Marek Balcerzak, Institute of Mathematics, Lodz Technical University, al. Politechniki 11, 90-924 Lodz, Poland, email: mbalce@@krysia.uni.lodz.pl Joanna Peredko, Institute of Mathematics, Lodz Technical University, al. Politechniki 11, 90-924 Lodz, Poland, email: joannape@@lodz1.p.lodz.pl Janusz Pawlikowski, Department of Mathematics, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland, email: pawlikow@@math.uni.wroc.pl

ON FUBINI-TYPE THEOREMS

Abstract

We discuss some questions concerning the strengthened version of the Kuratowski-Ulam theorem obtained by Ceder. In particular, we refute Ceder's conjecture that the measure analogue of his result holds. Further we consider mixed product σ -ideals $\mathbb{K} \times \mathbb{L}$ and $\mathbb{L} \times \mathbb{K}$ in \mathbb{R}^2 where \mathbb{K} and \mathbb{L} denote the families of meager and of Lebesgue null sets in \mathbb{R} . For a set $A \in \mathbb{K} \times \mathbb{L}$ (or $A \in \mathbb{L} \times \mathbb{K}$) we find large sets P and Q such that $P \times Q$ misses A. The proof is based on similar properties of $\mathbb{K} \times \mathbb{K}$ and $\mathbb{L} \times \mathbb{L}$ obtained by Ceder, Brodskii and Eggleston. A parametrized version of a Fubini-type theorem is also given.

Ceder [C, Th. 12] presents the following strengthened form of the Kuratowski-Ulam theorem (see [O]). (For $A \subseteq X \times Y$, $A_x = \{y : \langle x, y \rangle \in A\}$ and $A^y = \{x : \langle x, y \rangle \in A\}$.)

Theorem 1 If $A \subseteq \mathbb{R}^2$ is a meager set, then there exists a residual G_{δ} set $B \subseteq \mathbb{R}$ such that for each set $P \subseteq B$ of type F_{σ} the set $\bigcup_{x \in P} A_x$ is meager.

Ceder asks whether the F_{σ} requirement here is essential. The following example shows that it is.

Example 1. Let A be the graph of the projection from \mathbb{R}^2 to \mathbb{R} , i.e., $A = \{\langle \langle y, z \rangle, y \rangle \in \mathbb{R}^2 \times \mathbb{R} : y, z \in \mathbb{R} \}$. Then A is meager in $\mathbb{R}^2 \times \mathbb{R}$. Given a residual

Key Words: Fubini theorem, meager set, null set, products of σ -ideal Mathematical Reviews subject classification: Primary: 04A15, 28A05 Received by the editors Jan 26, 1995

 G_δ set $B\subseteq\mathbb{R}^2$ we can find a meager G_δ set $P\subseteq B$ such that $\bigcup_{\langle y,z\rangle\in P}A_{\langle y,z\rangle}$ is

residual. Indeed, since B is residual in \mathbb{R}^2 there exists $z \in \mathbb{R}$ with B^z residual. Let $P = B^z \times \{z\}$. Clearly $P \subseteq B$ and P is a meager G_δ subset of \mathbb{R}^2 . However

$$\bigcup_{\langle y,t\rangle\in P}A_{\langle y,t\rangle}=\bigcup_{y\in B^z}A_{\langle y,z\rangle}=B^z$$

is residual in \mathbb{R} .

To get an example in $\mathbb{R} \times \mathbb{R}$ rather than in $\mathbb{R}^2 \times \mathbb{R}$ proceed as follows. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a Borel isomorphism such that for all $X \subseteq \mathbb{R}$, X is meager in \mathbb{R} iff $f^{-1}[X]$ is meager in \mathbb{R}^2 . There exist residual G_δ sets $G \subseteq \mathbb{R}^2$ and $H \subseteq \mathbb{R}$ such that f restricted to G is a homeomorphism of G and G. Let $G = \{\langle f(y,z),y\rangle : y,z\in \mathbb{R}\}$. Then G is a Borel subset of G such that for all G is a singleton. Hence G is meager. Given a residual G set G is a residual G subset of G subset of G subset of G subset of G is a meager G subset of G. However

$$\bigcup_{x \in P} A_x = \bigcup_{y \in C^z} A_{f(y,z)} = C^z$$

is residual in \mathbb{R} .

The next example shows that we cannot claim the set B in Theorem 1 to be open, even for A closed with all vertical sections null (hence also nowhere dense).

Example 2. Talagrand [T] shows that for every perfect set $E \subseteq \mathbb{R}$ and every interval I there is a perfect null set $P \subseteq I$ such that E+P contains an interval. (Here $E+P=\{x+y:x\in E,y\in P\}$.)

Now, fix a perfect null set $E \subseteq \mathbb{R}$. Obviously, it is nowhere dense. Let $A = \{\langle x,y \rangle : y-x \in E\}$. Then A is nowhere dense null since it is closed and for each $x \in \mathbb{R}$ the section $A_x = E + x$ is nowhere dense null. In any fixed interval I we can choose a perfect null set $P \subseteq I$ such that E + P contains an interval. We have

$$\bigcup_{x \in P} A_x = \bigcup_{x \in P} (E + x) = E + P.$$

Hence $\bigcup_{x \in P} A_x$ contains an interval.

In view of the well known duality between measure and category, Ceder conjectured the following.

Conjecture 1 ([C, p. 284]) If $A \subseteq \mathbb{R}^2$ is a null set, then there exists an F_{σ} set $B \subseteq \mathbb{R}$ of full measure such that for each null set $P \subseteq B$ of type G_{δ} , the set $\bigcup_{x \in P} A_x$ is null.

Our next example refutes this conjecture.

Example 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a Borel isomorphism such that for all $X \subseteq \mathbb{R}$, X is null in \mathbb{R} iff $f^{-1}[X]$ is null in \mathbb{R}^2 . Let $A = \{\langle f(y,z), y \rangle : y, z \in \mathbb{R}\}$. Then A is a Borel subset of \mathbb{R}^2 such that for all $x \in \mathbb{R}$, A_x is a singleton. Hence A is null. Given a set $B \subseteq \mathbb{R}$ of full measure, $C = f^{-1}[B]$ has full measure in \mathbb{R}^2 , so there exists $z \in \mathbb{R}$ such that C^z has full measure in \mathbb{R} . Let $D \subseteq C^z$ be compact of positive measure such that $f(\cdot, z)$ is continuous on D. The set $D \times \{z\}$ is null in \mathbb{R}^2 , so $P = f[D \times \{z\}]$ is compact and null in \mathbb{R} . However

$$\bigcup_{x \in P} A_x = \bigcup_{y \in D} A_{f(y,z)} = D$$

has positive measure in \mathbb{R} .

Theorem 1 yields the following folklore fact.

Theorem 2 If $A \subseteq \mathbb{R}^2$ is meager, then there exist a c-dense F_{σ} set $P \subseteq \mathbb{R}$ and a residual G_{δ} set $Q \subseteq \mathbb{R}$ such that $P \times Q$ pmisses A.

The measure analogue is a theorem of Brodskii [Br] and Eggleston [E].

Theorem 3 If $A \subseteq \mathbb{R}^2$ is a null set, then there exist a c-dense F_{σ} set $P \subseteq \mathbb{R}$ and an F_{σ} set $Q \subseteq \mathbb{R}$ of full measure such that $P \times Q$ pmisses A.

Remarks.

- (1) Theorems 1 and 2 are of course true for a wide class of spaces, in particular they are true if \mathbb{R}^2 is replaced by $T \times \mathbb{R}$, where T is a perfect subset of \mathbb{R} considered with the relative topology.
- (2) The Lebesgue measure can be defined for the classical Cantor set C (e.g., via the Cantor function from C onto [0,1] which is one-to-one when the end-points of connected components of $[0,1] \setminus C$ are ignored). Similarly, for an arbitrary perfect set $T \subseteq \mathbb{R}$, we can define a natural "Lebesgue measure" on T. Then Theorem 3 holds when \mathbb{R}^2 is replaced by $T \times \mathbb{R}$ with the product measure.

Theorems 2 and 3 are also true for mixed product ideals in \mathbb{R}^2 . Let \mathbb{K} be the σ -ideal of meager subsets of \mathbb{R} , \mathbb{L} — the σ -ideal of Lebesgue null subsets

of \mathbb{R} . For $\mathcal{I}, \mathcal{J} \in \{\mathbb{K}, \mathbb{L}\}$, let

$$\mathcal{I} \times \mathcal{J} = \{ E \subseteq \mathbb{R}^2 : (\exists \text{ Borel } B \subseteq \mathbb{R}^2) (E \subseteq B \& \{ x \in \mathbb{R} : B_x \notin \mathcal{J} \} \in \mathcal{I}) \}$$

The family $\mathcal{I} \times \mathcal{J}$ is called the Fubini product of ideals \mathcal{I} and \mathcal{J} . By the Fubini theorem and the Kuratowski-Ulam theorem (see [O]), $\mathbb{L} \times \mathbb{L}$ and $\mathbb{K} \times \mathbb{K}$ are exactly the σ -ideals of Lebesgue null and of meager sets in \mathbb{R}^2 . The families $\mathbb{K} \times \mathbb{L}$ and $\mathbb{L} \times \mathbb{K}$ also form σ -ideals. They were studied in [Me, G, CP, F, BH]. Note that there is no inclusion between any two of the families $\mathbb{K} \times \mathbb{K}$, $\mathbb{L} \times \mathbb{L}$, $\mathbb{K} \times \mathbb{L}$, $\mathbb{L} \times \mathbb{K}$ (cf. [Me]).

Theorem 4 If $A \subseteq \mathbb{R}^2$ is in $\mathbb{K} \times \mathbb{L}$, then there exist a c-dense F_{σ} set $P \subseteq \mathbb{R}$ and an F_{σ} set $Q \subseteq \mathbb{R}$ of full measure such that $P \times Q$ misses A.

PROOF. Without loss of generality we can assume that A is Borel. Let $D \subseteq \mathbb{R}$ be a meager set such that for all $x \in \mathbb{R} \setminus D$, A_x is null. Fix a countable base $\{U_n\}_{n=1}^{\infty}$ of nonempty open sets in \mathbb{R} and choose a sequence $\{T_n\}_{n=1}^{\infty}$ of pairwise disjoint nowhere dense perfect sets such that $T_n \subseteq U_n \setminus D$ for every n. Now, for every n, apply the version of Theorem 3 discribed in Remark (2) to the set $A_n = A \cap (T_n \times \mathbb{R})$ in the space $T_n \times \mathbb{R}$ with the appriopriate product measure. Then we can find a perfect set $P_n \subseteq T_n$ and a set $Q_n \subseteq \mathbb{R}$ of full measure such that $P_n \times Q_n$ misses A_n . Put $P = \bigcup_n P_n$ and $Q = \bigcap_n Q_n$. \square

Theorem 5 If $A \subseteq \mathbb{R}^2$ is in $\mathbb{L} \times \mathbb{K}$, then there exist a c-dense F_{σ} set $P \subseteq \mathbb{R}$ and a residual G_{δ} set $Q \subseteq \mathbb{R}$ such that $pP \times Q$ misses A.

The proof is analogous to that of Theorem 4.

Finally, we give a parametrized Fubini-type theorem for $\mathbb{K} \times \mathbb{L}$, $\mathbb{L} \times \mathbb{K}$, $\mathbb{L} \times \mathbb{L}$ and $\mathbb{K} \times \mathbb{K}$ (see [Mi] for similar versions of other known theorems).

Theorem 6 Let $\mathcal{I}, \mathcal{J} \in \{\mathbb{K}, \mathbb{L}\}$. Assume that $E \subseteq \mathbb{R}^3$ is a Borel set and $T \subseteq \mathbb{R}$ is a perfect set such that $E_t \in \mathcal{I} \times \mathcal{J}$ for each $t \in T$. Then there exists a perfect set $P \subseteq T$ and a set $H \in \mathcal{I}$ such that $E_{\langle t, x \rangle} \in \mathcal{J}$ for each $\langle t, x \rangle \in P \times (\mathbb{R} \setminus H)$.

PROOF. The set

$$A = \{ \langle t, x \rangle \in T \times \mathbb{R} : E_{\langle t, x \rangle} \notin \mathcal{J} \}$$

is Borel (see e.g. [G, Th. 2.1, 2.2]) and $A_t = \{x \in \mathbb{R} : E_{\langle t, x \rangle} \notin \mathcal{J}\} \in \mathcal{I}$ for each $t \in T$. By Theorems 2 and 3 (where $T \times \mathbb{R}$ is considered instead of \mathbb{R}^2), we find a perfect set $P \subseteq T$ and a set $H \in \mathcal{I}$ such that $P \times (\mathbb{R} \setminus H)$ misses A. Then for each $\langle t, x \rangle \in P \times (\mathbb{R} \setminus H)$ we have $E_{\langle t, x \rangle} \in \mathcal{J}$.

References

- [BH] M. Balcerzak, J. Hejduk, Density topologies for products of σ -ideals, Real Analysis Exchange, **20** (1994/95).
- [Br] M. L. Brodskii, On some properties of sets of positive measure, Uspehi Mat. Nauk, 4 No. 3(31) (1949), 136–138.
- [C] J. Ceder, On globs, Acta Math. Hung., 43 (1984), 273–286.
- [CP] J. Cichoń, J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symb. Logic, 51 (1986), 560–569.
- [E] H. G. Eggleston, Two measure properties of Cartesian product sets,
 Quart. J. Math. Oxford (2), 5 (1954), 108–115
- [F] D. H. Fremlin, The partially ordered sets of measure theory and Tukey's ordering, Note di Mathematica, 11 (1991), 177–214.
- [G] M. Gavalec, Iterated products of ideals of Borel sets, Colloq. Math., **50** (1985), 39–52.
- [Me] C. G. Mendez, On sigma-ideals of sets, Proc. Amer. Math. Soc. 60 (1976), 124–128.
- [Mi] A. W. Miller, *Infinite combinatorics and definability*, Annals of Pure and Applied Logic, **41** (1989), 179–203.
- [O] J.C. Oxtoby, Measure and Category, Springer-Verlag, 1971.
- [T] M. Talagrand, Sommes vectorielles d'ensembles de mesure nulle, Ann. Inst. Fourier, Grenoble, **26(3)** (1976), 137–172.