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STRICT INEQUALITY IN THE
BOX-COUNTING DIMENSION PRODUCT

FORMULAS

Abstract

We supplement the well known upper and lower box-counting prod-
uct inequalities to give the new product formula

dimLB F + dimLB G ≤ dimLB (F ×G)

≤ min (dimLB F + dimB G,dimB F + dimLB G)

≤ max (dimLB F + dimB G,dimB F + dimLB G)

≤ dimB (F ×G)

≤ dimB F + dimB G

for subsets of metric spaces. We develop a procedure for constructing
sets so that the upper and lower box-counting dimensions of these sets
and their product can take arbitrary values satisfying the above product
formula. In particular we illustrate how badly behaved both the lower
and upper box-counting dimensions can be on taking products.

1 Introduction.

In a metric space X the Hausdorff dimension of a set F ⊂ X is defined as

dimH (F ) = sup
{
d ≥ 0|Hd (F ) =∞

}
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where Hd is the d-dimensional Hausdorff measure. The Hausdorff dimension
takes values in the non-negative reals and extends the elementary integer-
valued topological dimension in the sense that for a large class of ‘reasonable’
sets these two values coincide. Sets with non-coinciding Hausdorff and topo-
logical dimensions are called ‘fractal’, a term coined by Mandelbrot in his
original study of such sets [9]. Hausdorff introduced this generalised dimen-
sion in [7] and its subsequent extensive use in geometric measure theory is
developed by Federer [6] and Falconer [4]. The fact that the Hausdorff dimen-
sion satisfies dimH (F ×G) ≥ dimH (F )+dimH (G) for the Cartesian product
of subsets of Euclidean space was established by Marstrand [10] after some
partial results: the inequality was proved by Besicovitch and Moran [1] with
the restriction that 0 < Hs (F ) ,Ht (G) < ∞ for some s, t and was extended
to a larger class of Euclidean subsets by Eggleston [3]. This inequality also
holds for sets F ⊂ X and G ⊂ Y with X,Y abstract metric spaces: first shown
by Wegmann [14] with the restriction that the product space X × Y has the
metric

dX×Y := max (dX ,dY )

where dX ,dY are the metrics on X and Y respectively. This result was ex-
tended by Howroyd [8] to hold for metrics dX×Y on X × Y that satisfy

cmax (dX ,dY ) ≤ dX×Y (1.1)

for some constant c > 0. Without this restriction Howroyd notes that the
triple

(dimH (F ) ,dimH (G) ,dimH (F ×G))

can take arbitrary values by remetrising the spaces, so the inequality does not
hold more generally. Besicovitch and Moran [1] also provide an example for
which there is a strict inequality in the product formula which is summarised
in §7.1 of [5].

In this paper we prove similar product inequalities for the upper and lower
box-counting dimensions (treated briefly by Falconer [5]; see Robinson [13]
for a more detailed exposition) which have applications to dynamical systems
(see, for example, [12]). In the second section our main results are an upper
bound on dimLB (F ×G) and a lower bound on dimB (F ×G) provided that
the metric on X × Y satisfies a condition similar to (1.1). Together with
more familiar product formulas (the first and last inequalities below) these
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new bounds give the chain of inequalities

dimLB F + dimLB G ≤ dimLB (F ×G)

≤ min (dimLB F + dimB G,dimB F + dimLB G)

≤ max (dimLB F + dimB G,dimB F + dimLB G)

≤ dimB (F ×G)

≤ dimB F + dimB G,

which is the content of Theorem 2.4. In the third section we define a variant
of generalised Cantor sets (see, for example, §4.11 in [11]) which we use in
Theorem 3.6 to construct explicitly sets F,G ⊂ R such that the upper and
lower box-counting dimensions of F,G and F ×G have arbitrary values satis-
fying the above product formula, demonstrating that these bounds are sharp.
In light of this theorem it is trivial to construct two sets for which all of the
inequalities in the above product formula are strict, which is analogous to the
example in [1] of strict inequality in the Hausdorff product formula.

Example 3.7 gives an extreme case to show how badly behaved the box-
counting dimensions can be on taking products. In [2], Edgar shows that Fal-
coner’s example in [4] of two subsets F,G ⊂ R has dimLB F = dimLB G = 0
and dimLB (F ×G) ≥ 1. However, in light of the above product formula, their
product must have lower box-counting dimension equal to 1. Consequently,
this example illustrates the extreme case for the lower box-counting dimen-
sion. The upper box-counting dimension is less familiar and, as far as we are
aware, there is no example of strict inequality for the upper box-counting di-
mension product formula in the literature. Example 3.7 consists of two subsets
F,G ⊂ R for which, like Falconer’s example, dimLB F = dimLB G = 0 and
dimLB (F ×G) = 1 yet also dimB F = dimB G = dimB (F ×G) = 1. In par-
ticular, despite the subsets having the maximum possible upper box-counting
dimension (as subsets of R), taking their product does not increase the upper
box-counting dimension.

2 Box-counting dimensions and product sets.

Let (X,dX) be a metric space. We say that a set F ⊂ X is totally bounded if for
all δ > 0 there exists a finite collection of closed balls Bi of radius δ such that
F ⊂

⋃
Bi; recall that in the Euclidean case X = Rn a set is totally bounded

if and only if it is bounded. The upper and lower box-counting dimensions of
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a totally bounded set F ⊂ X are defined by

dimB F = lim sup
δ→0+

logN (F, δ)

− log δ
and (2.1)

dimLB F = lim inf
δ→0+

logN (F, δ)

− log δ
(2.2)

respectively, where N (F, δ) is the minimum number of closed balls of radius
δ such that F is contained in the union of these balls. Throughout we take
0 < δ < 1 so that log δ 6= 0. The restriction to totally bounded sets is
necessary to ensure that N (F, δ) is finite for all δ > 0. Essentially, if N (F, δ)
scales like δ−ε as δ → 0 then the box-counting dimensions capture ε which
gives an indication of how ‘spread out’ the set F is at small length-scales.
These limits are unchanged if we replace N (F, δ) with one of many similar
geometric quantities (discussed by Falconer in [5] §3.1 ‘Equivalent Definitions’
which we adapt below in Lemma 2.1). Two such quantities are the minimum
number of sets of diameter at most δ that cover F , which we denote N ′ (F, δ),
and the largest number of disjoint closed balls of radius δ with centres in F ,
which we denote Ñ (F, δ). If the metric space is Euclidean then a further
equivalent quantity is the number of δ-mesh boxes, that is sets of the form

[m1δ, (m1 + 1) δ]× . . .× [mnδ, (mn + 1) δ]

for integers m1, . . . ,mn, that intersect F , which we denote M (F, δ).

Lemma 2.1. Let F ⊂ X be a totally bounded set and δ > 0. The geometric
quantities N,N ′ and Ñ are related by

N ′ (F, δ) ≥ Ñ (F, δ) ≥ N (F, 2δ) ≥ N ′ (F, 4δ) (2.3)

and further in the Euclidean case X = Rn

N
(
F, δ
√
n/2

)
≤M (F, δ) ≤ 3nN (F, δ) .

Proof. Let x1, . . . , xÑ(F,δ) ∈ F be the centres of disjoint closed balls of radius
δ. If sets U1, . . . , Uk of diameter δ form a cover of F then each point xi must
lie in some Uj . However, since Uj ⊂ Bδ (xi) as for all y ∈ Uj

dX (xi, y) ≤ sup {dX (z1, z2) |z1, z2 ∈ Uj} = diam (Uj) ≤ δ

and since the Bδ (xi) are disjoint we conclude that there must be at least
Ñ (F, δ) sets Uj , yielding N ′ (F, δ) ≥ Ñ (F, δ).
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With the same points {xi} observe that for each x ∈ F the distance
dX (x, xi) ≤ 2δ for some i = 1, . . . , Ñ (F, δ) otherwise the additional closed
ball Bδ (x) would be disjoint from each of the closed balls Bδ (xi) contradicting
the maximality of the set of disjoint balls. Consequently, the balls B2δ (xi)
cover the set F , yielding Ñ (F, δ) ≥ N (F, 2δ).

Next, a closed ball of radius 2δ has diameter at most 4δ so a cover of F
consisting of balls of radius 2δ is a cover consisting of sets of diameter at most
4δ, yielding N (F, 2δ) ≥ N ′ (F, 4δ).

Finally, in the Euclidean case X = Rn each δ-mesh box is contained in
a closed ball of radius δ

√
n/2: these balls form a cover of F with M (F, δ)

members, yielding N (F, δ
√
n/2) ≤ M (F, δ). Further, each ball of radius δ is

contained in 3n mesh boxes of side length δ, yielding M (F, δ) ≤ 3nN (F, δ).

As a result of the above lemma we can interchange the geometric quan-
tities N,N ′, Ñ and M in the definitions of the box-counting dimension (2.1)
and (2.2) allowing us to take the most convenient quantity in each particular
situation: in the remainder we derive an upper bound on the dimension of
product sets using the quantity N ; a lower bound on the dimension of prod-
uct sets using the quantity Ñ ; and we calculate the dimensions of the sets
constructed in Section 3 using the quantity N ′.

For the remainder of this section, let (X,dX) and (Y,dY ) be metric spaces
and endow the product space X × Y with a metric dX×Y that satisfies

c1 max (dX ,dY ) ≤ dX×Y ≤ c2 max (dX ,dY ) (2.4)

for some constants c1, c2 > 0. We remark that the familiar metrics

dX×Y,p := (dpX + dpY )
1
p for p ∈ [1,∞) , and

dX×Y,∞ := max (dX ,dY )

satisfy (2.4). It is well known that if F ⊂ X and G ⊂ Y are totally bounded
subsets then the lower and upper box-counting dimensions of the Cartesian
product F ×G satisfy

dimLB (F ×G) ≥ dimLB F + dimLB G and (2.5)

dimB (F ×G) ≤ dimB F + dimB G (2.6)

respectively. These inequalities follow from the good behaviour of the above
geometric quantities on taking products: for each of these geometric quantities
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we can derive a relationship between the values taken for the sets F , G and
the set F × G, which is the content of the following lemma. Further, we
require these geometric relationships in order to establish the useful equivalent
definitions for the lower and upper box-counting dimensions of products sets
given in Lemma 2.3.

Lemma 2.2. If F ⊂ X and G ⊂ Y are totally bounded sets then for all δ > 0

N (F ×G, c2δ) ≤ N (F, δ)N (G, δ) (2.7)

Ñ (F ×G, c1δ/2) ≥ Ñ (F, δ) Ñ (G, δ) . (2.8)

Further, if X = Rn, Y = Rm and X × Y = Rn+m then for all δ > 0

M (F ×G, δ) = M (F, δ)M (G, δ) . (2.9)

The proof of (2.7) is standard (see, for example, Exercise 7.5 of [5] or [13]
pp. 35), the inequality (2.8) is less familiar (again, see [13] pp. 35) and the
equality (2.9) is elementary. We include a proof for completeness:

Proof. Fix δ > 0 and let x1, . . . , xN(F,δ) and y1, . . . , yN(G,δ) be the centres of
closed balls of radius δ whose unions contain F and G respectively. Observe
that for each (x, y) ∈ F ×G the point x ∈ Bδ (xi) for some i and y ∈ Bδ (yj)
for some j and so, from (2.4),

dX×Y ((x, y) , (xi, yj)) ≤ c2 max (dX (x, xi) ,dY (y, yj)) ≤ c2δ.

Consequently, F ×G is contained in the union of N (F, δ)N (G, δ) closed balls
of radius c2δ, yielding (2.7).

Next, let x1, . . . , xÑ(F,δ) ∈ F be the centres of disjoint closed balls of radius
δ and y1, . . . , yÑ(G,δ) ∈ G be the centres of disjoint closed balls of radius δ. As

the balls are disjoint dX (xi, xk) ≤ δ implies that xi = xk, and dY (yj , yl) ≤ δ
implies that yj = yl. Let (xi, yj) and (xk, yl) be distinct elements of the set{

(xi, yj) |i = 1, . . . , Ñ (F, δ) , j = 1, . . . , Ñ (G, δ)
}
⊂ F ×G.

in which case either dX (xi, xk) > δ or dY (yj , yl) > δ holds. Consequently
from (2.4)

dX×Y ((xi, yj) , (xk, yl)) ≥ c1 max (dX (xi, xk) ,dY (yj , yl)) > c1δ. (2.10)
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In particular, the two balls of radius c1δ/2 with centres (xi, yj) and (xk, yl)
are disjoint: indeed if the point z lies in both balls then

dX×Y ((xi, yj) , (xk, yl)) ≤ dX×Y (z, (xi, yj)) + dX×Y (z, (xk, yl)) ≤ c1δ

contradicting (2.10). We conclude that the Ñ (F, δ) Ñ (G, δ) points of the form
(xi, yj) ∈ F ×G are the centres of disjoint balls of radius c1δ/2, yielding (2.8).

Next, let U1, . . . , UM(F,δ) be the δ-mesh boxes of Rn that intersect F and
let V1, . . . , VM(G,δ) be the set of δ-mesh boxes of Rm that intersect G. Clearly
each Ui × Vj is a δ-mesh box in Rn ×Rm and further there exists x ∈ Ui ∩ F ,
y ∈ Vj ∩G so the product box Ui × Vj intersects F ×G.

Further, an arbitrary point (x, y) ∈ F ×G has x ∈ Ui for some i and y ∈ Vj
for some j, so that (x, y) ∈ Ui × Vj . Consequently, the set of δ-mesh boxes of
Rn+m that intersect F ×G is precisely the set

{Ui × Vj |i = 1, . . . ,M (F, δ) , j = 1, . . . ,M (G, δ)} ,

which has exactly M (F, δ)M (G, δ) members, yielding (2.9).

The inequalities of Lemma 2.2 and the equivalence of the geometric quanti-
ties proved in Lemma 2.1 allow us to derive the following equivalent definitions
for the box-counting dimensions of a product set:

Lemma 2.3. For totally bounded sets F ⊂ X and G ⊂ Y

dimLB (F ×G) = lim inf
δ→0+

(
logN (F, δ)

− log δ
+

logN (G, δ)

− log δ

)
, and (2.11)

dimB (F ×G) = lim sup
δ→0+

(
logN (F, δ)

− log δ
+

logN (G, δ)

− log δ

)
, (2.12)

and further the above equalities hold if N is replaced with any of the geometric
quantities N ′, Ñ or M .

Proof. It is immediate from Lemma 2.1 that the right hand sides of (2.11)
and (2.12) are invariant under the choice of geometric quantity. Next, from
the geometric inequality (2.7)

lim inf
δ→0+

(
logN (F, δ)

− log δ
+

logN (G, δ)

− log δ

)
= lim inf

δ→0+

log (N (F, δ)N (G, δ))

− log δ

≥ lim inf
δ→0+

logN (F ×G, δ)
− log δ

= dimLB (F ×G) ,
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which, using the equivalent definition in terms of Ñ ,

= lim inf
δ→0+

log Ñ (F ×G, δ)
− log δ

≥ lim inf
δ→0+

log
(
Ñ (F, δ) Ñ (G, δ)

)
− log δ

using the inequality (2.8). Finally, from the inequality (2.3), the latter is

≥ lim inf
δ→0+

log (N (F, 2δ)N (G, 2δ))

− log δ
= lim inf

δ→0+

log (N (F, δ)N (G, δ))

− log δ

so there is equality throughout, yielding (2.11). The upper box-counting equiv-
alence (2.12) follows similarly.

This observation simplifies the proof of the main theorem and the calcu-
lation of the box-counting dimensions in the subsequent examples. Note that
in the Euclidean case the proof of the above lemma is immediate as

dimLB (F ×G) = lim inf
δ→0+

(
logM (F, δ)

− log δ
+

logM (G, δ)

− log δ

)
and

dimB (F ×G) = lim sup
δ→0+

(
logM (F, δ)

− log δ
+

logM (G, δ)

− log δ

)
follow from the equality (2.9).

Theorem 2.4. For totally bounded sets F ⊂ X and G ⊂ Y the upper and
lower box-counting dimensions of the product set F ×G satisfy

dimLB F + dimLB G ≤ dimLB (F ×G)

≤ min (dimLB F + dimB G,dimB F + dimLB G)

≤ max (dimLB F + dimB G,dimB F + dimLB G)

≤ dimB (F ×G)

≤ dimB F + dimB G.

Proof. The result follows immediately from the equivalent definitions (2.11)
and (2.12) together with the elementary analytic inequalities

lim inf A+ lim inf B ≤ lim inf (A+B) , (2.13)

lim inf (A+B) ≤ lim inf A+ lim supB, (2.14)

lim inf A+ lim supB ≤ lim sup (A+B) , and (2.15)

lim sup (A+B) ≤ lim supA+ lim supB. (2.16)
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The inequalities (2.13) and (2.14) yield

dimLB F + dimLB G = lim inf
δ→0+

logN (F, δ)

− log δ
+ lim inf

δ→0+

logN (G, δ)

− log δ

≤ lim inf
δ→0+

(
logN (F, δ)

− log δ
+

logN (G, δ)

− log δ

)
(2.17)

≤ lim inf
δ→0+

logN (F, δ)

− log δ
+ lim sup

δ→0+

logN (G, δ)

− log δ

= dimLB F + dimB G

and the result follows as (2.17) is equal to dimLB (F ×G) from (2.11). The
remaining inequalities are proved similarly.

It is possible to derive similar product formulas for the product of m totally
bounded sets F1, . . . , Fm by introducing the bounds

dimLB (F1 × . . .× Fm) ≤ min
i=1,...,m

dimLB (Fi) +

m∑
j=1
j 6=i

dimB (Fj)

 (2.18)

and

dimB (F1 × . . .× Fm) ≥ max
i=1,...,m

dimB (Fi) +

m∑
j=1
j 6=i

dimLB (Fj)

 (2.19)

which follow from the analytic inequalities

lim inf (A1 + . . .+Am) ≤ lim inf A1 +

m∑
j=2

lim supAj and

lim sup (A1 + . . .+Am) ≥ lim supA1 +

m∑
j=2

lim inf Aj .

These bounds also follow from inductively applying Theorem 2.4. As it is
possible for the right hand side of (2.18) to be greater than the left hand
side of (2.19) we cannot write this as a single formula as in the statement of
Theorem 2.4.
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It is known that there are sets with unequal upper and lower box-counting
dimension (see Exercise 3.8 of [5] or §3.1 in [13]), however if these values
coincide for a set F we define the box-counting dimension of F to be this
common value. If sets F and G have well-defined box-counting dimension
then the box-counting dimension of their product is also well behaved:

Corollary 2.5. If dimB F = dimLB F and dimB G = dimLB G then

dimB (F ×G) = dimLB (F ×G) = dimB F + dimB G.

Proof. As dimLB F + dimLB G = dimB F + dimB G we clearly have equality
throughout the statement of Theorem 2.4.

3 Compatible generalised Cantor sets.

A generalised Cantor set (see §4.11 in [11]) is a variation of the well known
Cantor middle-third set that permits the proportion removed from each in-
terval to vary throughout the iterative process. Formally, for b > 1 we define
the application of the generator genb to a set of disjoint intervals I as the
procedure in which the open middle 1− 21−b proportion of each interval in I
is removed.

With generators of this form, we can produce sets F of arbitrary box-
counting dimension in the range (0, 1) through the repeated application of a
single generator.

Lemma 3.1. Fix b > 1. Starting from the initial set F0 = [0, 1] let Fj =
genb (Fj−1) for all j ∈ N. The resulting set Cantor (b) :=

⋂
Fj has upper and

lower box-counting dimension equal to 1
b .

Proof. See §4.10 in [11]. This is also a consequence of Corollary 3.3 and
Lemma 3.5.

The intermediary sets Fj provide a convenient cover of the resulting Cantor
set, so it is natural to use the minimum number of sets of diameter at most δ
in our calculations. In the remainder we refer to the function

δ 7→ logN ′ (F, δ)

− log δ

as the box-counting function of F .
In the following we detail a method to construct a generalised Cantor set

F from an arbitrary sequence of generators genbj . Roughly, the intermediary
set Fj−1 will consist of a finite number of disjoint intervals and we define
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the intermediary set Fj by iteratively applying the generator genbj to the set
Fj−1. As we repeatedly apply the generator genbj to a finite number of disjoint
intervals the set Fj has the appearance of a finite number of disjoint scaled
copies of Cantor (bj) at appropriate length-scales. Consequently, by applying
the generator genbj a sufficient number of times the box-counting function

of F approaches 1
bj

for δ approximately the length of the intervals of Fj . It

is relatively straightforward to calculate the number of iterations required,
the length scales δ and the value of N ′ (F, δ); but it is prohibitively difficult
to calculate these quantities for the set F × G where G is another arbitrary
generalised Cantor set.

We rectify this incompatibility by constructing the generalised Cantor sets

F and G in parallel from two arbitrary sequences of generators
{

genbj

}
and{

gencj

}
. At the jth stage of the construction, as above, we iteratively apply

the generators genbj and gencj respectively to the intermediary sets Fj−1 and
Gj−1 a sufficient number of times for each set to ensure that

• the intermediary sets Fj and Gj consist of intervals of the same length,

• for δ equal to the common length of the intervals of Fj and Gj the
box-counting functions

logN ′ (F, δ)

− log δ
and

logN ′ (G, δ)

− log δ
(3.1)

approach 1
bj

and 1
cj

respectively, which is the content of Corollary 3.3,

and that

• for all δ the box-counting functions (3.1) are tightly controlled, which is
the content of Lemma 3.4.

As a consequence, for a given length scale δ we have good bounds on the
values of the box-counting functions (3.1) and, from Lemma 2.3, these yield
good bounds on the box counting function of the set F ×G.

In the remainder we assume that the bi and ci are rational numbers greater
than 1. Let K0 = 0 and for j ∈ N define Kj := 22

j ∏j+1
i=1 num (bi) num (ci),

where num bi is the numerator of the rational number bi. Observe that the Kj

are positive integers that increase with j,

Kj −Kj−1

bj
,
Kj −Kj−1

cj
∈ N (3.2)
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for all j ∈ N, and ∑j−1
i=1 Ki

Kj
→ 0 as j →∞. (3.3)

We define F :=
⋂
j∈N Fj where F0 = [0, 1] and the set at the jth stage

of the construction, Fj , is formed by applying the generator genbj a total
of (Kj −Kj−1) /bj times to the set of disjoint intervals Fj−1. This is well
defined as, from (3.2), (Kj −Kj−1) /bj is a positive integer. Similarly, we
define G :=

⋂
j∈NGj where G0 = [0, 1] and Gj is formed by applying the

generator gencj a total of (Kj −Kj−1) /cj times to the set Gj−1.
To find bounds on the box-counting functions of F and G we must first

calculate N ′ (F, δ) and N ′ (G, δ) for a given length scale δ, which we postpone
until the appendix. From this calculation we can prove the following:

Lemma 3.2. For all j ∈ N and n = 1, . . . , (Kj −Kj−1) /bj if δ is in the range

2−Kj−1−bjn ≤ δ < 2−Kj−1−bj(n−1)

then the box-counting function of F satisfies∑j−1
i=1 (Ki −Ki−1) /bi + n− 1

Kj−1 + bjn
≤ logN ′ (F, δ)

− log δ

<

∑j−1
i=1 (Ki −Ki−1) /bi + n

Kj−1 + bj (n− 1)
.

(3.4)

Proof. Immediate from (A.2), (A.3) and Lemma A.1.

Replacing bi with ci throughout the above lemma gives the corresponding
result for the set G.

Corollary 3.3. With F and G constructed as above

dimLB F ≤ lim inf
j→∞

1

bj
lim sup
j→∞

1

bj
≤ dimB F

dimLB G ≤ lim inf
j→∞

1

cj
lim sup
j→∞

1

cj
≤ dimB G

dimLB (F ×G) ≤ lim inf
j→∞

1

bj
+

1

cj
lim sup
j→∞

1

bj
+

1

cj
≤ dimB (F ×G)

Proof. Consider the sequence δj := 2−Kj and apply Lemma 3.2 with
n = (Kj −Kj−1) /bj to yield∑j

i=1 (Ki −Ki−1) /bi − 1

Kj
≤ logN ′ (F, δj)

− log δj
<

∑j
i=1 (Ki −Ki−1) /bi

Kj − bj
.
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Consequently,

logN ′ (F, δj)

− log δj
≥ 1

bj
+
−Kj−1/bj +

∑j−1
i=1 (Ki −Ki−1) /bi − 1

Kj
and (3.5)

logN ′ (F, δj)

− log δj
<

1

bj
+

1−Kj−1/bj +
∑j−1
i=1 (Ki −Ki−1) /bi

Kj − bj
(3.6)

and from (3.3) the second terms tend to zero as j →∞. Consequently,

lim inf
δ→0+

logN ′ (F, δ)

− log δ
≤ lim inf

j→∞

logN ′ (F, δj)

− log δj
= lim inf

j→∞

1

bj
and

lim sup
δ→0+

logN ′ (F, δ)

− log δ
≥ lim sup

j→∞

logN ′ (F, δj)

− log δj
= lim sup

j→∞

1

bj
.

The result for the set G follows similarly using the same sequence δj . Next,
we sum each of (3.5) and (3.6) with their equivalent inequalities for the set G
so that at the limit

lim inf
j→∞

(
logN ′ (F, δj)

− log δj
+

logN ′ (G, δj)

− log δj

)
= lim inf

j→∞

1

bj
+

1

cj
and

lim sup
j→∞

(
logN ′ (F, δj)

− log δj
+

logN ′ (G, δj)

− log δj

)
= lim sup

j→∞

1

bj
+

1

cj

and the result for the product set F ×G follows from the equivalent definitions
(2.11) and (2.12).

Finally, we find some bounds on the box-counting function for all δ.

Lemma 3.4. For δ in the range

2−Kj ≤ δ < 2−Kj−1 (3.7)

the box-counting functions (3.1) have the following bounds:

min

(
1

bj
,

1

bj−1

)
− εj ≤

logN ′ (F, δ)

− log δ
< max

(
1

bj
,

1

bj−1

)
+ εj (3.8)

and

min

(
1

cj
,

1

cj−1

)
− εj ≤

logN ′ (G, δ)

− log δ
< max

(
1

cj
,

1

cj−1

)
+ εj (3.9)

where εj → 0 as j →∞.
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Proof. For each n = 1, . . . , (Kj −Kj−1) /bj consider δ in the range

2−Kj−1−bjn ≤ δ < 2−Kj−1−bj(n−1). (3.10)

Lemma 3.2 yields the lower bound

logN ′ (F, δ)

− log δ
≥
∑j−1
i=1 (Ki −Ki−1) /bi + n− 1

Kj−1 + bjn

=
1

bj−1

Kj−1 + bj−1n

Kj−1 + bjn
−
Kj−2/bj−1 −

∑j−2
i=1 (Ki −Ki−1) /bi + 1

Kj−1 + bjn

≥ 1

bj−1

Kj−1 + bj−1n

Kj−1 + bjn
− Kj−2/bj−1 + 1

Kj−1

and writing the second term as ε−j we consider the separate cases

≥

{
1

bj−1

Kj−1+bjn
Kj−1+bjn

− ε−j bj−1 ≥ bj
1

bj−1

bj−1

bj

Kj−1+bjn
Kj−1+bjn

− ε−j bj−1 < bj

= min

(
1

bj
,

1

bj−1

)
− ε−j .

As n is arbitrary this lower bounds holds for all δ in the range (3.7). Further,
observe from (3.3) that ε−j tends to zero as j →∞.

Similarly, for δ in the range (3.10), we have the upper bound

logN ′ (F, δ)

− log δ
<

∑j−1
i=1 (Ki −Ki−1) /bi + n

Kj−1 + bj (n− 1)

=
1

bj−1

Kj−1 + bj−1 (n− 1)

Kj−1 + bj (n− 1)

+
1−Kj−2/bj−1 +

∑j−2
i=1 (Ki −Ki−1) /bi

Kj−1 + bj (n− 1)

≤ 1

bj−1

Kj−1 + bj−1 (n− 1)

Kj−1 + bj (n− 1)
+

1 +
∑j−2
i=1 (Ki −Ki−1) /bi

Kj−1

Again, writing the second term as ε+j we consider the separate cases

≤

{
1

bj−1

Kj−1+bj(n−1)
Kj−1+bj(n−1) + ε+j bj ≥ bj−1

1
bj−1

bj−1

bj

Kj−1+bj(n−1)
Kj−1+bj(n−1) + ε+j bj < bj−1

= max

(
1

bj
,

1

bj−1

)
+ ε+j .
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Again, as n is arbitrary this upper bound holds for all δ in the range (3.7),
and from (3.3) ε+j tends to zero as j →∞.

Similarly, by considering δ in the range

2−Kj−1−cjm ≤ δ < 2−Kj−1−cj(m−1)

for m = 1, . . . , (Kj −Kj−1) /bj we find non-negative quantities η−j and η+j
such that

min

(
1

cj
,

1

cj−1

)
− η−j ≤

logN ′ (G, δ)

− log δ
< max

(
1

cj
,

1

cj−1

)
+ η+j

for δ in the range (3.7) where η−j , η
+
j → 0 as j →∞.

Taking εj := max
(
ε−j , ε

+
j , η

−
j , η

+
j

)
completes the proof.

Lemma 3.5. With F and G constructed as above

lim inf
j→∞

1

bj
≤ dimLB F, dimB F ≤ lim sup

j→∞

1

bj
,

lim inf
j→∞

1

cj
≤ dimLB G, dimB G ≤ lim sup

j→∞

1

cj
,

lim inf
j→∞

(
min

(
1

bj
,

1

bj−1

)
+ min

(
1

cj
,

1

cj−1

))
≤ dimLB (F ×G) , and

lim sup
j→∞

(
max

(
1

bj
,

1

bj−1

)
+ max

(
1

cj
,

1

cj−1

))
≥ dimB (F ×G) .

Proof. Taking the limits of (3.8) as j →∞ we see that

dimLB (F ) = lim inf
δ→0

logN ′ (F, δ)

− log δ
≥ lim inf

j→∞

(
min

(
1

bj
,

1

bj−1

))
= lim inf

j→∞

1

bj
,

and

dimB (F ) = lim sup
δ→0

logN ′ (F, δ)

− log δ
≤ lim sup

j→∞

(
max

(
1

bj
,

1

bj−1

))
= lim sup

j→∞

1

bj
,

and the results for the set G follow similarly.
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We now consider the product set F ×G: if δ is in the range (3.7) then by
summing (3.8) and (3.9) we see that

min

(
1

bj
,

1

bj−1

)
+ min

(
1

cj
,

1

cj−1

)
− 2εj

≤ logN ′ (F, δ)

− log δ
+

logN ′ (G, δ)

− log δ

< max

(
1

bj
,

1

bj−1

)
+ max

(
1

cj
,

1

cj−1

)
+ 2εj .

Taking the limits as j → ∞ and using the equivalent definition from Lemma
2.3 we obtain

lim inf
j→∞

(
min

(
1

bj
,

1

bj−1

)
+ min

(
1

cj
,

1

bc−1

))
≤ lim inf

δ→0

(
logN ′ (F, δ)

− log δ
+

logN ′ (G, δ)

− log δ

)
= dimLB (F ×G)

and

lim sup
j→∞

(
max

(
1

bj
,

1

bj−1

)
+ max

(
1

cj
,

1

bc−1

))
≥ lim sup

δ→0

(
logN ′ (F, δ)

− log δ
+

logN ′ (G, δ)

− log δ

)
= dimB (F ×G)

as required.

Using these bounds we can construct sets F and G such that the box-
counting dimensions of F,G and F × G take arbitrary values satisfying the
chain of inequalities in Theorem 2.4, which is the content of the following
theorem.

Theorem 3.6. Let f1, f2, g1, g2 ∈ [0, 1] and h1, h2 ∈ [0, 2] satisfy

f1 + g1 ≤ h1 ≤ min (f1 + g2, f2 + g1)

≤ max (f1 + g2, f2 + g1) ≤ h2 ≤ f2 + g2. (3.11)

There exists sets F,G ⊂ R such that

dimLB F = f1 dimB F = f2

dimLB F = g1 dimB G = g2

dimLB (F ×G) = h1 dimB (F ×G) = h2.
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Initially we construct two sequences x and y such that lim inf xi = f1,
lim supxi = f2, lim inf yi = g1, lim inf yi = g2, lim inf xi + yi = h1, and
lim supxi + yi = h2, with the additional property that for each sequence the
difference between consecutive terms vanishes at the limit. In this case

lim inf (min (xi, xi+1) + min (yi, yi+1)) = lim inf xi + yi and (3.12)

lim sup (max (xi, xi+1) + max (yi, yi+1)) = lim supxi + yi. (3.13)

As a consequence if we construct compatible generalised Cantor sets F and
G from the sequences of generators defined by bi := x−1i and ci := y−1i then
the results of Corollary 3.3 and Lemma 3.5 together with the relationships
(3.12) and (3.13) demonstrate that the sets F,G and F ×G have the desired
dimensions. However, as the generators are only defined if each bi and ci is
rational and greater than 1 a further approximation argument is necessary.

Proof of Theorem 3.6. By relabelling the fi and gi if necessary, we assume
without loss of generality that f1 + g2 ≤ f2 + g1. Consequently, from (3.11),

f1 + g1 ≤ h1 ≤ f1 + g2, and (3.14)

f2 + g1 ≤ h2 ≤ f2 + g2. (3.15)

For each fixed n ∈ N and each j = 1, . . . , n define

xn,j :=


f1 + j

n (f2 − f1) n = 6k − 5

f2 n = 6k − 4, 6k − 3

f2 − j
n (f2 − f1) n = 6k − 2

f1 n = 6k − 1, 6k

(3.16)

and

yn,j :=



g2 − j
n (g2 − g1) n = 6k − 5

g1 + j
n (h2 − f2 − g1) n = 6k − 4

h2 − f2 − j
n (h2 − f2 − g1) n = 6k − 3

g1 + j
n (g2 − g1) n = 6k − 2

g2 − j
n (g2 − h1 + f1) n = 6k − 1

h1 − f1 + j
n (g2 − h1 + f1) n = 6k

(3.17)

for k ∈ N, and note that

f2 − f1, g2 − g1, h2 − f2 − g1, g2 − h1 + f1 ≥ 0. (3.18)

It is immediate that for all n ∈ N

xn,j ∈ [f1, f2] j = 1, . . . , n (3.19)
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and that for n = 6k − 5, 6k − 2

yn,j ∈ [g1, g2] j = 1, . . . , n.

Further, for n = 6k − 4, 6k − 3

g1 ≤ yn,j ≤ h2 − f2 ≤ f2 + g2 − f2 = g2 j = 1, . . . , n

from (3.15), and for n = 6k − 1, 6k

g2 ≥ yn,j ≥ h1 − f1 ≥ f1 + g1 − f1 = g1 j = 1, . . . , n

from (3.14). Consequently, for all n ∈ N

yn,j ∈ [g1, g2] j = 1, . . . , n. (3.20)

Further, the endpoints of these bounds are achieved at

x6k−1,1 = f1, x6k−4,1 = f2, (3.21)

y6k−5,6k−5 = g1, and y6k−2,6k−2 = g2 (3.22)

for each k ∈ N.
Next, consider the sum

xn,j + yn,j =



f1 + g2 + j
n (f2 + g1 − (f1 + g2)) n = 6k − 5

f2 + g1 + j
n (h2 − f2 − g1) n = 6k − 4

h2 − j
n (h2 − f2 − g1) n = 6k − 3

f2 + g1 − j
n (f2 + g1 − (f1 + g2)) n = 6k − 2

f1 + g2 − j
n (g2 − h1 + f1) n = 6k − 1

h1 + j
n (g2 − h1 + f1) n = 6k.

Observe that for n = 6k − 5, 6k − 2

f1 + g2 ≤ xn,j + yn,j ≤ f2 + g1 j = 1, . . . , n,

for n = 6k − 4, 6k − 3

f2 + g1 ≤ xn,j + yn,j ≤ h2 j = 1, . . . , n,

and for n = 6k − 1, 6k

h1 ≤ xn,j + yn,j ≤ f1 + g2 j = 1, . . . , n.
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Consequently, as h1 ≤ f1 +g2 and f2 +g1 ≤ h2, we conclude that for all n ∈ N

xn,j + yn,j ∈ [h1, h2] j = 1, . . . , n. (3.23)

Further, the endpoints of this bound are achieved at

x6k−1,6k−1 + y6k−1,6k−1 = h1, and x6k−4,6k−4 + y6k−4,6k−4 = h2 (3.24)

for each k ∈ N.
Define the sequences

x := (x1,1, x2,1, x2,2, . . . , xn,1, . . . , xn,n, xn+1,1, . . .) and

y := (y1,1, y2,1, y2,2, . . . , yn,1, . . . , yn,n, yn+1,1, . . .) .

From the bounds (3.19), (3.20) and (3.23), and the periodic achievement of
these bounds in (3.21), (3.22) and (3.24) we conclude that

lim inf
i→∞

xi = f1, lim sup
i→∞

xi = f2, (3.25)

lim inf
i→∞

yi = g1, lim sup
i→∞

yi = g2, (3.26)

lim inf
i→∞

xi + yi = h1, and lim sup
i→∞

xi + yi = h2. (3.27)

Next, write C := max (f2 − f1, g2 − g1, h2 − f2 − g1, g2 − h1 + f1). We see
from the definitions (3.16) and (3.17) that for each n ∈ N

|xn,j − xn,j+1| , |yn,j − yn,j+1| ≤
C

n
j = 1, . . . , n− 1, and

|xn,n − xn+1,1| , |yn,n − yn+1,1| ≤
C

n+ 1
.

Consequently the difference between consecutive elements of each sequence x
and y approaches zero: for each n ∈ N

|xi − xi+1| , |yi − yi+1| ≤
C

n+ 1

n∑
j=1

j < i ≤
n+1∑
j=1

j

and, as i in this range satisfies i ≤
∑n+1
j=1 j ≤ (n+ 1)

2
, we conclude that

|xi − xi+1| , |yi − yi+1| ≤
C√
i

∀i ∈ N. (3.28)
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Finally, define the sequences

bi :=

{
i+ 1 xi ≤ 1

i+1
i+1
k

k
i+1 < xi ≤ k+1

i+1 k = 1, . . . , i

and

ci :=

{
i+ 1 yi ≤ 1

i+1
i+1
k

k
i+1 < yi ≤ k+1

i+1 k = 1, . . . , i

and observe that bi, ci ∈ Q and bi, ci > 1 for all i ∈ N, so we can construct
compatible generalised Cantor sets F and G from the sequences bi and ci
respectively. Further,

∣∣b−1i − xi∣∣ , ∣∣c−1i − yi∣∣ ≤ 1

i+ 1
∀i ∈ N. (3.29)

From Corollary 3.3 and Lemma 3.5 we see that

dimLB F = lim inf
i→∞

1

bi
= lim inf

i→∞
xi

from (3.29) which, from (3.25), yields dimLB F = f1 as required. Similarly,
we see that dimB F = f2, dimLB G = g1 and dimB G = g2.

Next, for each i ∈ N

min

(
1

bi
,

1

bi+1

)
≥ xi −

2√
i
, min

(
1

ci
,

1

ci+1

)
≥ yi −

2√
i
, (3.30)

max

(
1

bi
,

1

bi+1

)
≤ xi +

2√
i
, and max

(
1

ci
,

1

ci+1

)
≤ yi +

2√
i
. (3.31)

Indeed, from (3.29)

min

(
1

bi
,

1

bi+1

)
≥ min

(
xi −

1

i+ 1
, xi+1 −

1

i+ 2

)
which from (3.28)

≥ min

(
xi −

1

i+ 1
, xi −

1

i+ 2
− C√

i

)
≥ xi −

C + 1√
i

and the remaining inequalities in (3.30) and (3.31) follow similarly.
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Consequently, from Lemma 3.5 and (3.30),

lim inf
i→∞

xi + yi = lim inf
i→∞

xi −
2√
i

+ yi −
2√
i

≤ lim inf
i→∞

(
min

(
1

bi
,

1

bi+1

)
+ min

(
1

ci
,

1

ci+1

))
≤ dimLB (F ×G)

and from Corollary 3.3 and (3.29)

dimLB (F ×G) ≤ lim inf
i→∞

1

bi
+

1

ci

≤ lim inf
i→∞

xi +
1

1 + i
+ yi +

1

1 + i
= lim inf

i→∞
xi + yi.

We conclude that

dimLB (F ×G) = lim inf
i→∞

xi + yi,

and so, from (3.27), dimLB (F ×G) = h1 as required. Similarly, from Corol-
lary 3.3, Lemma 3.5 and the inequalities (3.29) and (3.31), we can demonstrate
that

dimB (F ×G) = lim sup
i→∞

xi + yi,

and so, from (3.27), that dimB (F ×G) = h2 as required.

Using Theorem 3.6 we are able to construct sets F,G ⊂ R such that the
upper and lower box-counting dimensions of the sets F,G and F ×G can take
arbitrary values subject to the chain of inequalities in Theorem 2.4.

Example 3.7. We apply Theorem 3.6 with the values f1 = g1 = 0 and
f2 = g2 = h1 = h2 = 1, noting that these values satisfy the hypothesis of the
theorem. The construction yields two sets F and G such that

dimLB F = dimLB G = 0 and

dimB F = dimB G = dimLB (F ×G) = dimB (F ×G) = 1.

In particular these sets with zero lower box-counting dimension have a product
with positive lower box-counting dimension, and for these same sets the upper
box-counting dimension does not increase upon taking the product.

We remark that by inductively applying this construction we are able to
produce m compatible generalised Cantor sets Fj such that the upper and
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lower box-counting dimensions of the sets Fj take arbitrary values subject to
the inequalities (2.18), (2.19),

m∑
i=1

dimLB Fi ≤ dimLB (F1 × . . . Fm) and

dimB (F1 × . . . Fm) ≤
m∑
i=1

dimB Fi.

A Geometry of generalised Cantor sets.

We consider the geometry of the generalised Cantor sets discussed in section
3. Recall that Fj−1 is the set of disjoint intervals at the (j − 1)

th
stage in

the construction of F . For n = 1, . . . , (Kj −Kj−1) /bj define Fj−1,n to be
the result of n successive applications of the generator genbj to the set Fj−1.
The sets Fj−1,n are the sets that make up the ‘substages’ in the construction
of F , with one such substage for every application of a generator. Note that
Fj = Fj−1,(Kj−Kj−1)/bj and as the sets are monotonically decreasing in n,

Fj =

(Kj−Kj−1)/bj⋂
n=1

Fj−1,n. (A.1)

We write # (Fj,n) for the number and l (Fj,n) for the length of the intervals
in Fj,n. It is easy to show that

# (Fj−1,n) = 2
∑j−1

i=1 (Ki−Ki−1)/bi+n (A.2)

l (Fj−1,n) = 2−Kj−1−bjn. (A.3)

Replacing the bi with ci throughout the above gives the corresponding
result for the intermediary sets Gj−1,n used in the construction of G. Note
that the intervals in Fj−1 are the same length as the intervals in Gj−1 despite
the arbitrarily chosen sequences {bi}∞i=1 and {ci}∞i=1. These common lengths
greatly simplify the calculation of the box-counting dimensions of the product
set F ×G, and in this sense the sets F and G are ‘compatible’.

We will need to find some explicit points of the generalised Cantor set F .
Recall that F is defined by F :=

⋂
j∈N Fj which, in light of (A.1), is the inter-

section of every intermediary substage Fj−1,n and can be written

F :=
⋂
j∈N

Kj−Kj−1/bj⋂
n=1

Fj−1,n.
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When applying a generator genb to an intermediary set of disjoint intervals I,
an open proportion is removed from the middle of each interval. Consequently
the endpoints of the intervals I are in the set genb (I) and remain endpoints
of intervals. Inductively we see that the endpoints of each intermediary set
Fj−1,n are in the final set F .

As each intermediary set Fj−1,n is a cover of F and the length of the intervals
in Fj−1,n approach zero as j → ∞ it is natural to use the minimal cover
formulation of the box-counting dimension for these sets: we immediately have
that if l (Fj−1,n) ≤ δ the set Fj−1,n is a suitable cover of F . Unfortunately
this cover is not always a minimal cover at this length-scale. However, a
reasonable lower bound on N ′ (F, δ) is easy to find and if we restrict the choice
of generators so that the intervals are suitably separated then the sets Fj−1,n
are minimal covers at the appropriate length-scale.

Lemma A.1. For δ in the range l (Fj−1,n) ≤ δ < l (Fj−1,n−1) the minimum
number of sets of diameter at most δ that cover F satisfies

# (Fj−1,n−1) ≤ N ′ (F, δ) ≤ # (Fj−1,n) . (A.4)

Further, if the choice of generators is restricted so that bi ≥ log (3) / log (2)
for all i then

N ′ (F, δ) = # (Fj−1,n) .

Proof. The upper bound follows immediately from the fact that Fj−1,n is a
cover of F consisting of # (Fj−1,n) sets of diameter less than δ. For the lower
bound consider the following points in F : let E consist of all the left endpoints
of the intervals in Fj−1,n−1 so that E consists of # (Fj−1,n−1) points. Now,
any two points of E are separated by one of the intervals of Fj−1,n−1 so no
set of diameter δ < l (Fj−1,n−1) can intersect two points of E (see Figure 1).
Consequently, at least # (Fj−1,n−1) sets of diameter δ are required to cover E
therefore at least this many are required to cover F , yielding

# (Fj−1,n−1) ≤ N ′ (F, δ) ≤ # (Fj−1,n) .

If we restrict the generators to those genb with b ≥ log (3) / log (2) then
with every application of a generator at least the middle third of each interval
is removed. Consequently, the intervals in Fj−1,n−1 are separated by at least
the length l (Fj−1,n−1) so that if E is the set of all (both left and right)
endpoints of the intervals in Fj−1,n−1 then no set of diameter δ < l (Fj−1,n−1)
can intersect two points of E (see Figure 2).
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Figure 1: Two intervals in the set Fj−1,n−1 (black lines) to illustrate that
sets with diameter δ < l (Fj−1,n−1) (grey ellipses) can not intersect two left
endpoints (black crosses). Consequently we require at least one set of diameter
δ for each interval in Fj−1,n−1 to cover all the left endpoints. Generally this
cannot be improved as the distance between intervals ε can be arbitrarily
small.

Figure 2: Two intervals in the set Fj−1,n−1 (black lines) constructed from
generators genb with b ≥ log (3) / log (2). As the distance between intervals
is at least the length of the interval a set of diameter δ < l (Fj−1,n−1) (grey
ellipses) can not intersect two endpoints (black crosses). Consequently we
require at least two sets of diameter δ for each interval in Fj−1,n−1 to cover
all the endpoints.

As E consists of 2# (Fj−1,n−1) = # (Fj−1,n) points at least this many sets of
diameter δ are required to cover E and hence required to cover F , yielding

# (Fj−1,n) ≤ N ′ (F, δ) ≤ # (Fj−1,n) .
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