Chin-Cheng Lin, Department of Mathematics, National Central University, Chung-Li, Taiwan 32054, Republic of China, e-mail: clin@@math.ncu.edu.tw

AN EXTENSION OF FATOU'S LEMMA

Abstract

We give an extension of Fatou's lemma to tempered distributions S'(G), where G is a homogeneous group.

A homogeneous group G is a connected and simply connected nilpotent Lie group whose Lie algebra \mathfrak{g} is endowed with a family of dilations $\{\delta_r: r>0\}$. Here, dilations $\{\delta_r\}$ on algebra \mathfrak{g} mean a family of algebra automorphisms of \mathfrak{g} of the form $\delta_r=\exp(A\log r)$, where A is a diagonalizable linear operator on \mathfrak{g} with positive eigenvalues. The number $Q\equiv \operatorname{trace}(A)$ will be called the homogeneous dimension of G. If G is a homogeneous group, the maps $\exp\circ\delta_r\circ\exp^{-1}$ are group automorphisms of G. We shall denote them also by δ_r and call them dilations on G, and write rx instead of $\delta_r x$ for $r>0, x\in G$. Sometimes we even write x/r for $\delta_{1/r}x$. Under this notation, the distributive law becomes r(xy)=(rx)(ry). For more details about homogeneous groups, we refer the reader to [1].

The classic Fatou's lemma is written as: If $\{f_n\}$ is a sequence of nonnegative measurable functions on $E \subseteq \mathbb{R}^n$, then

$$\int_{E} \liminf_{n \to \infty} f_n(x) dx \le \liminf_{n \to \infty} \int_{E} f_n(x) dx.$$

This result still holds for homogeneous groups. In this note, furthermore, we will extend the sequence of measurable functions to another class, tempered distributions.

Let G be a homogeneous group with homogeneous dimension Q. The Hardy space $H^p(G)$ is defined either in terms of maximal functions or in terms of atomic decompositions (cf. [1]). Namely, let ϕ be a function in

Key Words: Fatou's lemma, Hardy spaces, homogeneous groups Mathematical Reviews subject classification: Primary: 42B30 Received by the editors May 30, 1995 364 Chin-Cheng Lin

S(G), the Schwartz space of rapidly decreasing smooth functions, satisfying $\int_C \phi(x) dx = 1$. Define

$$\phi_r(x) = r^{-Q}\phi(x/r)$$

and the maximal function f^* by

$$f^*(x) = \sup_{r>0} |f * \phi_r(x)|,$$

where the convolution operator is given by

$$f * g(x) = \int_G f(xy^{-1})g(y) dy = \int_G f(y)g(y^{-1}x) dy.$$

We say a tempered distribution $f \in \mathcal{S}'(G)$ is in $H^p(G)$ if f^* is in $L^p(G)$. The quasi-norm on H^p is $||f||_{H^p}^p \equiv ||f^*||_{L^p}^p$, which satisfies $||f+g||_{H^p}^p \leq ||f||_{H^p}^p + ||g||_{H^p}^p$ for 0 . When <math>p > 1, H^p and L^p are essentially the same because of the celebrated theorem of Hardy and Littlewood $||f^*||_{L^p} \le C_p ||f||_{L^p}$; however, when $p \le 1$ the space H^p is much better adapted to problems arising in the theory of harmonic analysis. We now are ready to give an extension of Fatou's lemma to $H^p(G)$.

Theorem 1 If f_n $(n = 1, 2, 3, \dots), f \in \mathcal{S}'(G)$ and $\{f_n\}$ converges to f in $\mathcal{S}'(G)$, then $||f||_{H^p} \leq \liminf_{n \to \infty} ||f_n||_{H^p}$.

PROOF. Since the bilinear map $(f, \phi_r) \mapsto f * \phi_r$ is separately continuous from $\mathcal{S}' \times \mathcal{S}$ into C^{∞} (cf. [1, page 38]), for each r > 0,

$$|f * \phi_r(x)| = \lim_{n \to \infty} |f_n * \phi_r(x)| \le \liminf_{n \to \infty} \sup_{r > 0} |f_n * \phi_r(x)| = \liminf_{n \to \infty} f_n^*(x).$$

The above inequality holds for all r > 0, so we have the pointwise inequality

$$f^*(x) = \sup_{r>0} |f * \phi_r(x)| \le \liminf_{n\to\infty} f_n^*(x).$$

We apply the classic Fatou's lemma to get

$$\int_{G} f^{*}(x)^{p} dx \leq \int_{G} \liminf_{n \to \infty} f_{n}^{*}(x)^{p} dx \leq \liminf_{n \to \infty} \int_{G} f_{n}^{*}(x)^{p} dx$$

which means $||f||_{H^p}^p = ||f^*||_{L^p}^p \le \liminf_{n \to \infty} ||f_n^*||_{L^p}^p = \liminf_{n \to \infty} ||f_n||_{H^p}^p.$

References

[1] G. B. Folland and E. M. Stein, *Hardy Spaces on Homogeneous Groups*, Mathematical Notes, **28** (1982), Princeton Univ. Press, Princeton, NJ.