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ON “LIPSCHITZ” SUBSPACES OF THE
SPACE OF CONTINUOUS FUNCTIONS

Abstract
A theorem of Grothendieck states that every closed subspace of the Ba-
nach space LP(u), where p is a finite measure on a locally compact topo-
logical space, p > 1, consisting of essentially bounded functions must have
finite dimension. An analog of this result is proved concerning subspaces of
the space of continuous functions on a compact metric space consisting of
functions satisfying different Lipschitz-type conditions.

1 Introduction

Consider a Banach space X and a closed subspace S. In some cases we can say that
every element of S is “better” than an arbitrary element of X. This happens, for
example, if elements of X are functions defined on a metric space and elements of
S satisfy some additional estimates or smoothness conditions. A general question
is how big such “good” subspaces can be.

A. Grothendieck [1] proved a very interesting result showing that it is natural
to expect, at least in some cases, that these subspaces are small. Let M be a locally
compact topological space equipped with a finite measure p and let 1 < p < oo.
If S is a vector subspace of L™ (), closed in LP(u), then S is finite-dimensional.

2 Preliminaries

Let K be a compact metric space and let C(K) be a Banach space of all continuous
complex valued functions on K. For any f € C(K) the modulus of continuity
wy : (0,00) = [0,00) is defined as

wr(6) = sup |f(x) = f(y)l

p(z,y)<d

Clearly wy is an increasing function and %iﬂé wg(d) =0.
—
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Definition 1 Let w: (0,00) — (0,00). We will say that w is modulus-type if
(i) glg(l)w(é) =0,
(ii) w is increasing.

By S we will denote a closed, linear subspace of C'(K); its dimension is denoted
by dim S. The following statement is a variation on a theme of Grothendieck.

Proposition 1 Let w be a modulus-type function. If for every f € S

wr(d)
Son w()

< 00,
then dim S < oco.

3 First Proof of Proposition 1

A shorter proof of the Proposition using Ascoli’s theorem and Riesz lemma will
be outlined later. We would like to present a more direct approach. We start with
the following simple observation.

Lemma 1 Suppose dimS = oo and {z1,22,...,2,} C K. Then there exists a
function f € S, such that f # 0, but f(x1) = f(x2) =+ = f(x,) =0.

PRrROOF. Suppose not. Consider a linear map B : S — R” given by

B(f) = (f(z1), f(w2),- .-, f(an)).
Clearly, B is linear and ker B = {0}. Hence

dim S = dim(ker B) + dim(B(S)) =0+ n = n.

But this contradicts the assumption that dim .S = oo. ]
PROOF OF THE PROPOSITION Let w be a modulus type function. We shall show
that there is a constant M such that for all § > 0

wy (9)

(o) <M | fllewr) (1)

Let

Y ={feCK) :?Sglg ij((;)) < 00}

wy(0)

= su x)| + su s
H f ||Y meELf( )| 5>18 w(é’)

If
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then (Y, - ||y) is a Banach space.

Consider an identity map I : S — Y i.e. If = f for f € S. (S is treated as
a subspace of a Banach space C(K).) Obviously I is linear. It is easy to deduce
from the Closed Graph Theorem that I is also bounded as a linear operator.
Let {fn}nen be a sequence of functions in S, such that || f, — f |ls— 0 and
| Ifn —glly— 0. Then

H fn -9 HC(K)SH fn -9 ||Y:|| ]fn -9 ||Y .

Hence g = lim f, and trivially g = f. Therefore by the Closed Graph Theorem
n—oo
I is a bounded linear operator, i.e. there exists a constant M; such that for all

f eS8 wehave | flly< My |l flloue Since || £ lly=Il f lleus) +sup 2, for
>

M = M; — 1 we obtain (1).
Since ;inéw(d) =0, let us fix § > 0 such that w(dy) < 77 K is a compact
—

metric space, so there exists a Jp-net, i.e. a set
{x1,22,...,2,} C K such that for every x € K there is an i € {1,2,...,n} such
that p(z,z;) < do.

Suppose that dim S = co. By Lemma 1, there is a function f € S, f # 0, such
that f(21) = f(22) = -+ = f(z,) = 0. Since K is compact, || f lleqe)= |f(@o)
for some g € K. Therefore, by (3) we obtain for some i € {1,2,...,n}

wr(do) = sup [f(x) = f(Y)| = [f(x0) — f(z:)]

p(z,y)<do

1
= |f(@o) = O =l fllea=M I fllea) 57
> M| f llew) w(do)
or °:f((6‘i°)) > M || f |lek) contrary to (1). O
4 Second Proof of Proposition 1
We used the Closed Graph Theorem to show that norms || - [[¢(k) and || - ||y are

equivalent on S. The same fact can be established if we apply Banach’s theorem
on isomorphism. Let us consider ® = SN {f € C(K) :|| f [|¢(x)< 1}. From the
equivalence of norms || - ||c(x) and || - [|y we obtain that ® is an equicontinuous
family of functions in C'(K), bounded by 1. Since @ is closed, Ascoli’s theorem
gives compactness of ®. But the unit ball in a Banach space is compact if and
only if its dimension is finite (the Riesz lemma). Hence dim S < oo.

5 Consequences

Let us notice some straightforward corollaries from the Proposition:
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Corollary 1 If S C Lip,(K), then dim S < oo.

PrOOF. Take w(d) = 0* and apply Proposition. O

Corollary 2 If S is a closed linear subspace of C[0,1] and every f € S is contin-
uously differentiable (S C C'[0,1]), then dim S < .

PRrROOF. Since C[0,1] C Lipl0, 1], this follows from Corollary 1. O

The above corollary is one more statement illustrating the well known fact
that a “typical” continuous function is not differentiable ([2]).

6 Example

It is required in Corollary 2 that all functions in .S have continuous derivatives on
[0,1]. This example shows that it is not enough to assume only the existence of
such derivatives on a subset of [0, 1].

It is well known that given an interval (a,b), there exists a function f,; €
C*(R) such that

(1) fap(z) =0 for all z € R\(a,b),
(ii) sup|fap(2)] = 1.
z€R
We can take for instance

Fanl(z) = ca,be_m, z € (a,b)
“ 0, z € R\(a,b)

16
where ¢, = e(=0*. Let g, = fa—n 9-n+1 and let S be the closed linear manifold
generated by {g,}52 ;. Then dim S = oo and every function in S has continuous
derivatives in (0,1]. Also g =77, v/ngs € S and g has no derivative at 0.
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