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POINTS OF MIDDLE DENSITY IN THE
REAL LINE

Abstract

A Lebesgue measurable set in the real line has Lebesgue density 0
or 1 at almost every point. Kolyada showed that there is a positive
constant δ such that for non-trivial measurable sets there is at least one
point with upper and lower densities lying in the interval (δ, 1−δ). Both
Kolyada and later Szenes gave bounds for the largest possible value of
this δ. In this note we reduce the best known upper bound, disproving
a conjecture of Szenes.

1 Introduction

If E ⊆ R is a measurable set for the usual Lebesgue measure L, then it is well
known that for (Lebesgue) almost every x ∈ R, the density of E at x given by

dE(x) = lim
r↓0

dE(x, r), where dE(x, r) :=
L(E ∩B(x, r))

2r
for r > 0,

exists and is either zero or one. If either E or its complement is a Lebesgue
null set, then for all x ∈ R, the density dE(x) exists and is trivially either
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identically zero or one. When neither E nor R \ E are Lebesgue null, then
there may be points where the density does not exist and we introduce the
lower and upper Lebesgue density of E at a point x ∈ R by

dE(x) := lim inf
r↘0

dE(x, r) and dE(x) := lim sup
r↘0

dE(x, r), respectively.

We say that a Lebesgue measurable set is non-trivial if both the set and
its complement have positive Lebesgue measure. Kolyada [1] asked what is
the supremum of those δ such that for every non-trivial set E the following
statement is true:

(∗) there is x ∈ R for which dE(x) > δ and dE(x) < 1− δ.

Kolyada showed that such a δ exists and is at least 1/4. It is clear that if the
statement holds for some δ1 > 0, then it holds for any δ2 < δ1. We say that a
non-trivial Lebesgue measurable set E is a δ-exceptional set if statement (∗)
does not hold for E and δ: that is, for each x ∈ R either dE(x) ≤ δ or
dE(x) ≥ 1−δ. Thus Kolyada’s problem is equivalent to finding δ0, the infimum
of those δ for which there is a δ-exceptional set.

In [2], Szenes proves that 0.263 < δ0 < 0.272 where the exact lower bound
is the positive solution of the cubic equation

4x3 + 2x2 + 3x− 1 = 0

and the exact upper bound is the positive solution of

8x3 + 4x2 + 2x− 1 = 0.

In this paper, he also conjectures that δ0 is given by this upper bound.
Szenes also shows that we can characterize δ0 using a discrete analogue

of the above formulation. A configuration C is a subset of R comprising of
the half-line (−∞, 0] together with some finite collection of pairwise disjoint
closed intervals contained in [0, 1]:

C = (−∞, 0] ∪
n⋃
k=1

Ik.

An r > 0 is a δ-good radius for a point x ∈ R and a set E if either dE(x, r) ≥
1 − δ or dE(x, r) ≤ δ. A δ-exceptional configuration is a configuration for
which every x ∈ R has a δ-good radius. Clearly every interior and exterior
point of a configuration has a δ-good radius and so to show a configuration is
δ-exceptional, it is enough to find δ-good radii for the endpoints of the config-
uration. To find δ0 we can rely on the following restatement of Proposition 2
from [2]:
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(∗∗) δ0 is the infimum of those δ for which there is a δ-exceptional configura-
tion.

In the following section, we find a sequence of exceptional configurations
for values of δ that are eventually strictly less than the positive solution to
8x3 + 4x2 + 2x− 1 = 0, thus showing that Szenes’s conjecture is false. There
is no good reason for believing that the configurations that we construct are
optimal, and the problem of determining the best value for δ remains open.

2 A 0.2710 . . .-exceptional configuration

Theorem 2.1. Let δ be the positive solution to

2δ3 + 2δ2 + 3δ = 1. (1)

Then δ0 ≤ δ.

Proof. The proof is by construction. We exhibit a sequence of configu-
rations where the nth configuration is δn-exceptional for (δn)∞n=1 a decreasing
sequence whose limit is δ.

2.1 Periodic part

Let λ ∈ ( 1
2 ,

2
3 ), and set ε := 1

2 −
3λ
4 > 0. Then for I1 := [0, λ2 ] and I2 :=

[λ2 + ε, λ+ ε] = [12 −
λ
4 ,

1
2 + λ

4 ], define

Sλ :=
⋃

i∈{0}∪N

(i+ (I1 ∪ I2)).

Claim 2.2. For any δ ≥ 1−λ
1+λ

2

, each positive real number has a δ-good radius

for Sλ.

Proof of claim: As observed earlier, every positive number that is not an
endpoint always has a good radius so suppose that x is some endpoint of an
interval of Sλ, other than 0.

If x ∈ N, then the ball around x with radius λ + ε = 1
2 + λ

4 contains

three intervals of Sλ, each of length λ
2 . Thus the density of Sλ in this ball,

dSλ(x, λ+ ε), is
3λ
2

1 + λ
2

= 1− 1− λ
1 + λ

2

≥ 1− δ

and so the radius is δ-good. Exactly the same radius and calculation apply
for the symmetric case where x = n+ λ+ ε with n ∈ N.
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If x is one of the remaining endpoints, of the form n+ λ
2 or n+ λ

2 + ε, then

the ball around x of radius λ
2 meets only one component of the complement

of Sλ and this component has length ε. Thus

dSλ(x, λ/2) = 1− ε

λ
= 1−

1
2 −

3λ
4

λ
=

7

4
− 1

2λ
≥ 3

4
≥ 1− δ

since δ ≥ 1−λ
1+λ

2

≥ 1
4 .

Remark 2.3. Notice that, since the largest radius in the above argument can
be chosen to be at most λ + ε and since λ

2 is a δ-good radius for n + λ
2 and

n+ λ
2 + ε as shown in the previous paragraph, for each n ∈ N, any point x of

Jn := (0, n+ λ+ ε)

has a δ-good radius r for Sλ so that the interval (x− r, x+ r) is contained in
Jn.

We now proceed to the construction of our configuration.

2.2 The construction for a given λ

Suppose that λ ∈ ( 1
2 ,

2
3 ) and m ∈ (0, 12 ) have been given. For n ∈ N, we define

the configuration Cn to be the half-line (−∞, 0] together with the image of
Sλ∩Jn under the affine transformation that sends 0 tom and n+λ+ε to 1. The
invariance of densities under this transformation means that, by Remark 2.3,
every point in (m, 1) has an associated δ-good radius for δ ≥ 1−λ

1+λ
2

. Thus it

is enough to show that the remaining three endpoints 0,m and 1 of Cn have
δ-good radii (given by r(0) = 1, r(m) = 1 −m and r(1) = 1, respectively) in
order to conclude that Cn is a δ-exceptional configuration.

Since B(0, 1) ⊃ B(m, 1−m) and Cn has full measure in B(0, 1)\B(m, 1−
m), we deduce that dCn(0, 1) > dCn(m, 1 −m). Hence it is enough to show
that dCn(m, 1−m) ≥ 1− δ and dCn(1, 1) ≤ δ.

Let λn denote the density of Cn in the interval (m, 1), that is λn =
L(Cn∩(m,1))

1−m . Then

λn =
(n+ 1)λ

n+ λ+ ε

(
=

4(n+ 1)λ

4n+ 2 + λ

)
. (2)

The density of Cn within the relevant radius of each of the two endpoints is
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then given by

dCn(m, 1−m) = 1− m+ (1−m)(1− λn)

2(1−m)
(3)

dCn(1, 1) =
λn(1−m)

2
. (4)

Thus for Cn to be a δ-exceptional configuration, we need only to choose δ so
that

δ ≥ max

(
1− λ
1 + λ

2

,
m+ (1−m)(1− λn)

2(1−m)
,
λn(1−m)

2

)
.

(Here the first term comes from Claim 2.2 and the remaining two come from (3)
and (4).) We set δ equal to the last term, and suppose m was chosen so that δ
is also equal to the penultimate term. That is, we choose δ = δn, say, so that

2δn := λn(1−m) =
1− λn + λnm

1−m

which gives

2δn =
1− 2δn
1−m

=
1− 2δn
2δn/λn

and so
4δ2n + 2λnδn − λn = 0.

This last equation determines the value of δn for the configuration Cn. It
still remains to choose λ ∈ ( 1

2 ,
2
3 ) so that δn ≥ 1−λ

1+λ
2

and m = 1 − 2δn/λn ∈
(0, 12 ).

2.3 Checking for the optimal λ

Let λ and δ be the positive solution of

4δ2 + 2λδ − λ = 0 and δ =
1− λ
1 + λ

2

. (5)

(So δ = 0.2710 . . . and λ = 0.6419 . . . ∈ ( 1
2 ,

2
3 ).) We can see from (2) and

λ+ ε < 1 that λn ↘ λ as n→∞. Since f(δ) = 4δ2

1−2δ is an increasing function

of δ on (0, 12 ), we deduce that δn ↘ δ as n→∞. Hence for each n ∈ N,

δn > δ =
1− λ
1 + λ

2

.
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It only remains to verify that if n is sufficiently large, thenm = 1−2 δnλn ∈ (0, 12 ).
However, since

4δ2n + 2λnδn − λn = 0,

we deduce that

m = 1− 2δn/λn =
1

2

(
3−

√
1 + 4/λn

)
.

But
(

3−
√

1 + 4/λ
)

= 0.310 . . ., and so m ∈ (0, 12 ) if n is sufficiently large.

Since we can choose δn to be arbitrarily close to δ, we conclude

δ0 ≤ δ = 0.2710..,

as required.
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