν̂[jn]

)
ν ◦ ϕ−1

j1···jn + pj1···jnµ ◦ ϕ−1
j1···jn

]
.

Let σ = σ1σ2 · · ·σn ∈ Ω∗, n ≥ 1. Then by (8),

µ(Eσ) ≤ p0K
(
ν̂[σ1σ2 · · ·σn] + pσ1

ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1
ν̂[σn]

)
(10)

+ pσ1···σn

≤ K
[
p0

(
ν̂[σ1σ2 · · ·σn] + pσ1 ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1 ν̂[σn]

)
+ pσ1···σn

]
≤ K

(
ν̂[σ1σ2 · · ·σn] + pσ1 ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1 ν̂[σn]

+ pσ1···σn

)
,

and by (9),
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µ(Eσ) ≥ p0K
−1
(
ν̂[σ1 · · ·σn] + pσ1 ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1 ν̂[σn]

)
(11)

+ pσ1···σn

≥ K−1
[
p0

(
ν̂[σ1 · · ·σn] + pσ1

ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1
ν̂[σn]

)
+ pσ1···σn

]
≥ K−1p0

(
ν̂[σ1 · · ·σn] + pσ1

ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1
ν̂[σn]

+ pσ1···σn

)
.

Moreover, the inequality (11) implies that for all σ ∈ Ω∗,

µ(Eσ) ≥ p0K
−1ν̂[σ1 · · ·σ|σ|] = p0K

−1ν̂[σ] = p0K
−1ν(Eσ). (12)

Lemma 8. For any two words σ, τ ∈ Ω∗, the probability measure µ satisfies

µ(Eστ ) ≤ K3p−1
0 µ(Eσ)µ(Eτ ).

Proof. Let σ = σ1σ2 · · ·σn and τ = τ1τ2 · · · τp where n, p ≥ 1. Then by (8),
(11) and (12),

µ(Eστ ) ≤ p0K
(
ν̂[σ1σ2 · · ·σn] + pσ1

ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1
ν̂[σn]

)
ν(Eτ )

+ pσ1···σnµ(Eτ )

≤ K2
(
ν̂[σ1σ2 · · ·σn] + pσ1 ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1 ν̂[σn]

)
µ(Eτ )

+ pσ1···σnµ(Eτ )

≤ K2
(
ν̂[σ1σ2 · · ·σn] + pσ1 ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1 ν̂[σn]

+ pσ1···σn

)
µ(Eτ )

≤ K3p−1
0 µ(Eσ)µ(Eτ ).

Thus the lemma is true.

By Lemma 3, Lemma 8, and the standard theory of subadditive sequences,
the following limit exists: For any two numbers q, t ∈ R,

P (q, t) = lim
k→∞

1

k
log

∑
σ∈Ωk

(µ(Eσ))q‖ϕ′σ‖t. (13)
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The above function P (q, t) is called the topological pressure corresponding to
the condensation system ({ϕj}, 〈pj〉, ν). The following proposition states the
well-known properties of the function P (q, t) (see [2, 11]).

Proposition 9. (i) P (q, t) : R× R→ R is continuous.
(ii) P (q, t) is strictly decreasing in each variable separately.
(iii) For fixed q we have limt→+∞ P (q, t) = −∞ and limt→−∞ P (q, t) =

+∞.
(iv) P (q, t) is convex: if q1, q2, t1, t2 ∈ R, a1, a2 ≥ 0, a1 + a2 = 1, then

P (a1q1 + a2q2, a1t1 + a2t2) ≤ a1P (q1, t1) + a2P (q2, t2).

Now for fixed q, P (q, t) is a continuous function of t. Its value ranges from
−∞ (when t→ +∞) to +∞ (when t→ −∞). Therefore, by the intermediate
value theorem there is a real number β such that P (q, β) = 0. The solution
β is unique, since P (q, ·) is strictly decreasing. This defines β implicitly as a
function of q: for each q there is a unique β = β(q) such that P (q, β(q)) = 0.

The following proposition gives the well-known properties of the function
β(q) (see [2, 11]).

Proposition 10. Let β = β(q) be defined by P (q, β(q)) = 0. Then
(i) β is a continuous function of the real variable q.
(ii) β is strictly decreasing: if q1 < q2, then β(q1) > β(q2).
(iii) limq→−∞ β(q) = +∞ and limq→+∞ β(q) = −∞.
(iv) β is convex: if q1, q2, a1, a2 ∈ R with a1, a2 ≥ 0 and a1 + a2 = 1, then

β(a1q1 + a2q2) ≤ a1β(q1) + a2β(q2).

The function β(q) is sometimes denoted by T (q) and called the temperature
function. A more general discussion of this function can be found in [6], where
our β(q) function corresponds to −τ(q) in their notation.

Remark 11. If q = 0, then P (q, β(q)) = 0 implies

lim
k→∞

1

k
log

∑
σ∈Ωk

‖ϕ′σ‖β(0) = 0,

and so β(0) gives the Hausdorff dimension dimH(E) of the attractor E (see
[7]). Note that

P (1, 0) = lim
k→∞

1

k
log

∑
σ∈Ωk

µ(Eσ) = lim
k→∞

1

k
log 1 = 0,

and hence β(1) = 0.

In the next section we state and prove the main result of the paper.
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3 Main results

The following theorem gives the bounds of the lower and the upper quanti-
zation dimensions of the attracting measure µ in terms of the quantization
dimension Dr(ν) of the associated measure ν and the temperature function
β(q).

Theorem 12. Let µ be the attracting measure of the condensation system
({ϕj}, 〈pj〉, ν), where {ϕ1, · · · , ϕN} is a conformal iterated function system
satisfying the strong separation condition, ν is the image measure of an ergodic
measure with bounded distortion on the symbolic space {1, 2, · · · , N}N. Let
β = β(q) be the temperature function of the thermodynamic formalism for the
attracting measure µ. For each r ∈ (0,+∞) choose qr such that β(qr) = rqr.
Then the lower and the upper quantization dimensions Dr(µ) and Dr(µ) of
order r of the attracting measure µ satisfy the following relation:

Dr(ν) ≤ Dr(µ) ≤ Dr(µ) ≤ β(qr)

1− qr
,

where Dr(ν) is the quantization dimension of order r of ν.

To prove the above theorem, we need to prove some lemmas and proposi-
tions. The following lemma plays a vital role.

Lemma 13. Let 0 < r < +∞ be fixed. Then there exists exactly one number
κr ∈ (0,+∞) such that

lim
k→∞

1

k
log

∑
σ∈Ωk

(µ(Eσ)‖ϕ′σ‖r)
κr
r+κr = 0.

Proof. By (13), we have

P (t, rt) = lim
k→∞

1

k
log

∑
σ∈Ωk

(µ(Eσ)‖ϕ′σ‖r)t.

If t = 0, then P (0, 0) = limk→∞
1
k log

∑
σ∈Ωk

1 = limk→∞
1
k logNk = logN >

0; and if t = 1,

P (1, r1) = lim
n→∞

1

k
log

∑
σ∈Ωk

µ(Eσ)‖ϕ′σ‖r ≤ lim
k→∞

1

k
log

∑
σ∈Ωk

µ(Eσ)skr

= lim
k→∞

1

k
log

∑
σ∈Ωk

µ(Eσ) + r log s

= r log s < 0.
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Since P (t, rt) is continuous and strictly decreasing, the unique t ∈ R for which
P (t, rt) = 0 must lie between 0 and 1. Then κr = rt

1−t satisfies the conclusion
of the lemma.

Lemma 14. For any two words σ, τ ∈ Ξ∗, we have µ(Eστ ) ≥
p0K

−2µ(Eσ)ν(Eτ ).

Proof. Let σ = σ1σ2 · · ·σn and τ = τ1τ2 · · · τp where n, p ≥ 1. Then by (9),
(10) and (12),

µ(Eστ )

≥ p0K
−1
(
ν̂[σ1σ2 · · ·σn] + pσ1 ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1 ν̂[σn]

)
ν(Eτ )

+ pσ1···σnµ(Eτ )

≥ p0K
−1
(
ν̂[σ1σ2 · · ·σn] + pσ1 ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1 ν̂[σn]

)
ν(Eτ )

+ pσ1···σnp0K
−1ν(Eτ )

= p0K
−1
(
ν̂[σ1σ2 · · ·σn] + pσ1

ν̂[σ2 · · ·σn] + · · ·+ pσ1···σn−1
ν̂[σn]

+ pσ1···σn

)
ν(Eτ )

≥ p0K
−2µ(Eσ)ν(Eτ ),

which yields the lemma.

From the above lemma the following corollary can be deduced.

Corollary 15. Let 0 < r < +∞ be fixed. Then there exists a constant
0 < A < 1 such that for all σ ∈ Ω∗, we have µ(Eσ)‖ϕ′σ‖r ≥ Aµ(Eσ−)‖ϕ′σ−‖

r.

Proof. Let L = min{ν(E1)‖ϕ′1‖r, · · · , ν(EN )‖ϕ′N‖r}. Write
A = p0K

−2LC−r, and then 0 < A < 1. Thus, using Lemma 3 and Lemma 14,
we have

µ(Eσ)‖ϕ′σ‖r ≥ p0K
−2C−rµ(Eσ−)ν(Eσ|σ|)‖ϕ

′
σ−‖

r‖ϕ′σ|σ|‖
r

≥ p0K
−2LC−rµ(Eσ−)‖ϕ′σ−‖

r,

which yields the corollary.

We call Γ ⊂ Ω∗ a finite maximal antichain if Γ is a finite set of words
in Ω∗ such that every sequence in Ω is an extension of some word in Γ, but
no word of Γ is an extension of another word in Γ. Of course, this requires
that the index set {1, 2, · · · , N} is finite. We will make this assumption in the
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remainder of this paper. By |Γ| we denote the cardinality of Γ. Note that from
the definition of Γ it follows that finite maximal antichain does not contain
the empty word ∅ as all words are extension of ∅.

Remark 16. Let 0 < r < +∞ be fixed and κr be as in Lemma 13. We assume
that there exists a constant Cr > 1 such that for any finite maximal antichain
Γ, ∑

σ∈Γ

(
µ(Eσ)‖ϕ′σ‖r

) κr
r+κr ≤ Cr.

This assumption we need to prove Proposition 20.

Lemma 17. Let Γ be a finite maximal antichain. Then for all σ ∈ Ω∗,

µ ≤
∑
σ∈Γ

[
p0K

(
ν̂[σ1 · · ·σ|σ|] + pσ1

ν̂[σ2 · · ·σ|σ|] + · · ·

+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
ν ◦ ϕ−1

σ + pσ1···σ|σ|µ ◦ ϕ
−1
σ

]
.

Proof. Let m = max{|σ| : σ ∈ Γ}. Since E =
⋃N
j=1 ϕj(E) =

⋃
σ∈Ωn

ϕσ(E)
for all n ≥ 1, and the Borel σ-algebra on E is generated by all sets of the form
ϕσ(E), to prove the inequality it is enough to prove that for any τ ∈ Ω∗ with
|τ | ≥ m,

µ(Eτ ) ≤
∑

σ1···σ|σ|∈Γ

[
p0K

(
ν̂[σ1 · · ·σ|σ|] + pσ1

ν̂[σ2 · · ·σ|σ|] + · · ·

+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
ν ◦ ϕ−1

σ1···σ|σ| + pσ1···σ|σ|µ ◦ ϕ
−1
σ1···σ|σ|

]
(Eτ ).

Let τ ∈ Ω∗ with |τ | ≥ m. As Γ is a finite maximal antichain, corresponding
to τ there exist x ∈ Γ and y ∈ Ω∗ such that τ = xy. Then by (8), we have∑
σ1···σ|σ|∈Γ

[
p0K

(
ν̂[σ1 · · ·σ|σ|] + pσ1 ν̂[σ2 · · ·σ|σ|] + · · ·

+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
ν ◦ ϕ−1

σ1···σ|σ| + pσ1···σ|σ|µ ◦ ϕ
−1
σ1···σ|σ|

]
(Eτ )

= p0K
(
ν̂[x1 · · ·x|x|] + px1 ν̂[x2 · · ·x|x|] + · · ·+ px1···x|x|−1

ν̂[x|x|]
)
ν(Ey)

+ px1···x|x|µ(Ey)

≥ µ(Eτ ),

and thus the lemma is true.
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Lemma 18. Let Γ ⊂ Ω∗ be a finite maximal antichain, n ∈ N with n ≥ |Γ|,
and 0 < r < +∞. Then for any sequence {nσ : σ ∈ Γ} of natural numbers
satisfying 1 ≤ nσ,

∑
σ∈Γ nσ ≤ n, we have

V2n,r(µ) ≤ C̃r
∑
σ∈Γ

[
p0K‖ϕ′σ‖r

(
ν̂[σ1 · · ·σ|σ|] + pσ1 ν̂[σ2 · · ·σ|σ|] + · · ·

+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
Vnσ,r(ν) + pσ1···σ|σ|‖ϕ

′
σ‖rVnσ,r(µ)

]
.

Proof. Suppose nσ ≥ 1 for each σ ∈ Γ, and
∑
σ∈Γ nσ ≤ n. For each σ ∈ Γ let

ασ be an nσ-optimal set for Vnσ,r(ν) and βσ be an nσ-optimal set for Vnσ,r(µ).
Since | ∪σ∈Γ ϕσ(ασ ∪ βσ)| ≤ 2n, by the previous lemma, we have

V2n,r(µ) ≤
∫
d(x,

⋃
σ∈Γ

ϕσ(ασ ∪ βσ))rdµ(x)

≤
∑
σ∈Γ

[
p0K

(
ν̂[σ1 · · ·σ|σ|] + pσ1

ν̂[σ2 · · ·σ|σ|] + · · ·+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
∫
d(x, ϕσ(ασ))rd(ν ◦ ϕ−1

σ )(x) + pσ1···σ|σ|∫
d(x, ϕσ(βσ))rd(µ ◦ ϕ−1

σ )(x)
]

≤ C̃r
∑
σ∈Γ

[
p0K‖ϕ′σ‖r

(
ν̂[σ1 · · ·σ|σ|] + pσ1 ν̂[σ2 · · ·σ|σ|] + · · ·

+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
Vnσ,r(ν) + pσ1···σ|σ|‖ϕ

′
σ‖rVnσ,r(µ)

]
.

Hence the lemma.

Lemma 19. There exists a constant D > 1 such that Vn,r(ν) ≤ DVn,r(µ) for
all n ≥ 1.

Proof. Let α be an optimal set for Vn,r(µ) and 0 < r < +∞. Since µ =
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p0ν +
∑N
j=1 pjµ ◦ ϕ

−1
j , by Lemma 2, we have

Vn,r(µ) =

∫
d(x, α)rdµ(x)

= p0

∫
d(x, α)rdν(x) +

N∑
j=1

pj

∫
d(x, α)rd(µ ◦ ϕ−1

j )(x)

≥ p0

∫
d(x, α)rdν(x) + C̃−r

N∑
j=1

pj‖ϕ′j‖r
∫
d(x, ϕ−1

j α)rdµ(x)

≥ p0Vn,r(ν) + C̃−r
N∑
j=1

pj‖ϕ′j‖rVn,r(µ).

Since ϕj are conformal mappings, ϕj ∈ C1, |ϕ′j(x)| 6= 0 for all 1 ≤ j ≤ N and
all x ∈ X. Moreover, X is compact. Therefore, there exists a number R ∈ R,
such that 0 < R ≤ |ϕ′j(x)| ≤ ‖ϕ′j‖ ≤ s < 1 for all 1 ≤ j ≤ N and all x ∈ X.
Thus we have,

Vn,r(µ) ≥ p0Vn,r(ν) + C̃−r
N∑
j=1

pjR
rVn,r(µ).

Take D = (1− C̃−r
∑N
j=1 pjR

r)/p0, and note that D > (1−
∑N
j=1 pj)/p0 = 1

to obtain the assertion of the lemma.

Proposition 20. Let 0 < r < +∞ be fixed and κr be as in Lemma 13. Then
under the assumption of Remark 16, we have

lim sup
n→∞

nV
κr
r

n,r (µ) < +∞.

Proof. Let 0 < A < 1 be the constant as defined in Corollary 15, and Cr be
the constant as defined in Remark 16. Fix m ∈ N. Choose any n ∈ N so that
m
n < AC−1

r , and set ε = CrA
−1m

n . Then 0 < ε < 1. Let

Γ = Γ(ε) = {σ ∈ Ω∗ : (µ(Eσ)‖ϕ′σ‖r)
κr
r+κr < ε ≤ (µ(Eσ−)‖ϕ′σ−‖

r)
κr
r+κr }.

Then by Remark 16 and Corollary 15, we have

Cr ≥
∑
σ∈Γ

(µ(Eσ)‖ϕ′σ‖r)
κr
r+κr ≥ A

κr
r+κr

∑
σ∈Γ

(µ(Eσ−)‖ϕ′σ−‖
r)

κr
r+κr > Aε|Γ|,
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which implies |Γ| < Cr(Aε)
−1 = n

m < ∞, i.e., Γ is a finite maximal antichain
and n > |Γ|m. Then by Lemma 18 and Lemma 19, and then by (11), we have

V2n,r(µ)

≤ C̃r
∑
σ∈Γ

[
p0K‖ϕ′σ‖r

(
ν̂[σ1 · · ·σ|σ|] + pσ1

ν̂[σ2 · · ·σ|σ|] + · · ·

+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
Vm,r(ν) + pσ1···σ|σ|‖ϕ

′
σ‖rVm,r(µ)

]
≤ C̃rD

∑
σ∈Γ

[
p0K

(
ν̂[σ1 · · ·σ|σ|] + pσ1

ν̂[σ2 · · ·σ|σ|] + · · ·+ pσ1···σ|σ|−1
ν̂[σ|σ|]

)
+ pσ1···σ|σ|

]
‖ϕ′σ‖rVm,r(µ)

≤ C̃rDK
∑
σ∈Γ

[
p0

(
ν̂[σ1 · · ·σ|σ|] + pσ1 ν̂[σ2 · · ·σ|σ|] + · · ·+ pσ1···σ|σ|−1

ν̂[σ|σ|]
)

+ pσ1···σ|σ|

]
‖ϕ′σ‖rVm,r(µ)

≤ C̃rDK2
∑
σ∈Γ

µ(Eσ)‖ϕ′σ‖rVm,r(µ)

≤ C̃rDK2
∑
σ∈Γ

(µ(Eσ)‖ϕ′σ‖r)
κr
r+κr (µ(Eσ)‖ϕ′σ‖r)

r
r+κr Vm,r(µ),

and thus,

V2n,r(µ) < C̃rDK2
∑
σ∈Γ

(µ(Eσ)‖ϕ′σ‖r)
κr
r+κr ε

r
κr Vm,r(µ)

which implies

V2n,r(µ) < C̃rDK2Crε
r
κr Vm,r(µ) = C̃rDK2Cr(CrA

−1)
r
κr

(m
n

) r
κr
Vm,r(µ),

yielding 2nV
κr
r

2n,r(µ) ≤ 2
(
C̃rDK2Cr

)κr
r

CrA
−1mV

κr
r

m,r(µ). Since for fixed m,

this inequality holds for all but a finite number of n, we have

lim sup
n→∞

2nV
κr
r

2n,r(µ) ≤ 2
(
C̃rDK2Cr

)κr
r

CrA
−1mV

κr
r

m,r(µ) < +∞,

and thus the proposition is obtained.
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Remark 21. In [13], Roychowdhury determined the quantization dimension
Dr(ν) of the image measure ν. But, from there it is not known whether

lim infn→∞ ne
Dr(ν)
n,r (ν) > 0. Using the parallel arguments as in [14], it can

be shown that lim infn→∞ ne
Dr(ν)
n,r (ν) > 0.

Let us now prove the following proposition.

Proposition 22. Let the conformal mappings {ϕj : 1 ≤ j ≤ N} satisfy
the strong separation condition and let 0 < r < +∞. Moreover, let Dr(ν)
be the quantization dimension of order r of the probability measure ν. Then

lim infn→∞ ne
Dr(ν)
n,r (µ) > 0.

Proof. Since Dr(ν) is the quantization dimension of order r of the image

measure ν, by Remark 21, we have lim infn→∞ ne
Dr(ν)
n,r (ν) > 0. By Lemma 19,

for any n ≥ 1, we have en,r(ν) = V
1
r
n,r(ν) ≤ D 1

r V
1
r
n,r(µ) = D

1
r en,r(µ). Hence,

lim inf
n→∞

neDr(ν)
n,r (µ) ≥ D−

Dr(ν)
r lim inf

n→∞
neDr(ν)

n,r (ν) > 0.

Proof of Theorem 12.

By Proposition 11.3 of [3], we know:

(a) If 0 ≤ t < Dr < s then

lim
n→∞

netn,r = +∞ and lim inf
n→∞

nesn,r = 0.

(b) If 0 ≤ t < Dr < s then

lim sup
n→∞

netn,r = +∞ and lim
n→∞

nesn,r = 0.

From (a) and Proposition 22, we have Dr(ν) ≤ Dr(µ). By (b) and Propo-
sition 20, we have Dr(µ) ≤ κr. Hence, Dr(ν) ≤ Dr(µ) ≤ Dr(µ) ≤ κr. Note
that if qr = κr

r+κr
then by Lemma 13, β(qr) = rqr. Thus it follows that

κr = β(qr)
1−qr . Hence the proof of the theorem.
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