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ON £-CONTINUOUS FUNCTIONS

Abstract

Some properties of £-continuous functions are investigated. In par-
ticular, the maximal family with respect to outer and inner compositions
for the family of all £-continuous functions are described. Moreover, un-
der some assumptions on £ it is proved that every function f : R — R
can be represented as the composition of two £-continuous function.
Similarly, every function f : R — R can be represented as the limit of a
transfinite sequence of £-continuous functions.

1 Introduction

This paper is a supplement to the article Algebraic properties of €-continuous
functions [1]. One can find there the following definitions.

Let x € R. A path leading to x is a set E, C R such that x € E, and =
is a point of bilateral accumulation of E,. For x € R let £(x) be a family of
paths leading to x. A system of paths is a collection & = {€(z) : x € R} such
that each E, € £(x) for every x € R (compare with [2]). Sometimes we shall
simply refer to F, as a “path”.

We say that L, (R,) is a left (right) path leading to x if L, = E,N(—00,x]
(Ry = E; N [x,00)) for some path E, € E(z).

For a system of paths £ we define its o-closure o€ as the least o-system
of paths containing £. We shall only consider systems of paths £ having the
property that if L, is a left path leading to z and R, is a right path leading
to z, then L, U R, is an element of £(z) and we shall assume that R € £(x)
for each = € R. We shall classify systems of paths according to the following
scheme: a system of paths & = {€(x) : x € R} will be said to be
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o of d-type, if E, N [x — d,x + J] contains a path in E(z) for every E, € E(x)
and for every J > 0.

o of A-type, if £ is a d-type system of paths, and there exists a path E, € £
such that E, C E, \ {z} for each a path E, € £.

o of o-type, if £ is a §-type system of paths, and for each triple of sequences
of numbers (a,)22, (2,)52, and (b,)5%, such that bpy1 < an < @y, < by,
(an < zp < by < any1) by \( = (a, " x) and for each left or right or
bilateral paths E, C [ay,b,] leading to z, for n € N, the set |-, E,, U
{z} contains a right path R, (left path L,) derived from an E, € &(z).

o of c-type, if £ is a o-system of paths and every Cantor set C, such that z
is a bilateral point of accumulation of Cy, belongs to £(x).

Such systems will be called simply §-systems, o-systems and c-systems,
respectively. We consider real functions of a real variable, unless otherwise
explicitly stated.

Let f: R — R and let £ = {£(z) : © € R} be a system of paths. We say
that a function f is £-continuous at x (f has a path at x) if there exists a path
E, € &(z) such that f|E; is continuous at z. If f is E-continuous at every
point x, then we say that f is &—continuous.

We say that a function f has a left (right) path at x if there exists a left
(right) path E, leading to x such that f|E, is continuous at x.

Let us set out some of the notation to be used in the article:

C — the class of all continuous functions,

PR — the class of all functions having perfect road at each point of the
domain [5], (cf. [2] and [1]),

PC — the class of peripherally continuous functions [9, 2, 1],

Qo — the class of bilaterally quasi-continuous functions [1],

C(m) — the class of functions which possess the cardinality m property, i.e.

VeerVss03pcr card(P N (z, 2 + 0)) > m, card(P N (x — 6,z)) > m
and f|P is continuous at x, where m is a fixed infinite cardinal
number less than or equal to the continuum [1],

Econst — the class of £-constant functions, i.e. functions having the property:
for each x € R there exists a path F, leading to « such that f|FE,
is constant,

Ce — if £ is a system of paths, then Cg denote the class of all £-continuous
functions,

EIVP — the class of functions f having the &-intermediate value property,
i.e. functions for which the following condition is satisfied: for every
z,y € R and for each path K € £ between f(x) and f(y), there is
a path C € £ between = and y such that f(C) C K (cf. [3]).
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Let X be a class of real functions. The family of functions M, (X) = {f €
X;Vgexfog € X} is called the maximal family of X' with respect to the outer
component of the composition of functions. Similarly we define M, (X), the
maximal family of X with respect to the inner component of the composition
of functions (cf. [6]).

Throughout this paper the symbols K~ (f,z), K¥(f,z) denote the clus-
ter sets from the left and from the right of the function f at the point =z,
respectively and K(f,xz) = K~ (f,z) N KT(f,z). By Pr,(A) we denote the
x-projection of a set A C R%. Set —A = {-z: z € A}.

2 Some Basic Lemmas

Remark 2.1 If £ is a o-system of paths, then every bilaterally quasi contin-
wous function is an E-continuous function and each £-continuous function is
a peripherally continuous function, i.e. Qo C Cg¢ C PC.

Remark 2.2 Let £ be a o-system of paths and let f be an £-continuous func-
tion. Let x € R and x, \y x (yn /" x). Then there exists a right path R, € €
(left path L, € &) such that f|Ry (f|Ly) is continuous at x and the sets
(X415 %n) N Ry ((Yn, Yn+1) N L) contains a path E, for infinite n € N.

Lemma 2.1 Let £ be an o-system of paths, {x,}2, be a sequence and ¢ €
{zn;n € N}. Then there ezists an E-continuous function f such that f(R\

{0}) = {z, : n € N} and f({0}) = {c}.

ProOOF. Let C be the Cantor ternary set. For each n € Nlet [, 1, I, 2, ...,
I,, 2n—1 be the components of [0, 1]\ C of length 37". Let ¢ € {z,;n € N} and
let ¢ = (p1,p2) be a bijection between N and N x N. Define f : R — R as
follows:

Tpyny if|z| €Tk, neN, k=1,2,... 27"}
fl@)=4 ¢ if =0
T otherwise.

Then f is bilaterally quasi-continuous function and, by Remark 2.1, it is an
&-continuous function. O

Theorem 2.1 If £ is an arbitrary system of paths and f : R — R is an
E-continuous function having closed graph, then f is continuous.

PROOF. Suppose that f is not continuous at xg from the right. Notice that
if there exists y € KT(f,z0) \ {f(x0), £oc}, then f is not closed. Thus we
have KT (f,z0) C {f(zo),+o0}. Therefore there exists 6 > 0 such that if
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x € [0, xo+0], then | f(z)— f(xo| < 1or f(x) > f(xo)+20r f(x) < fxo)—2.
Put A = {(z, f(z));x € [xo,x0 + 9], |f(z) — f(zo)] < 1}. Since f is closed
and the set A is bounded, the set A is compact and therefore Pr,(A) is
closed. Moreover [zg,zg + 6] \ Pry(A) # 0. Let (a,b) be a component of
[0, Zo + 0] \ Pry(A). Then a € A and a function f is not £-continuous at a
from the right. This is impossible. O

3 The &-intermediate Value Property

Remark 3.1 Let & be a o-system of paths. If f € EIV P, then for each x € R
there exists sequence (x,)%2 such that x, \ = (x, S z) and f(z,) — f(x).

PrOOF. If for some § > 0 f|(z,x — J) is constant, then the sequence (z,)5,
exists. Assume that y, \, « and f(y,) # f(z) for n € N. Let (K,)52; be a
sequence of paths such that K,, C (f(x), min(f(yn), f(z)+1/n))if f(y) > f(x)
and K, C (max(f(yn), f(z) — 1/n, f(x)) otherwise. Because f € EIV P, for
each n € N there exists a path C,, C (z,yy) such that f(C,) C K. For each
n € N choose a point z,, € Cy,. Then =, \, z and f(z,) — f(z). O

Lemma 3.1 If £ is a o-system of paths, then EIVP C Cg and the opposite
inclusion does not hold.

PROOF. Let f be an arbitrary function satisfying EIV P and = € R. We shall
construct a right path E, leading to x such that f|E, is continuous at x.

Notice that if for some 6 > 0, f(y) = f(x) for each y € [z,z + §], then
for arbitrary right path R, leading to x the function f|R, is continuous at
x. Otherwise by Remark 3.1 there exists a sequence (z,)52; of reals such
that z,, \, z, and f(z,) is monotonically convergent to f(z). Suppose that
f(xn+1) < f(zy) for each n. Then for each path P, between f(x,1) and
f(zy) there exists a path F, between x,.1 and x, such that f(E,) C P,
for all n € N. Since € is a o-system of paths, |J)—, E, U{z} is a right path
leading to z and f|E, is continuous at x. In the same way we can prove that
f has a left path at x.

By Lemma 2.1 there exists an £-continuous function f such that f(R) =
{0,1}. This function is not EIVP. Thus Cg ¢ EIV P. O

Remark 3.2 Note that if £ is a collection of open intervals and Cg is the
class of all £-continuous functions, then the first assertion of Lemma 3.1 is
not true. Thus the assumption that £ is o-system is important.

Theorem 3.1 If £ is a 0-system of paths, then EIVP = (¢&€)IV P.
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PROOF. Suppose that f is EIV P. Choose x,y € R such that f(z) # f(y) and
let K € o€ be a path between f(x) and f(y). Then there exists K, € € such
that Ko C K and Cy € & for which f(Cy) € Ko C K. Thus f is (¢€)IV P.
Choose a function g having (6€)IV P. Let z, y be such that f(x) # f(y) and
let K € € be between f(z) and f(y). Then there exists C € o€ such that
f(C) C K. Each path C € o€ contains a paths Cy € &;s0 f(Cp) C f(C) C K,
which completes the proof. [l

Example 3.1 There exists a o-system of paths € for which C ¢ EIVP and
EIVP ¢ C.

PROOF. Let W be the set of all algebraic numbers, W = {z € R; w(z) = 0 for
some w € Q[z]}. Define F2 = QN(x—e, z+¢) and F(x) = {Fi;e > 0} ifx € Q,
and F(z) = {A € 28\W; 1 is a point of bilateral accumulation of A} otherwise.
Put £ = o F. Define a continuous function f by f(z) = \/|z|. We shall prove
that f is not EIVP. Let £ =0, y =1 and K = (0,1) N Q. Then K € £ and
K C (f(z), f(y)). Choose a path C C (z,y). Since EIVP = FIV P, we can
assume that C' € F. If C is a path leading to € R\Q, then f(C)N(R\Q) # 0,
and thus f(C) ¢ K. If C is a path leading to some = € Q, then it contains a
rational number y such that /y ¢ Q. Therefore f(C) ¢ K, too. Put

dn(2n— Dz —4n+1  ifz €[5, 5], n €N

2n’ 2n—1
g(z) =< —4dn2n+ 1)z +4n+1 ifxe(ﬁ,ﬁ) neN
0 otherwise.
Then g is a discontinuous function having EIV P. O

Theorem 3.2 EIV P = C holds for no system of paths .

PROOF. Assume that C C EIVP. Let f(x) =sinl/x if x # 0 and f(x) = 0 for
2 = 0. Choose z, y such that z < y and f(x) # f(y). Let K be an arbitrary
path from £ which is between f(z) and f(y). Assume that y > 0. (The proof
in the other case is similar.) Then there exists a point z1 such that 0 < 21 < y
and f(z1) = f(x). Since f|[x1,y] is continuous and K is between f(x1) and
f(y), there exists a path C C (z1,y) from & for which f(C) C K. Therefore
FeEIvVP\C. 0

Theorem 3.3 If £ is §-system of paths and if f : R — R is a EIV P closed
function, then f is continuous.

PrOOF. If £ is d-system of paths, then by Theorem 3.1, EIVP = (¢&)IV P.
Then by Lemma 3.1 each function f having (¢€)IV P is o&-continuous. Thus
by Theorem 2.1, f is continuous. ]
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Remark 3.3 Let E, = R and £ = {R} be a system of paths. Then each
function f : R — R has EIV P and claim of Theorem 3.3 is not true. Thus
the assumption that £ is a §-system is important.

Theorem 3.4 If £ is a system of paths, then go f € EIV P for all functions
f,geIVP.

PROOF. Choose z,y € R such that z < y and g(f(z)) # ¢(f(y)). Let K
be arbitrary path between g(f(x)) and ¢g(f(y)). Then f(z) # f(y) and there
exists a path P between f(z) and f(y) such that g(P) C K. Notice that there
exists a path C' C (x,y) for which f(C) C P. Consequently, g(f(C)) C K. O

Lemma 3.2 Let £ be a §-system of paths, f € EIVP and oy € R. If
m = inf KT(f,z0) (m = inf K~ (f,20)) and if M = sup KT (f,x9) (M =
sup K~ (f,z0)), then K*(f,z0) (K~ (f,z0)) is equal to the interval [m, M].

ProoF. If f is a continuous function from the right at zy, then m = M.
Suppose that f is discontinuous from the right at zy and there exists an
open bounded interval (a,b) C (m, M) such that (a,b) N KT (f,z9) = 0 and
m, M, f(xo) & [a,b]. Then there exists a point z; > xg such that

[a,b] € (min{f (o), f(21)}, max{f(zo), f(x1)}) and f(x) & (a,b)

for z € [xg,z1]. Choose a path K C (a,b). Then K is between f(z¢) and f(z1)
and f(C) ¢ K for each path C C (zg,x1). This is impossible; so KT (f,z) is
dense in [m, M]. Since K (f,z¢) is closed, KT (f,z0) = [m, M]. O

Theorem 3.5 Let £ be a §-system of paths, f € EIVP, xg € R and z €
K(f,xo) \ {£oo}. Then the function

o(z) = { flx)  if x# xg

z otherwise

has the E-intermediate value property.

PRrROOF. Choose z,y € R such that < y and g(x) # ¢g(y). We can assume
that g(z) < g(y). Choose an arbitrary path Ky C (g(x), g(y)) leading to some
s € (g(x),g(y)). We shall consider two cases.

1. Assume that x = zg. (If y = x(, the proof is analogous.)
Set ¢ = min{|s—g(z)|,|s—g(y)|}. Let K7 be a path leading to s such that
K,N(s—§,5+§). Because (min{z, f(xo)}, max{z, f(x0)}) C K(f, o),
we can choose a point x; such that zo < x1 < y and

(a) fz1) € (f(z0),2) if f(zo) <2,
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(b) f(21) € (2,5 = §) if f(=0) € (2,9(y)),
(¢) f(z1) € (s+5,9(y)) if f(zo) > g(y).

Then K3 C (g(z1), 9(y)) and there exists a path C such that C' C (x1,y)
if (a) or (b) holds, C' C (z¢, z1) if (c) holds, and g(C) C Kj;.

2. Suppose that = # xg # y.

If z9 & (x,y), then there exists a path C between x and y such that
g(C) = f(C) € Ks. Let 9 € (x,y). Then there exists a path C,
leading to some r € (z,y) such that f(C,) C Ks. If 2y # r, then
there exists a positive number § and path C' leading to r such that
2o € C C CrN(r—0,r+96). Thus g(C) = f(C) C Ks. Assume that
xo =r and f(r) < g(r). (If f(r) > g(r), then the proof is similar.) We
shall consider two cases.

(i) IEf(r) < s, thens € (f(r), f(y)) and KN (f(r), f(y)) C (9(2), 9(y))
contains a path K. But then there exists a path C' C (r,y) C (z,y)

such that ¢(C) = f(C) C K C K.

(ii) If f(r) > s, then s € (f(z), f(r)). Because f € EIV P, there exists
a path C C (z,r) such that g(C) = f(C) C K C K.

This completes the proof. O

Lemma 3.3 Let f : (—00,a) > R, g : (a,00) = R, f,g € EIVP and ¢ €
[K~(f,a) N KT (g,a)] \ {xoo}. If € is a A-system of paths, then the function

flx) ifzx<a
h(z) = c ifz=a
gx) ifr>a

has EIVP.

PROOF. Choose z,y such that h(z) < h(y) and a path K € & such that
K C (h(zx),h(y)). Suppose that < y. It is enough to prove that there exists
a path C € & between z and y such that h(C) C K. If z,y € (—o0,a) or
x,y € (a,00), then such a path C exists, because f,g € EIVP. If x = a or
y = a, then by Theorem 3.5, there exists a path C € £ such that C C (x,y)
and f(C) C (h(z), h(y)).

Suppose that £ < a < y. We shall consider two cases.

1. ¢ & [h(x),h(y)]. Assume that ¢ < h(x). Then there exists a point
s € (a,y) such that h(s) < h(z). Since g € EIVP and K C (h(s), h(y)),
there exists a path C C (s,y) C (z,y) with h(C) = g(C) C K.
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2. ¢ € [h(z), h(y)]. Since & is a A-system of path, (h(z),c)NK or (¢, h(y))N
K contains a path K; € £&. We can assume that Ky C (¢, h(y)) N K.
(Otherwise the proof is analogous.) Then h(y) = g(y). Let s be a point
such that a < s <y, g(z) < g(s) < g(y) and (g(s), g(y)) N K1 contains
a path Ks. Because g € EIV P, there exists a path C C (s,y) C (z,vy)
such that g(C) = h(C) C Ky C K. O

Remark 3.4 There exists a §-system of paths € and functions f,g € EIV P,
fi(=00,0) > R, g:(0,00) = R such that 0 € K~(f,0) N K*(g,0) and the
function h : R — R defined by

flx) #fxz<0
h(z) = 0 ifc=20
g(z) ifx>0

does not have EIV P.

PROOF. Let &£ be a J-system of paths containing all sets having a point of
bilateral accumulation. Then Ey = {(—=1)", n € N} U {0} € £ and Ey \ {0}
contains no path; so € is not a A-system of paths. Let {I,}52; be a sequence
of all open intervals having rational endpoints such that I, C (—o0,0) for
n € N. Let {Ch,a}nen,a<c be a family of pairwise disjoint Cantor sets such
that C), o C I, for n € N, o < ¢ where ¢ means the cardinality of the reals
(cf. Lemma 2 [8] and [4]). Let {4y }a<c be the net of (—o0,0) \ Ep. Put

Then f,g € EIVP.
Choose a z,y such that + < 0 <y, h(z) < —1 and 1 < h(y). Then h(C) ¢ Ey
for each C € £ and h ¢ EIV P. ]

zo Hfzeld,_,Chaanda<c
—1  otherwise,

o ifzxe—-2

n=1

Chaoanda<c

f(x)
g()

1 otherwise.

Remark 3.5 EIVP ¢ Econst and Econst ¢ EIVP.

PROOF. The function f(z) = x has EIVP and f & Econst. Let x, = (—1)"
for n € N. By Lemma 2.1 there is an &£-continuous function ¢ such that
g(R) = {—1,1}. Note that g € Econst and g ¢ EIV P. O

4 Compositions with £-continuous Functions

For the remainder of this paper £ denotes a o-system of paths.
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Theorem 4.1 M,,.(Ce) =C.

PROOF. The inclusion C C M,,:(Cg) is obvious. Now we shall prove the
opposite inclusion. Let g be an £-continuous function and suppose that g is
not continuous at yo from the right. Choose y € K (g,%0) \ {g9(v0)}. Let
c=ly —g(yo)| if |y| # oo and ¢ = 1 otherwise. Then there exists a sequence
(Yn )y such that yn N\ Yo, limy 00 9(yn) = y and [g(yn) — g(yo)| > ¢/2 for
each n € N. By Lemma 2.1 there exists an £-continuous function f for which
FR\{0}) = {yn;n € N} and f({0}) = {yo}. Then for each z # 0 there
exists an n € N such that |go f(z) — go f(0)] = |g(yn) — g(yo)| > ¢/2 > 0.
Consequently, g o f(0) € K*(go f,0) and g o f & Cg, which completes the
proof. O

Corollary 4.1 M,,:(PC) = Muut(PR) = Mout(Qo) = Mout(C(m)) =C.

Theorem 4.2 EIVP C M;,(C¢).

PrOOF. Choose an = € R. We shall prove that g o f has a right path leading
to . If there exists a right path R, leading to x such that f|R, = f(x),
then g o f|R, = g(f(x)); so go f is continuous at x. Otherwise there exists
a sequence ()52 ; such that z, \, z and f(x,) is monotonically convergent
to f(z). Assume that f(x,41) < f(z,). By Remark 2.2 there exists a path
Ef(y) leading to f(z) such that g[Ey,) is continuous at f(z) and Ey) N
(f(xnt1), f(xn)) contains a path E, for infinitely many n € N. Since f €
EIVP and E,, C (f(zny1), f(x,)), there exists a path F,, C (2,41, %,) such
that f(F,) C E,. Note that E, = J,—, F,, U{x} is a right path leading to
and g o f|E, is continuous at x. 0

Corollary 4.2 Note that if f € Econst, then go f is an E-continuous function
for every E-continuous function g. By Remark 3.5, EIVP ¢ Econst. Thus
M (Ce) ¢ EIVP.

Question 4.1 Characterize the class M;,(Cg).

Lemma 4.1 If £ is a c-system of paths, then there exists a one-to-one, £-
continuous function f:R — R of the second class of Baire, such that f(R) is
an F,, uncountable, first category, measure zero set.

PRrROOF. Let {I;}?2, be a sequence of all open intervals with rational end-
points. In each Ij choose a sequence {Cj ,,}72, of Cantor measure zero sets
such that Cyn, N Cyp = 0 for (k,n) # (m,p). Such a sequence {Cyn}75,—

exists since for k € N the set I \ U;:ll U1 Cim \ U;L;ll Chp is a Gs, un-

countable set [4, p. 387]. Let fx, : Ckn — Cn i be a homeomorphism of the
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Cantor sets C}, ,, and Cy, , for k,n € N. Denote by C' an arbitrary Cantor set
contained in R\ Upe; U, ; Ck,n- By [7] there exists a bijection of the first
class of Baire ¢ : R\ Up—; Ur—; Ck,n — C. Put

o) = { fen(z) fzeCyp, ky,neN

o(x) otherwise.

Then f(R) = U,~; Use; Crne U C is a first category measure zero set and
f is an injection of the second class of Baire. Note that the set f|H where
H = {z € Cyn;x is a point of bilateral accumulation of Cy, for k,n € N} is
bilaterally dense in the graph of f and f|C,, is continuous at « for any z € H
and x € Cy, for k,n € N. Then by Lemma 2.2 [1], f is &-continuous. O

Theorem 4.3 Let £ be an arbitrary c-system. There exists a one-to-one
E-continuous function of the second class of Baire fo: R — R such that every
f : R = R can be represented as a composition of fo with some measurable
E-continuous function fi : R — R which has the Baire property. Thus every
function f is a composition of two E-continuous functions.

PRrROOF. Let {I;}72, be asequence of all open intervals with rational endpoints
and let fo be a function from Lemma 4.1. Since f(R) is an F,, uncountable,
first category, measure zero set, in each interval I we can choose a sequence
of Cantor sets {K}, ,}5°; such that Ky, N f(R) = 0 and Ky, N K,y , = 0 for
(k,n) # (m,p). Let {gx}32, be an enumeration of rationals. Define

Ffo' ) ity e fo(R)
Hly) =4 @« ify e Kyn
0 otherwise.

If © is a point of bilateral accumulation of Ky ., then fi|Kj , is continuous
at x and the union of the set of all points of bilateral accumulation of Ky ,,
is bilaterally dense in the graph of fi;. Thus f; is £-continuous. Choose an

x € R. Then f; o fo(x) = f(fo_l(fo(:z:))) = f(x). O
Lemma 4.2 Assume that a function f: R — R fulfills the condition:

(i) for each interval J C R and for each first category set F C R there exist
Cantor sets Cy, Cy C J\ F such that f(Cy) and f~1(Cs) are of first
category.

Then there exist families of sets {Ay; y € R} and {By; y € R} such that:

(1) Let {I,}nen be a set of all intervals having rational endpoints. For each
y € R there exist families of Cantor sets {Cy, ytnen, {Kn ytnen such that
Unzi Cny C Ay, UpZi Kny C By, Coy NCry = 0 = Ky y N Ky for
m #n and Cy y, Ky y C I, interval J C R, AyNJ and contain a Cantor
set,
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(2) if y # v, then AyNAy, =0 =B,NB,,,
(3) Uyer Ay: Uyer By are of first category,
(4) f(Uyer 4y) N"Uyer By = 0.

PRrROOF. Let {I;}52, be a sequence of all open intervals with rational end-
points. Let {C,}22; and {K,}32; be sequences of Cantor sets such that
f(C), f~H(K,) are first category sets and

K, C Il,
Cr C L\ fU(EKy),

K, < L\[UZi KU F(UrZ: Cul,
Cn C L\[UrZ CeU (U, Ki)l,

Represent all sets C), and K, as unions C,, = Ua<C Ch,qand K,, = Ua<c Kn.o
of pairwise disjoint perfect sets (cf. [4]). Let (Yo )a<c be a transfinite sequence
of all reals. Put A, =, Cn.a, By = U,—; Kn,o where y =y, and y € R.

Obviously, the families of sets {A,; y € R}, {By; y € R} fulfill the conditions
(1)—(4). O

Theorem 4.4 If a function f : R — R fulfills condition (i) and g : R - R
is a surjection, then there exist £-continuous surjections hi, ho : R — R such

that hyo f = go hs.

PROOF. Let a function f fulfill condition (i), g be a surjection and {A4,;y € R},
{By;y € R} be families of sets from Lemma 4.2. We shall construct functions
ho:R—Rand h; : R —» R.

Put he|A, = m|B, =y for y € R. If z € f~1(B,), then let ha(z) = z,
where z is an arbitrary point from a set ¢g7!'({y}). For = € f(4,) define
hi(z) = g(y). Now we define a value of functions hy and hy in a set Sy =
UyeR(AyUf_l(By)) and S1 = U, cp(By U f(4y)), respectively. For z € R\ 53
let hi(z) = 0. Fix an ¢ € R\ Sy. If f(x) € R\ Sy, then define hy(z) = ¢t
where ¢ is an arbitrary point for which g(¢) = 0. Suppose that f(z) € S;. If
f(z) € B, for some y € R, then put hao(x) = z, where z is an arbitrary point
belonging to the set g~ ({y}). If f(x) € f(A,) for y € R set hao(z) = y.

We shall prove that hy o f = g o hs.

a) If z € A, for some y € R, then ho(z) =y, f(z) € f(A,) and we have
hio f(z) = g(y) = g o ha(z).

b) If x € f~1(B,) for some y € R, then ha(y) € g~ ({y}) and therefore
g(ha(z)) = y. Notice that f(z) € B, and hi(f(z)) =y, also.
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c) fz € R\ Se and f(z) € R\ S1, then g(ha(z)) = 0= h1(f(x)).

d) If x € R\ Sy and f(z) € Sy, then either g(ha(x)) = y = hi(f(z)) if
f(x) € By or g(ha(x)) = g(y) = h(f(x)) if f(x) € f(Ay).

By Lemma 4.2 there exists a sequence of pairwise disjoint Cantor sets

{Ch y}nenyer such that C,, , C I, and C,,, C A,. Let P, be the set of all
points z € {J,cg Ay such that z is a point of bilateral accumulation of a Ci,
for some n € N, y € R. Then hg|P, is bilaterally dense in the graph of the
function hs and because each z € P, is a point at which the function hs is
E-continuous, hsy is £-continuous everywhere. In the same way we can prove
that h; is £-continuous. O

5 Transfinite Limits

Recall that a function f is a limit of a transfinite sequence (fs)a<w, of func-
tions iff for each positive € > 0 and = € R there exists an a < w; such that

‘f(x) - fﬁ(.%‘)| < e for all g > a.

Theorem 5.1 Let £ be a c-system. Then every function f: R — R is a limit
of a transfinite sequence (fo)a<w, of E-continuous functions. Moreover, if f
is measurable or fis Baire vy (v > 2), then f, can be taken from the same
class for a < wy.

PRrROOF. Let (I)32, be a sequence of all open intervals with rational end-
points. We shall use the fact that in each interval Iy we can choose a se-
quence (Cn)o2, of Cantor sets such that C n N Cp, p = 0 for (k,n) # (m,p)
(cf. Theorem 4.1). Because there exists a homeomorphism between Cj, ,, and
C.n X Cj n; so we can represent each CY, ,, as a union Ua<w1 Ck n,q of pairwise
disjoint perfect sets. Let (g,)52; be a sequence of all rationals. Put

Dno=|]J Chna and folz)=

{Qn ifxeDn7o“n€N
k=1

f(x) otherwise

for @ < wy. Then each function f, is £-continuous (o < wy). We shall show
that

f(z) = lim fo(x). (1)

a—rwi

Choose an z € R. Then either = & Up_y Uycw, Pnias 50 fo(x) = f(z) for
each @ < wy and (1) holds, or # € D,, g for some 8 < w; and n € N. Then
x & Dy o for > f and k € N; so fo(z) = f(x) for @ > 8. If f is measurable
or if f belongs to Baire class v (7 > 2), then by the definition it is easy see
that f, belongs to the same class. (|
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