Krzysztof Banaszewski, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85–064 Bydgoszcz, Poland

ON \mathcal{E} -CONTINUOUS FUNCTIONS

Abstract

Some properties of \mathcal{E} -continuous functions are investigated. In particular, the maximal family with respect to outer and inner compositions for the family of all \mathcal{E} -continuous functions are described. Moreover, under some assumptions on \mathcal{E} it is proved that every function $f: \mathbb{R} \to \mathbb{R}$ can be represented as the composition of two \mathcal{E} -continuous function. Similarly, every function $f: \mathbb{R} \to \mathbb{R}$ can be represented as the limit of a transfinite sequence of \mathcal{E} -continuous functions.

1 Introduction

This paper is a supplement to the article Algebraic properties of \mathcal{E} -continuous functions [1]. One can find there the following definitions.

Let $x \in \mathbb{R}$. A path leading to x is a set $E_x \subset \mathbb{R}$ such that $x \in E_x$ and x is a point of bilateral accumulation of E_x . For $x \in \mathbb{R}$ let $\mathcal{E}(x)$ be a family of paths leading to x. A system of paths is a collection $\mathcal{E} = \{\mathcal{E}(x) : x \in \mathbb{R}\}$ such that each $E_x \in \mathcal{E}(x)$ for every $x \in \mathbb{R}$ (compare with [2]). Sometimes we shall simply refer to E_x as a "path".

We say that L_x (R_x) is a left (right) path leading to x if $L_x = E_x \cap (-\infty, x]$ $(R_x = E_x \cap [x, \infty))$ for some path $E_x \in \mathcal{E}(x)$.

For a system of paths \mathcal{E} we define its σ -closure $\sigma \mathcal{E}$ as the least σ -system of paths containing \mathcal{E} . We shall only consider systems of paths \mathcal{E} having the property that if L_x is a left path leading to x and R_x is a right path leading to x, then $L_x \cup R_x$ is an element of $\mathcal{E}(x)$ and we shall assume that $\mathbb{R} \in \mathcal{E}(x)$ for each $x \in \mathbb{R}$. We shall classify systems of paths according to the following scheme: a system of paths $\mathcal{E} = {\mathcal{E}(x) : x \in \mathbb{R}}$ will be said to be

Key Words: system of paths, \mathcal{E} -continuous functions, \mathcal{PR} functions, \mathcal{PC} functions, bilaterally quasi-continuous functions, $\mathcal{C}(m)$ functions, $\mathcal{E}IVP$, CIVP, the maximal family with respect to outer and inner compositions, transfinite limit

Mathematical Reviews subject classification: Primary: 26A15 Received by the editors November 28, 1994

- of δ -type, if $E_x \cap [x \delta, x + \delta]$ contains a path in $\mathcal{E}(x)$ for every $E_x \in \mathcal{E}(x)$ and for every $\delta > 0$.
- of Δ -type, if \mathcal{E} is a δ -type system of paths, and there exists a path $E_y \in \mathcal{E}$ such that $E_y \subset E_x \setminus \{x\}$ for each a path $E_x \in \mathcal{E}$.
- of σ -type, if \mathcal{E} is a δ -type system of paths, and for each triple of sequences of numbers $(a_n)_{n=1}^{\infty}$, $(x_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ such that $b_{n+1} < a_n < x_n < b_n$, $(a_n < x_n < b_n < a_{n+1})$ $b_n \searrow x$ $(a_n \nearrow x)$ and for each left or right or bilateral paths $E_{x_n} \subset [a_n, b_n]$ leading to x_n for $n \in \mathbb{N}$, the set $\bigcup_{n=1}^{\infty} E_{x_n} \cup \{x\}$ contains a right path R_x (left path L_x) derived from an $E_x \in \mathcal{E}(x)$.
- of *c-type*, if \mathcal{E} is a σ -system of paths and every Cantor set C_x such that x is a bilateral point of accumulation of C_x , belongs to $\mathcal{E}(x)$.

Such systems will be called simply δ -systems, σ -systems and c-systems, respectively. We consider real functions of a real variable, unless otherwise explicitly stated.

Let $f: \mathbb{R} \to \mathbb{R}$ and let $\mathcal{E} = \{\mathcal{E}(x) : x \in \mathbb{R}\}$ be a system of paths. We say that a function f is \mathcal{E} -continuous at x (f has a path at x) if there exists a path $E_x \in \mathcal{E}(x)$ such that $f|E_x$ is continuous at x. If f is \mathcal{E} -continuous at every point x, then we say that f is \mathcal{E} -continuous.

We say that a function f has a left (right) path at x if there exists a left (right) path E_x leading to x such that $f|E_x$ is continuous at x.

Let us set out some of the notation to be used in the article:

 \mathcal{C} — the class of all continuous functions,

PR – the class of all functions having perfect road at each point of the domain [5], (cf. [2] and [1]),

 \mathcal{PC} - the class of peripherally continuous functions [9, 2, 1],

 Q_0 - the class of bilaterally quasi-continuous functions [1],

 $\mathcal{C}(m)$ – the class of functions which possess the *cardinality m property*, i.e. $\forall_{x \in \mathbb{R}} \forall_{\delta > 0} \exists_{P \subset \mathbb{R}} \operatorname{card}(P \cap (x, x + \delta)) \geq m$, $\operatorname{card}(P \cap (x - \delta, x)) \geq m$ and f|P is continuous at x, where m is a fixed infinite cardinal number less than or equal to the continuum [1],

 $\mathcal{E}const$ — the class of \mathcal{E} -constant functions, i.e. functions having the property: for each $x \in \mathbb{R}$ there exists a path E_x leading to x such that $f|E_x$ is constant,

 $\mathcal{C}_{\mathcal{E}}$ — if \mathcal{E} is a system of paths, then $\mathcal{C}_{\mathcal{E}}$ denote the class of all \mathcal{E} -continuous functions,

 $\mathcal{E}IVP$ — the class of functions f having the \mathcal{E} -intermediate value property, i.e. functions for which the following condition is satisfied: for every $x,y\in\mathbb{R}$ and for each path $K\in\mathcal{E}$ between f(x) and f(y), there is a path $C\in\mathcal{E}$ between x and y such that $f(C)\subset K$ (cf. [3]).

Let \mathcal{X} be a class of real functions. The family of functions $\mathcal{M}_{out}(\mathcal{X}) = \{f \in \mathcal{X}; \forall_{g \in \mathcal{X}} f \circ g \in \mathcal{X}\}$ is called the maximal family of \mathcal{X} with respect to the outer component of the composition of functions. Similarly we define $\mathcal{M}_{in}(\mathcal{X})$, the maximal family of \mathcal{X} with respect to the inner component of the composition of functions (cf. [6]).

Throughout this paper the symbols $K^-(f,x)$, $K^+(f,x)$ denote the cluster sets from the left and from the right of the function f at the point x, respectively and $K(f,x) = K^-(f,x) \cap K^+(f,x)$. By $Pr_x(A)$ we denote the x-projection of a set $A \subset \mathbb{R}^2$. Set $-A = \{-x : x \in A\}$.

2 Some Basic Lemmas

Remark 2.1 If \mathcal{E} is a σ -system of paths, then every bilaterally quasi continuous function is an \mathcal{E} -continuous function and each \mathcal{E} -continuous function is a peripherally continuous function, i.e. $\mathcal{Q}_0 \subset \mathcal{C}_{\mathcal{E}} \subset \mathcal{PC}$.

Remark 2.2 Let \mathcal{E} be a σ -system of paths and let f be an \mathcal{E} -continuous function. Let $x \in \mathbb{R}$ and $x_n \searrow x$ $(y_n \nearrow x)$. Then there exists a right path $R_x \in \mathcal{E}$ (left path $L_x \in \mathcal{E}$) such that $f|R_x$ $(f|L_x)$ is continuous at x and the sets $(x_{n+1}, x_n) \cap R_x$ $((y_n, y_{n+1}) \cap L_x)$ contains a path E_n for infinite $n \in \mathbb{N}$.

Lemma 2.1 Let \mathcal{E} be an σ -system of paths, $\{x_n\}_{n=1}^{\infty}$ be a sequence and $c \in \overline{\{x_n; n \in \mathbb{N}\}}$. Then there exists an \mathcal{E} -continuous function f such that $f(\mathbb{R} \setminus \{0\}) = \{x_n : n \in \mathbb{N}\}$ and $f(\{0\}) = \{c\}$.

PROOF. Let C be the Cantor ternary set. For each $n \in \mathbb{N}$ let $I_{n,1}, I_{n,2}, \ldots, I_{n,2^{n-1}}$ be the components of $[0,1] \setminus C$ of length 3^{-n} . Let $c \in \{x_n; n \in \mathbb{N}\}$ and let $\varphi = (\varphi_1, \varphi_2)$ be a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Define $f : \mathbb{R} \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} x_{\varphi_1(n)} & \text{if } |x| \in \overline{I}_{n,k}, \ n \in \mathbb{N}, \ k = 1, 2, \dots, 2^{n-1} \\ c & \text{if } x = 0 \\ x_1 & \text{otherwise.} \end{cases}$$

Then f is bilaterally quasi-continuous function and, by Remark 2.1, it is an \mathcal{E} -continuous function.

Theorem 2.1 If \mathcal{E} is an arbitrary system of paths and $f: \mathbb{R} \to \mathbb{R}$ is an \mathcal{E} -continuous function having closed graph, then f is continuous.

PROOF. Suppose that f is not continuous at x_0 from the right. Notice that if there exists $y \in K^+(f, x_0) \setminus \{f(x_0), \pm \infty\}$, then f is not closed. Thus we have $K^+(f, x_0) \subset \{f(x_0), \pm \infty\}$. Therefore there exists $\delta > 0$ such that if

 $x \in [x_0, x_0 + \delta]$, then $|f(x) - f(x_0)| < 1$ or $f(x) > f(x_0) + 2$ or $f(x) < f(x_0) - 2$. Put $A = \{(x, f(x)); x \in [x_0, x_0 + \delta], |f(x) - f(x_0)| \le 1\}$. Since f is closed and the set A is bounded, the set A is compact and therefore $Pr_x(A)$ is closed. Moreover $[x_0, x_0 + \delta] \setminus Pr_x(A) \ne \emptyset$. Let (a, b) be a component of $[x_0, x_0 + \delta] \setminus Pr_x(A)$. Then $a \in A$ and a function f is not \mathcal{E} -continuous at a from the right. This is impossible.

3 The \mathcal{E} -intermediate Value Property

Remark 3.1 Let \mathcal{E} be a σ -system of paths. If $f \in \mathcal{E}IVP$, then for each $x \in \mathbb{R}$ there exists sequence $(x_n)_{n=1}^{\infty}$ such that $x_n \searrow x$ $(x_n \nearrow x)$ and $f(x_n) \to f(x)$.

PROOF. If for some $\delta > 0$ $f|(x, x - \delta)$ is constant, then the sequence $(x_n)_{n=1}^{\infty}$ exists. Assume that $y_n \searrow x$ and $f(y_n) \neq f(x)$ for $n \in \mathbb{N}$. Let $(K_n)_{n=1}^{\infty}$ be a sequence of paths such that $K_n \subset (f(x), \min(f(y_n), f(x) + 1/n))$ if f(y) > f(x) and $K_n \subset (\max(f(y_n), f(x) - 1/n, f(x)))$ otherwise. Because $f \in \mathcal{E}IVP$, for each $n \in \mathbb{N}$ there exists a path $C_n \subset (x, y_n)$ such that $f(C_n) \subset K_n$. For each $n \in \mathbb{N}$ choose a point $x_n \in C_n$. Then $x_n \searrow x$ and $f(x_n) \to f(x)$.

Lemma 3.1 If \mathcal{E} is a σ -system of paths, then $\mathcal{E}IVP \subset \mathcal{C}_{\mathcal{E}}$ and the opposite inclusion does not hold.

PROOF. Let f be an arbitrary function satisfying $\mathcal{E}IVP$ and $x \in \mathbb{R}$. We shall construct a right path E_x leading to x such that $f|E_x$ is continuous at x.

Notice that if for some $\delta > 0$, f(y) = f(x) for each $y \in [x, x + \delta]$, then for arbitrary right path R_x leading to x the function $f|R_x$ is continuous at x. Otherwise by Remark 3.1 there exists a sequence $(x_n)_{n=1}^{\infty}$ of reals such that $x_n \searrow x$, and $f(x_n)$ is monotonically convergent to f(x). Suppose that $f(x_{n+1}) < f(x_n)$ for each n. Then for each path P_n between $f(x_{n+1})$ and $f(x_n)$ there exists a path E_n between x_{n+1} and x_n such that $f(E_n) \subset P_n$ for all $n \in \mathbb{N}$. Since \mathcal{E} is a σ -system of paths, $\bigcup_{n=1}^{\infty} E_n \cup \{x\}$ is a right path leading to x and $f|E_x$ is continuous at x. In the same way we can prove that f has a left path at x.

By Lemma 2.1 there exists an \mathcal{E} -continuous function f such that $f(\mathbb{R}) = \{0,1\}$. This function is not $\mathcal{E}IVP$. Thus $\mathcal{C}_{\mathcal{E}} \not\subset \mathcal{E}IVP$.

Remark 3.2 Note that if \mathcal{E} is a collection of open intervals and $\mathcal{C}_{\mathcal{E}}$ is the class of all \mathcal{E} -continuous functions, then the first assertion of Lemma 3.1 is not true. Thus the assumption that \mathcal{E} is σ -system is important.

Theorem 3.1 If \mathcal{E} is a δ -system of paths, then $\mathcal{E}IVP = (\sigma \mathcal{E})IVP$.

PROOF. Suppose that f is $\mathcal{E}IVP$. Choose $x, y \in \mathbb{R}$ such that $f(x) \neq f(y)$ and let $K \in \sigma \mathcal{E}$ be a path between f(x) and f(y). Then there exists $K_0 \in \mathcal{E}$ such that $K_0 \subset K$ and $C_0 \in \mathcal{E}$ for which $f(C_0) \subset K_0 \subset K$. Thus f is $(\sigma \mathcal{E})IVP$. Choose a function g having $(\sigma \mathcal{E})IVP$. Let x, y be such that $f(x) \neq f(y)$ and let $K \in \mathcal{E}$ be between f(x) and f(y). Then there exists $C \in \sigma \mathcal{E}$ such that $f(C) \subset K$. Each path $C \in \sigma \mathcal{E}$ contains a paths $C_0 \in \mathcal{E}$; so $f(C_0) \subset f(C) \subset K$, which completes the proof.

Example 3.1 There exists a σ -system of paths \mathcal{E} for which $\mathcal{C} \not\subset \mathcal{E}IVP$ and $\mathcal{E}IVP \not\subset \mathcal{C}$.

PROOF. Let W be the set of all algebraic numbers, $W = \{x \in \mathbb{R}; w(x) = 0 \text{ for some } w \in \mathbb{Q}[x]\}$. Define $F_x^{\varepsilon} = \mathbb{Q} \cap (x - \varepsilon, x + \varepsilon)$ and $\mathcal{F}(x) = \{F_x^{\varepsilon}; \varepsilon > 0\}$ if $x \in \mathbb{Q}$, and $\mathcal{F}(x) = \{A \in 2^{\mathbb{R} \setminus W}; x \text{ is a point of bilateral accumulation of } A\}$ otherwise. Put $\mathcal{E} = \sigma \mathcal{F}$. Define a continuous function f by $f(x) = \sqrt{|x|}$. We shall prove that f is not $\mathcal{E}IVP$. Let x = 0, y = 1 and $K = (0, 1) \cap \mathbb{Q}$. Then $K \in \mathcal{E}$ and $K \subset (f(x), f(y))$. Choose a path $C \subset (x, y)$. Since $\mathcal{E}IVP = \mathcal{F}IVP$, we can assume that $C \in \mathcal{F}$. If C is a path leading to $x \in \mathbb{R} \setminus \mathbb{Q}$, then $f(C) \cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$, and thus $f(C) \not\subset K$. If C is a path leading to some $x \in \mathbb{Q}$, then it contains a rational number y such that $\sqrt{y} \not\in \mathbb{Q}$. Therefore $f(C) \not\subset K$, too. Put

$$g(x) = \begin{cases} 4n(2n-1)x - 4n + 1 & \text{if } x \in \left[\frac{1}{2n}, \frac{1}{2n-1}\right], \ n \in \mathbb{N} \\ -4n(2n+1)x + 4n + 1 & \text{if } x \in \left(\frac{1}{2n+1}, \frac{1}{2n}\right), \ n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Then q is a discontinuous function having $\mathcal{E}IVP$.

Theorem 3.2 EIVP = C holds for no system of paths E.

PROOF. Assume that $\mathcal{C} \subset \mathcal{E}IVP$. Let $f(x) = \sin 1/x$ if $x \neq 0$ and f(x) = 0 for x = 0. Choose x, y such that x < y and $f(x) \neq f(y)$. Let K be an arbitrary path from \mathcal{E} which is between f(x) and f(y). Assume that y > 0. (The proof in the other case is similar.) Then there exists a point x_1 such that $0 < x_1 < y$ and $f(x_1) = f(x)$. Since $f|[x_1, y]$ is continuous and K is between $f(x_1)$ and f(y), there exists a path $C \subset (x_1, y)$ from \mathcal{E} for which $f(C) \subset K$. Therefore $f \in \mathcal{E}IVP \setminus \mathcal{C}$.

Theorem 3.3 If \mathcal{E} is δ -system of paths and if $f: \mathbb{R} \to \mathbb{R}$ is a $\mathcal{E}IVP$ closed function, then f is continuous.

PROOF. If \mathcal{E} is δ -system of paths, then by Theorem 3.1, $\mathcal{E}IVP = (\sigma \mathcal{E})IVP$. Then by Lemma 3.1 each function f having $(\sigma \mathcal{E})IVP$ is $\sigma \mathcal{E}$ -continuous. Thus by Theorem 2.1, f is continuous.

Remark 3.3 Let $E_x = \mathbb{R}$ and $\mathcal{E} = \{\mathbb{R}\}$ be a system of paths. Then each function $f : \mathbb{R} \to \mathbb{R}$ has $\mathcal{E}IVP$ and claim of Theorem 3.3 is not true. Thus the assumption that \mathcal{E} is a δ -system is important.

Theorem 3.4 If \mathcal{E} is a system of paths, then $g \circ f \in \mathcal{E}IVP$ for all functions $f, g \in \mathcal{E}IVP$.

PROOF. Choose $x, y \in \mathbb{R}$ such that x < y and $g(f(x)) \neq g(f(y))$. Let K be arbitrary path between g(f(x)) and g(f(y)). Then $f(x) \neq f(y)$ and there exists a path P between f(x) and f(y) such that $g(P) \subset K$. Notice that there exists a path $C \subset (x, y)$ for which $f(C) \subset P$. Consequently, $g(f(C)) \subset K$. \square

Lemma 3.2 Let \mathcal{E} be a δ -system of paths, $f \in \mathcal{E}IVP$ and $x_0 \in \mathbb{R}$. If $m = \inf K^+(f, x_0)$ $(m = \inf K^-(f, x_0))$ and if $M = \sup K^+(f, x_0)$ $(M = \sup K^-(f, x_0))$, then $K^+(f, x_0)$ $(K^-(f, x_0))$ is equal to the interval [m, M].

PROOF. If f is a continuous function from the right at x_0 , then m = M. Suppose that f is discontinuous from the right at x_0 and there exists an open bounded interval $(a,b) \subset (m,M)$ such that $(a,b) \cap K^+(f,x_0) = \emptyset$ and $m,M,f(x_0) \notin [a,b]$. Then there exists a point $x_1 > x_0$ such that

$$[a,b] \subset (\min\{f(x_0), f(x_1)\}, \max\{f(x_0), f(x_1)\}) \text{ and } f(x) \notin (a,b)$$

for $x \in [x_0, x_1]$. Choose a path $K \subset (a, b)$. Then K is between $f(x_0)$ and $f(x_1)$ and $f(C) \not\subset K$ for each path $C \subset (x_0, x_1)$. This is impossible; so $K^+(f, x_0)$ is dense in [m, M]. Since $K^+(f, x_0)$ is closed, $K^+(f, x_0) = [m, M]$.

Theorem 3.5 Let \mathcal{E} be a δ -system of paths, $f \in \mathcal{E}IVP$, $x_0 \in \mathbb{R}$ and $z \in K(f,x_0) \setminus \{\pm \infty\}$. Then the function

$$g(x) = \begin{cases} f(x) & \text{if } x \neq x_0 \\ z & \text{otherwise} \end{cases}$$

has the \mathcal{E} -intermediate value property.

PROOF. Choose $x, y \in \mathbb{R}$ such that x < y and $g(x) \neq g(y)$. We can assume that g(x) < g(y). Choose an arbitrary path $K_s \subset (g(x), g(y))$ leading to some $s \in (g(x), g(y))$. We shall consider two cases.

1. Assume that $x = x_0$. (If $y = x_0$, the proof is analogous.) Set $c = \min\{|s-g(x)|, |s-g(y)|\}$. Let K_1 be a path leading to s such that $K_s \cap (s - \frac{c}{2}, s + \frac{c}{2})$. Because $(\min\{z, f(x_0)\}, \max\{z, f(x_0)\}) \subset K(f, x_0)$, we can choose a point x_1 such that $x_0 < x_1 < y$ and

(a)
$$f(x_1) \in (f(x_0), z)$$
 if $f(x_0) < z$,

- (b) $f(x_1) \in (z, s \frac{c}{2})$ if $f(x_0) \in (z, g(y))$,
- (c) $f(x_1) \in (s + \frac{c}{2}, g(y))$ if $f(x_0) \ge g(y)$.

Then $K_1 \subset (g(x_1), g(y))$ and there exists a path C such that $C \subset (x_1, y)$ if (a) or (b) holds, $C \subset (x_0, x_1)$ if (c) holds, and $g(C) \subset K_1$.

2. Suppose that $x \neq x_0 \neq y$.

If $x_0 \notin (x,y)$, then there exists a path C between x and y such that $g(C) = f(C) \subset K_s$. Let $x_0 \in (x,y)$. Then there exists a path C_r leading to some $r \in (x,y)$ such that $f(C_r) \subset K_s$. If $x_0 \neq r$, then there exists a positive number δ and path C leading to r such that $x_0 \notin C \subset C_r \cap (r - \delta, r + \delta)$. Thus $g(C) = f(C) \subset K_s$. Assume that $x_0 = r$ and f(r) < g(r). (If f(r) > g(r), then the proof is similar.) We shall consider two cases.

- (i) If f(r) < s, then $s \in (f(r), f(y))$ and $K_s \cap (f(r), f(y)) \subset (g(x), g(y))$ contains a path K. But then there exists a path $C \subset (r, y) \subset (x, y)$ such that $g(C) = f(C) \subset K \subset K_s$.
- (ii) If f(r) > s, then $s \in (f(x), f(r))$. Because $f \in \mathcal{E}IVP$, there exists a path $C \subset (x, r)$ such that $g(C) = f(C) \subset K \subset K_s$.

This completes the proof.

Lemma 3.3 Let $f:(-\infty,a)\to\mathbb{R}$, $g:(a,\infty)\to\mathbb{R}$, $f,g\in\mathcal{E}IVP$ and $c\in[K^-(f,a)\cap K^+(g,a)]\setminus\{\pm\infty\}$. If \mathcal{E} is a Δ -system of paths, then the function

$$h(x) = \begin{cases} f(x) & \text{if } x < a \\ c & \text{if } x = a \\ g(x) & \text{if } x > a \end{cases}$$

has $\mathcal{E}IVP$.

PROOF. Choose x,y such that h(x) < h(y) and a path $K \in \mathcal{E}$ such that $K \subset (h(x),h(y))$. Suppose that x < y. It is enough to prove that there exists a path $C \in \mathcal{E}$ between x and y such that $h(C) \subset K$. If $x,y \in (-\infty,a)$ or $x,y \in (a,\infty)$, then such a path C exists, because $f,g \in \mathcal{E}IVP$. If x=a or y=a, then by Theorem 3.5, there exists a path $C \in \mathcal{E}$ such that $C \subset (x,y)$ and $f(C) \subset (h(x),h(y))$.

Suppose that x < a < y. We shall consider two cases.

1. $c \notin [h(x), h(y)]$. Assume that c < h(x). Then there exists a point $s \in (a, y)$ such that h(s) < h(x). Since $g \in \mathcal{E}IVP$ and $K \subset (h(s), h(y))$, there exists a path $C \subset (s, y) \subset (x, y)$ with $h(C) = g(C) \subset K$.

2. $c \in [h(x), h(y)]$. Since \mathcal{E} is a Δ -system of path, $(h(x), c) \cap K$ or $(c, h(y)) \cap K$ contains a path $K_1 \in \mathcal{E}$. We can assume that $K_1 \subset (c, h(y)) \cap K$. (Otherwise the proof is analogous.) Then h(y) = g(y). Let s be a point such that a < s < y, g(x) < g(s) < g(y) and $(g(s), g(y)) \cap K_1$ contains a path K_2 . Because $g \in \mathcal{E}IVP$, there exists a path $C \subset (s, y) \subset (x, y)$ such that $g(C) = h(C) \subset K_2 \subset K$.

Remark 3.4 There exists a δ -system of paths \mathcal{E} and functions $f, g \in \mathcal{E}IVP$, $f: (-\infty, 0) \to \mathbb{R}$, $g: (0, \infty) \to \mathbb{R}$ such that $0 \in K^-(f, 0) \cap K^+(g, 0)$ and the function $h: \mathbb{R} \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} f(x) & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ g(x) & \text{if } x > 0 \end{cases}$$

does not have $\mathcal{E}IVP$.

PROOF. Let \mathcal{E} be a δ -system of paths containing all sets having a point of bilateral accumulation. Then $E_0 = \{(-1)^n, n \in \mathbb{N}\} \cup \{0\} \in \mathcal{E}$ and $E_0 \setminus \{0\}$ contains no path; so \mathcal{E} is not a Δ -system of paths. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of all open intervals having rational endpoints such that $I_n \subset (-\infty, 0)$ for $n \in \mathbb{N}$. Let $\{C_{n,\alpha}\}_{n \in \mathbb{N}, \alpha < c}$ be a family of pairwise disjoint Cantor sets such that $C_{n,\alpha} \subset I_n$ for $n \in \mathbb{N}$, $\alpha < c$ where c means the cardinality of the reals (cf. Lemma 2 [8] and [4]). Let $\{x_{\alpha}\}_{\alpha < c}$ be the net of $(-\infty, 0) \setminus E_0$. Put

$$f(x) = \begin{cases} x_{\alpha} & \text{if } x \in \bigcup_{n=1}^{\infty} C_{n,\alpha} \text{ and } \alpha < c \\ -1 & \text{otherwise,} \end{cases}$$
$$g(x) = \begin{cases} -x_{\alpha} & \text{if } x \in -\bigcup_{n=1}^{\infty} C_{n,\alpha} \text{ and } \alpha < c \\ 1 & \text{otherwise.} \end{cases}$$

Then $f, g \in \mathcal{E}IVP$.

Choose a x, y such that x < 0 < y, h(x) < -1 and 1 < h(y). Then $h(C) \not\subset E_0$ for each $C \in \mathcal{E}$ and $h \notin \mathcal{E}IVP$.

Remark 3.5 $\mathcal{E}IVP \not\subset \mathcal{E}const$ and $\mathcal{E}const \not\subset \mathcal{E}IVP$.

PROOF. The function f(x) = x has $\mathcal{E}IVP$ and $f \notin \mathcal{E}const$. Let $x_n = (-1)^n$ for $n \in \mathbb{N}$. By Lemma 2.1 there is an \mathcal{E} -continuous function g such that $g(\mathbb{R}) = \{-1, 1\}$. Note that $g \in \mathcal{E}const$ and $g \notin \mathcal{E}IVP$.

4 Compositions with \mathcal{E} -continuous Functions

For the remainder of this paper \mathcal{E} denotes a σ -system of paths.

Theorem 4.1 $\mathcal{M}_{out}(\mathcal{C}_{\mathcal{E}}) = \mathcal{C}$.

PROOF. The inclusion $\mathcal{C} \subseteq \mathcal{M}_{out}(\mathcal{C}_{\mathcal{E}})$ is obvious. Now we shall prove the opposite inclusion. Let g be an \mathcal{E} -continuous function and suppose that g is not continuous at y_0 from the right. Choose $y \in K^+(g,y_0) \setminus \{g(y_0)\}$. Let $c = |y - g(y_0)|$ if $|y| \neq \infty$ and c = 1 otherwise. Then there exists a sequence $(y_n)_{n=1}^{\infty}$ such that $y_n \searrow y_0$, $\lim_{n \to \infty} g(y_n) = y$ and $|g(y_n) - g(y_0)| > c/2$ for each $n \in \mathbb{N}$. By Lemma 2.1 there exists an \mathcal{E} -continuous function f for which $f(\mathbb{R} \setminus \{0\}) = \{y_n; n \in \mathbb{N}\}$ and $f(\{0\}) = \{y_0\}$. Then for each $x \neq 0$ there exists an $n \in \mathbb{N}$ such that $|g \circ f(x) - g \circ f(0)| = |g(y_n) - g(y_0)| > c/2 > 0$. Consequently, $g \circ f(0) \not\in K^+(g \circ f, 0)$ and $g \circ f \not\in \mathcal{C}_{\mathcal{E}}$, which completes the proof.

Corollary 4.1 $\mathcal{M}_{out}(\mathcal{PC}) = \mathcal{M}_{out}(\mathcal{PR}) = \mathcal{M}_{out}(\mathbb{Q}_0) = \mathcal{M}_{out}(\mathcal{C}(m)) = \mathcal{C}.$

Theorem 4.2 $EIVP \subset \mathcal{M}_{in}(\mathcal{C}_{\mathcal{E}})$.

PROOF. Choose an $x \in \mathbb{R}$. We shall prove that $g \circ f$ has a right path leading to x. If there exists a right path R_x leading to x such that $f|R_x \equiv f(x)$, then $g \circ f|R_x \equiv g(f(x))$; so $g \circ f$ is continuous at x. Otherwise there exists a sequence $(x_n)_{n=1}^{\infty}$ such that $x_n \searrow x$ and $f(x_n)$ is monotonically convergent to f(x). Assume that $f(x_{n+1}) < f(x_n)$. By Remark 2.2 there exists a path $E_{f(x)}$ leading to f(x) such that $g|E_{f(x)}$ is continuous at f(x) and $E_{f(x)} \cap (f(x_{n+1}), f(x_n))$ contains a path E_n for infinitely many $n \in \mathbb{N}$. Since $f \in \mathcal{E}IVP$ and $E_n \subseteq (f(x_{n+1}), f(x_n))$, there exists a path $F_n \subseteq (x_{n+1}, x_n)$ such that $f(F_n) \subseteq E_n$. Note that $E_x = \bigcup_{n=1}^{\infty} F_n \cup \{x\}$ is a right path leading to x and $g \circ f|E_x$ is continuous at x.

Corollary 4.2 Note that if $f \in \mathcal{E}const$, then $g \circ f$ is an \mathcal{E} -continuous function for every \mathcal{E} -continuous function g. By Remark 3.5, $\mathcal{E}IVP \not\subset \mathcal{E}const$. Thus $\mathcal{M}_{in}(\mathcal{C}_{\mathcal{E}}) \not\subset \mathcal{E}IVP$.

Question 4.1 Characterize the class $\mathcal{M}_{in}(\mathcal{C}_{\mathcal{E}})$.

Lemma 4.1 If \mathcal{E} is a c-system of paths, then there exists a one-to-one, \mathcal{E} -continuous function $f: \mathbb{R} \to \mathbb{R}$ of the second class of Baire, such that $f(\mathbb{R})$ is an F_{σ} , uncountable, first category, measure zero set.

PROOF. Let $\{I_k\}_{k=1}^{\infty}$ be a sequence of all open intervals with rational endpoints. In each I_k choose a sequence $\{C_{k,n}\}_{n=1}^{\infty}$ of Cantor measure zero sets such that $C_{k,n} \cap C_{m,p} = \emptyset$ for $(k,n) \neq (m,p)$. Such a sequence $\{C_{k,n}\}_{k,n=1}^{\infty}$ exists since for $k \in \mathbb{N}$ the set $I_k \setminus \bigcup_{l=1}^{k-1} \bigcup_{m=1}^{\infty} C_{l,m} \setminus \bigcup_{p=1}^{n-1} C_{k,p}$ is a G_{δ} , uncountable set [4, p. 387]. Let $f_{k,n} : C_{k,n} \to C_{n,k}$ be a homeomorphism of the

Cantor sets $C_{k,n}$ and $C_{n,k}$ for $k, n \in \mathbb{N}$. Denote by C an arbitrary Cantor set contained in $\mathbb{R} \setminus \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} C_{k,n}$. By [7] there exists a bijection of the first class of Baire $\varphi : \mathbb{R} \setminus \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} C_{k,n} \to C$. Put

$$f(x) = \begin{cases} f_{k,n}(x) & \text{if } x \in C_{k,n}, \ k, n \in \mathbb{N} \\ \varphi(x) & \text{otherwise.} \end{cases}$$

Then $f(\mathbb{R}) = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} C_{n,k} \cup C$ is a first category measure zero set and f is an injection of the second class of Baire. Note that the set f|H where $H = \{x \in C_{k,n}; x \text{ is a point of bilateral accumulation of } C_{k,n} \text{ for } k, n \in \mathbb{N}\}$ is bilaterally dense in the graph of f and $f|C_{k,n}$ is continuous at x for any $x \in H$ and $x \in C_{k,n}$ for $k, n \in \mathbb{N}$. Then by Lemma 2.2 [1], f is \mathcal{E} -continuous. \square

Theorem 4.3 Let \mathcal{E} be an arbitrary c-system. There exists a one-to-one \mathcal{E} -continuous function of the second class of Baire $f_0 : \mathbb{R} \to \mathbb{R}$ such that every $f : \mathbb{R} \to \mathbb{R}$ can be represented as a composition of f_0 with some measurable \mathcal{E} -continuous function $f_1 : \mathbb{R} \to \mathbb{R}$ which has the Baire property. Thus every function f is a composition of two \mathcal{E} -continuous functions.

PROOF. Let $\{I_k\}_{k=1}^{\infty}$ be a sequence of all open intervals with rational endpoints and let f_0 be a function from Lemma 4.1. Since $f(\mathbb{R})$ is an F_{σ} , uncountable, first category, measure zero set, in each interval I_k we can choose a sequence of Cantor sets $\{K_{k,n}\}_{n=1}^{\infty}$ such that $K_{k,n} \cap f(\mathbb{R}) = \emptyset$ and $K_{k,n} \cap K_{m,p} = \emptyset$ for $(k,n) \neq (m,p)$. Let $\{q_k\}_{k=1}^{\infty}$ be an enumeration of rationals. Define

$$f_1(y) = \begin{cases} f(f_0^{-1}(y)) & \text{if } y \in f_0(\mathbb{R}) \\ q_k & \text{if } y \in K_{k,n} \\ 0 & \text{otherwise.} \end{cases}$$

If x is a point of bilateral accumulation of $K_{k,n}$, then $f_1|K_{k,n}$ is continuous at x and the union of the set of all points of bilateral accumulation of $K_{k,n}$ is bilaterally dense in the graph of f_1 . Thus f_1 is \mathcal{E} -continuous. Choose an $x \in \mathbb{R}$. Then $f_1 \circ f_0(x) = f(f_0^{-1}(f_0(x))) = f(x)$.

Lemma 4.2 Assume that a function $f : \mathbb{R} \to \mathbb{R}$ fulfills the condition:

(i) for each interval $J \subset \mathbb{R}$ and for each first category set $F \subset \mathbb{R}$ there exist Cantor sets C_1 , $C_2 \subset J \setminus F$ such that $f(C_1)$ and $f^{-1}(C_2)$ are of first category.

Then there exist families of sets $\{A_y; y \in \mathbb{R}\}$ and $\{B_y; y \in \mathbb{R}\}$ such that:

(1) Let $\{I_n\}_{n\in\mathbb{N}}$ be a set of all intervals having rational endpoints. For each $y\in\mathbb{R}$ there exist families of Cantor sets $\{C_{n,y}\}_{n\in\mathbb{N}}$, $\{K_{n,y}\}_{n\in\mathbb{N}}$ such that $\bigcup_{n=1}^{\infty}C_{n,y}\subset A_y$, $\bigcup_{n=1}^{\infty}K_{n,y}\subset B_y$, $C_{n,y}\cap C_{m,y}=\emptyset=K_{n,y}\cap K_{m,y}$ for $m\neq n$ and $C_{n,y}$, $K_{n,y}\subset I_n$, interval $J\subset\mathbb{R}$, $A_y\cap J$ and contain a Cantor set,

- (2) if $y \neq y_1$, then $A_y \cap A_{y_1} = \emptyset = B_y \cap B_{y_1}$,
- (3) $\bigcup_{y\in\mathbb{R}} A_y$, $\bigcup_{y\in\mathbb{R}} B_y$ are of first category,
- (4) $f(\bigcup_{y\in\mathbb{R}} A_y) \cap \bigcup_{y\in\mathbb{R}} B_y = \emptyset$.

PROOF. Let $\{I_k\}_{n=1}^{\infty}$ be a sequence of all open intervals with rational endpoints. Let $\{C_n\}_{n=1}^{\infty}$ and $\{K_n\}_{n=1}^{\infty}$ be sequences of Cantor sets such that $f(C_n)$, $f^{-1}(K_n)$ are first category sets and

$$K_{1} \subset I_{1},$$

$$C_{1} \subset I_{1} \setminus f^{-1}(K_{1}),$$

$$\vdots \qquad \vdots$$

$$K_{n} \subset I_{n} \setminus [\bigcup_{k=1}^{n-1} K_{k} \cup f(\bigcup_{k=1}^{n-1} C_{k})],$$

$$C_{n} \subset I_{n} \setminus [\bigcup_{k=1}^{n-1} C_{k} \cup f^{-1}(\bigcup_{k=1}^{n} K_{k})],$$

$$\vdots \qquad \vdots$$

Represent all sets C_n and K_n as unions $C_n = \bigcup_{\alpha < c} C_{n,\alpha}$ and $K_n = \bigcup_{\alpha < c} K_{n,\alpha}$ of pairwise disjoint perfect sets (cf. [4]). Let $(y_\alpha)_{\alpha < c}$ be a transfinite sequence of all reals. Put $A_y = \bigcup_{n=1}^{\infty} C_{n,\alpha}$, $B_y = \bigcup_{n=1}^{\infty} K_{n,\alpha}$ where $y = y_\alpha$ and $y \in \mathbb{R}$. Obviously, the families of sets $\{A_y; y \in \mathbb{R}\}$, $\{B_y; y \in \mathbb{R}\}$ fulfill the conditions (1)–(4).

Theorem 4.4 If a function $f : \mathbb{R} \to \mathbb{R}$ fulfills condition (i) and $g : \mathbb{R} \to \mathbb{R}$ is a surjection, then there exist \mathcal{E} -continuous surjections $h_1, h_2 : \mathbb{R} \to \mathbb{R}$ such that $h_1 \circ f = g \circ h_2$.

PROOF. Let a function f fulfill condition (i), g be a surjection and $\{A_y; y \in \mathbb{R}\}$, $\{B_y; y \in \mathbb{R}\}$ be families of sets from Lemma 4.2. We shall construct functions $h_2 : \mathbb{R} \to \mathbb{R}$ and $h_1 : \mathbb{R} \to \mathbb{R}$.

Put $h_2|A_y\equiv h_1|B_y\equiv y$ for $y\in\mathbb{R}$. If $x\in f^{-1}(B_y)$, then let $h_2(x)=z$, where z is an arbitrary point from a set $g^{-1}(\{y\})$. For $x\in f(A_y)$ define $h_1(x)=g(y)$. Now we define a value of functions h_2 and h_1 in a set $S_2=\bigcup_{y\in\mathbb{R}}(A_y\cup f^{-1}(B_y))$ and $S_1=\bigcup_{y\in\mathbb{R}}(B_y\cup f(A_y))$, respectively. For $x\in\mathbb{R}\setminus S_1$ let $h_1(x)=0$. Fix an $x\in\mathbb{R}\setminus S_2$. If $f(x)\in\mathbb{R}\setminus S_1$, then define $h_2(x)=t$ where t is an arbitrary point for which g(t)=0. Suppose that $f(x)\in S_1$. If $f(x)\in B_y$ for some $y\in\mathbb{R}$, then put $h_2(x)=z$, where z is an arbitrary point belonging to the set $g^{-1}(\{y\})$. If $f(x)\in f(A_y)$ for $y\in\mathbb{R}$ set $h_2(x)=y$.

We shall prove that $h_1 \circ f = g \circ h_2$.

- a) If $x \in A_y$ for some $y \in \mathbb{R}$, then $h_2(x) = y$, $f(x) \in f(A_y)$ and we have $h_1 \circ f(x) = g(y) = g \circ h_2(x)$.
- b) If $x \in f^{-1}(B_y)$ for some $y \in \mathbb{R}$, then $h_2(y) \in g^{-1}(\{y\})$ and therefore $g(h_2(x)) = y$. Notice that $f(x) \in B_y$ and $h_1(f(x)) = y$, also.

- c) If $x \in \mathbb{R} \setminus S_2$ and $f(x) \in \mathbb{R} \setminus S_1$, then $g(h_2(x)) = 0 = h_1(f(x))$.
- d) If $x \in \mathbb{R} \setminus S_2$ and $f(x) \in S_1$, then either $g(h_2(x)) = y = h_1(f(x))$ if $f(x) \in B_y$ or $g(h_2(x)) = g(y) = h_1(f(x))$ if $f(x) \in f(A_y)$.

By Lemma 4.2 there exists a sequence of pairwise disjoint Cantor sets $\{C_{n,y}\}_{n\in\mathbb{N},y\in\mathbb{R}}$ such that $C_{n,y}\subset I_n$ and $C_{n,y}\subset A_y$. Let P_2 be the set of all points $z\in\bigcup_{y\in\mathbb{R}}A_y$ such that z is a point of bilateral accumulation of a $C_{n,y}$ for some $n\in\mathbb{N},\ y\in\mathbb{R}$. Then $h_2|P_2$ is bilaterally dense in the graph of the function h_2 and because each $z\in P_2$ is a point at which the function h_2 is \mathcal{E} -continuous, h_2 is \mathcal{E} -continuous everywhere. In the same way we can prove that h_1 is \mathcal{E} -continuous.

5 Transfinite Limits

Recall that a function f is a limit of a transfinite sequence $(f_{\alpha})_{\alpha<\omega_1}$ of functions iff for each positive $\varepsilon>0$ and $x\in\mathbb{R}$ there exists an $\alpha<\omega_1$ such that $|f(x)-f_{\beta}(x)|<\varepsilon$ for all $\beta>\alpha$.

Theorem 5.1 Let \mathcal{E} be a c-system. Then every function $f: \mathbb{R} \to \mathbb{R}$ is a limit of a transfinite sequence $(f_{\alpha})_{\alpha < \omega_1}$ of \mathcal{E} -continuous functions. Moreover, if f is measurable or f is Baire γ ($\gamma \geq 2$), then f_{α} can be taken from the same class for $\alpha < \omega_1$.

PROOF. Let $(I_k)_{k=1}^{\infty}$ be a sequence of all open intervals with rational endpoints. We shall use the fact that in each interval I_k we can choose a sequence $(C_{k,n})_{n=1}^{\infty}$ of Cantor sets such that $C_{k,n} \cap C_{m,p} = \emptyset$ for $(k,n) \neq (m,p)$ (cf. Theorem 4.1). Because there exists a homeomorphism between $C_{k,n}$ and $C_{k,n} \times C_{k,n}$; so we can represent each $C_{k,n}$ as a union $\bigcup_{\alpha < \omega_1} C_{k,n,\alpha}$ of pairwise disjoint perfect sets. Let $(q_n)_{n=1}^{\infty}$ be a sequence of all rationals. Put

$$D_{n,\alpha} = \bigcup_{k=1}^{\infty} C_{k,n,\alpha}$$
 and $f_{\alpha}(x) = \begin{cases} q_n & \text{if } x \in D_{n,\alpha}, \ n \in \mathbb{N} \\ f(x) & \text{otherwise} \end{cases}$

for $\alpha < \omega_1$. Then each function f_{α} is \mathcal{E} -continuous $(\alpha < \omega_1)$. We shall show that

$$f(x) = \lim_{\alpha \to \omega_1} f_{\alpha}(x). \tag{1}$$

Choose an $x \in \mathbb{R}$. Then either $x \notin \bigcup_{n=1}^{\infty} \bigcup_{\alpha < \omega_1} D_{n,\alpha}$; so $f_{\alpha}(x) = f(x)$ for each $\alpha < \omega_1$ and (1) holds, or $x \in D_{n,\beta}$ for some $\beta < \omega_1$ and $n \in \mathbb{N}$. Then $x \notin D_{k,\alpha}$ for $\alpha > \beta$ and $k \in \mathbb{N}$; so $f_{\alpha}(x) = f(x)$ for $\alpha > \beta$. If f is measurable or if f belongs to Baire class γ ($\gamma \geq 2$), then by the definition it is easy see that f_{α} belongs to the same class.

References

- [1] K. Banaszewski, Algebraic properties of \mathcal{E} -continuous functions, Real Analysis Exchange, 18 no. 1, (1992–93), 153–168.
- [2] A. M. Bruckner, R. J. O'Malley and B. S. Thomson, *Path derivatives:* a unified view of certain generalized derivatives, Trans. Amer. Math. Soc., **283** (1984), 97–125.
- [3] R. G. Gibson and F. Roush, *The Cantor intermediate value property*, Top. Proc., **7** (1982), 55–62.
- [4] C. Kuratowski, Topology, Vol. 1, Academic Press, Warszawa, 1966.
- [5] I. Maximoff, Sur les fonctions ayant la propriéte de Darboux, Prace Matem. Fizyc., 43 (1936), 241–265.
- [6] R. Menkyna and L. Mikuláš, The maximal families with respect to the composition of functions with a closed graph, Acta Math. Univ. Comm., LVII (1988), 185–189.
- [7] W. Sierpiński, Sur une propriété des ensembles G_{δ} non dénombrables, Fund. Math., **21** (1933), 66–72.
- [8] J. Smital, On approximation of Baire functions by Darboux functions, Czechoslovak Math. Journal, 21 (96) (1971), 418–423.
- [9] J. Young, A theorem in the theory of functions of real variable, Rend. Circ. Palermo, 24 (1907), 187–192.