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SCATTERED SETS, CHAINS AND THE
BAIRE CATEGORY THEOREM

Abstract

A scattered set of real numbers can be exhibited in terms of endpoints
of the components of some nondecreasing sequence of open sets (chain).
We study this connection between scattered sets and chains providing
characterizations of scattered sets, semiscattered sets, certain splattered
sets and sets with countable closure. It is shown that any application of
the Baire Category Theorem on the real line leads naturally to a chain of
open sets and hence to an exceptional scattered set. Some applications
of this fact are given.

1 Introduction

There are a number of instances in real analysis where an exceptional set turns
out to be particularly small — not merely countable, but scattered. Proofs
often fail to give any insight into this situation and the underlying geometric
structure of scattered sets themselves may not be apparent. Frequently such
sets arise in category arguments. If the Baire category theorem is expressed
in a manner slightly different than usual the exceptional scattered sets can be
clearly exhibited. We shall show that every application of the Baire category
theorem leads to a chain of open sets and that the endpoints of the components
of such chains always form a splattered set.

Recall that a set in a topological space is scattered if every nonempty
subset has an isolated point. One sided versions for sets of real numbers have
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been considered in the past: a set of reals is right (left) scattered if every
nonempty subset has a point isolated on the right (left); any such set is called
semi-scattered. (Note that these are precisely the scattered sets of the right
(left) Sorgenfrey line.)

A set of reals is splattered if every nonempty subset has a point isolated
on one side at least. A splattered set may be expressed as the union of a
right scattered set and a left scattered set. Scattered sets may, similarly, be
viewed as the intersection of a right scattered set and a left scattered set. It is
well-known that scattered sets are countable; for a proof that semi-scattered
sets are countable see [1].

The purpose of this article is to suggest a natural process of how these
exceptional sets come about. We claim that the most natural way such sets
arise is through a well ordered chain of open sets G0 ⊆ G1 ⊆ G2 ⊆ . . . . In
Section 2 and Section 3 we will explore the connection between such chains
and the various types of scattered sets. In Section 5 we show that a chain of
open sets naturally occurs with each application of the Baire category theorem
on the real line. Thus any covering

R =

∞⋃
n=1

En (1)

yields an associated left-scattered, right-scattered, scattered and splattered
set. In Section 6 we suggest that coverings of the form (1) naturally occur
in analysis every time we consider a gauge function δ : R → R+. Several
examples are given where considerations of a naturally defined gauge leads
(by the process outlined above) to a splattered exceptional set.

The companion article [2] that appears also in this issue of the Exchange
shows how the gauge approach alone leads easily and naturally to proofs of
the scattered nature of exceptional sets. For most readers the methods there
will suffice. We feel, however, that the full picture emerges more clearly by
the considerations of chains and Baire category presented here.

2 Chains of Open Sets

By a chain of open sets we will mean a well-ordered, possibly transfinite,
sequence

G0 ⊆ G1 ⊆ G2 ⊆ . . . (2)

of open subsets of R. Given such a chain (2) and an ordinal α let Rα denote
the set of finite right hand endpoints of components of the set Gα and let Lα
denote the set of finite left hand endpoints of components of the same set.
An elementary argument shows that R =

⋃
αRα is left scattered and that
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L =
⋃
α Lα is right scattered. For example to see that R is left scattered

consider any nonempty subset A ⊆ R. There is a least ordinal α such that
A∩Rα 6= ∅. Then any point x in A∩Rα is the right endpoint of a component
of Gα. Because α is the least such ordinal Gα does not intersect A. Hence x
is isolated on the left in A. It follows that R is left scattered.

We shall refer to R as the associated left scattered set of the chain (2), to
L as the associated right scattered set of the chain and to R ∩L and R ∪L as
the associated scattered set and the associated splattered set of the chain.

We will call a chain (2) regular if there is no infinite strictly increasing
sequence Iα1

⊂ Iα2
⊂ Iα3

⊂ . . . where Iαn is a component of Gαn .

Proposition 1 Let R′ be an arbitrary left scattered set and L′ be an arbitrary
right scattered set. Then there is a regular chain whose associated sets R and
L satisfy
(i) R′ ⊆ R and L′ ⊆ L.
(ii) R′ ∩ L′ = R ∩ L.
(iii) R \R′ and L \ L′ are scattered.
(iv) If R′ = ∅ then L′ = L and if L′ = ∅ then R′ = R.

Proof. We assume that R′∪L′ is infinite, since the construction is immediate
if not. Fix a bijection f : R′∪L′ → Z+.We will construct a transfinite sequence
of triples (xα, yα, zα) of real numbers with yα strictly between xα and zα. We
let

L′α = {xβ : β ≤ α and xβ < zβ}

R′α = {xβ : β ≤ α and zβ < xβ}

Iα is the open interval between xα and yα.

Nα is the open interval between xα and zα.

Our construction will be carried out in such a way that at each stage α the
following requirements are met:

(C1) If L′ ⊆
⋃
β<α L

′
β and R′ ⊆

⋃
β<αR

′
β then the sequence stops. Otherwise

either xα ∈
(
L′ \

⋃
β<α L

′
β

)
∩ L′α and we choose xα < yα < zα or

xα ∈
(
R′ \

⋃
β<αR

′
β

)
∩R′α and we choose zα < yα < xα.

(C2) None of xα, yα, zα are in
⋃
β<αNβ .

(C3) Neither of yα, zα is in L′ ∪R′.

(C4) |zα − xα| < (f(xα))
−1

.
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(C5) L′ ∩Nα ⊆ L′α and R′ ∩Nα ⊆ R′α.

Let us assume that a transfinite sequence {(xα, yα, zα)} has been con-
structed meeting these five requirements. We show how this constructs a
regular chain (2) whose associated sets R and L satisfy the four assertions of
the proposition.

We define the chain by writing Gα =
⋃
β≤α Iβ . Let R and L denote the

associated sets of the chain. By the requirement C1 we have L′ =
⋃
β L
′
β and

R′ =
⋃
β R
′
β . By the requirement (C2) each Iα is a component of Gα and so

L′α ⊆ L. Therefore L′ ⊆ L. Similarly R′ ⊆ R and we have proved (i) of the
proposition.

We now check that the chain is regular. If there is a strictly increasing
sequence Nα1

⊂ Nα2
⊂ Nα3

⊂ . . . then, by requirement (C4), the sequence
{f (xαn)} is bounded. Then some αn is repeated infinitely often which is
impossible by requirement (C1). Therefore no such strictly increasing chain
exists. Similarly there is no strictly increasing chain Iα1

⊂ Iα2
⊂ Iα3

⊂
. . . . Therefore the chain {Gα} is regular as required. By this regularity and
condition (C2) each component of a set Gα is either Iα itself or is already a
component of some Gβ for β < α. Therefore the intervals {Iα} are the only
components of the chain {Gα}.

We now prove statement (ii) of the proposition. Suppose that x is an
arbitrary point in L ∩ R. Then x must be a right endpoint of some Iα and
a left endpoint of some Iβ . By requirement (C2) this point x cannot be both
yα and yβ . Otherwise x = yβ ∈ (xα, zα) = Nα so that, by (C2), β < α and
x = yα ∈ (zβ , xβ) = Nβ so that, again by (C2), β > α. Therefore x must be
either xα or xβ and, hence, x ∈ L′ ∪R′. But then x cannot be either yα or yβ
by requirement (C3). Hence x = xα = xβ and so x ∈ L′ ∩ R′. Thus we have
proved that L ∩ R ⊆ L′ ∩ R′. We have already established that L′ ⊆ L. and
R′ ⊆ R and so L ∩R = L′ ∩R′ which is statement (ii) of the proposition.

We now prove statement (iii) of the proposition. Let A be an arbitrary
nonempty subset of L \ L′; we shall find an isolated point. If xα 6∈ L′ then,
by requirement (C1), xα ∈ R′ and so, using again the fact that R′ ⊆ R, we
have xα ∈ R. But we know by now that L ∩ R = L′ ∩ R′ and so xα 6∈ L.
Therefore A contains none of the points xα. The only points in A are points
yα where zα < yα < xα. Let α be the least ordinal for which yα ∈ A. The
set Nα = (zα, xα) can certainly contain points yβ of L but none with β > α
because of requirement (C2). Since α is minimal for points in A we have
A ∩ (zα, xα) = {yα} and accordingly yα is isolated in A. This proves that
L \ L′ is scattered. Similarly it may be shown that R \ R′ is scattered. This
completes the proof of statement (iii) of the proposition.

Finally we prove statement (iv) of the proposition. If R′ = ∅ then, by
requirement C1, for each ordinal α, we have xα < yα < zα so that Iα = (xα, yα)
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with xα ∈ L′. Thus L ⊆ L′ and, since have already established that L′ ⊆ L,
this means L = L′. In a similar manner it can be shown that if L′ = ∅ then
R = R′. This proves statement (iv) as required.

We now turn to the construction of the transfinite sequence {(xα, yα, zα)}.
At the first step we can easily choose (x0, y0, z0). For example take, if possible,
x0 < y0 < z0 with x0 ∈ L′ and (x0, z0] disjoint from L′ ∪R′. If we make sure
that |z0 − x0| is smaller than f(x0)−1 then we have satisfied (C1)–(C5). If
this cannot be done then choose z0 < y0 < x0 ∈ R′ in the same way. Since
R′ is left scattered and L′ is right scattered one of these is possible unless
R′ ∪ L′ = ∅ in which case a trivial chain will suffice.

We suppose then that (xα, yα, zα) have been chosen for all α < γ in such
a way that the five requirements (C1)–(C5) hold. Let L′′ = L′ \

⋃
α<γ L

′
α and

R′′ = R′ \
⋃
α<γ R

′
α.

Claim If x ∈ L′′ (resp. if x ∈ R′′) then x is not isolated on the right (left)
from the set

c

(⋃
α<γ

Nα

)
∩ c (L′ ∪R′) . (3)

(Here c (E) denotes the set complementary to E.)

Proof of Claim Suppose that x ∈ L′′. (The proof if x ∈ R′′ is similar.)
Let α < γ. By (C5) x cannot be in Nα. By (C3) x is neither yα nor zα. Then,
since x 6∈ L′α, x cannot be a left hand endpoint of Nα. By (C2) if α < β < γ
and Nα, Nβ overlap then Nα ⊆ Nβ ; also, by the argument given above, there
are no strictly increasing sequences

Nα1
⊂ Nα2

⊂ Nα3
⊂ . . .

with each αn < γ. Therefore there exist points in c
(⋃

α<γ Nα

)
that are

arbitrarily close to x on the right. If x is isolated on the right from
⋃
α<γ Nα

then we are done since L′ ∪ R′ is countable. Otherwise x is a limit point of

the set c
(⋃

α<γ Nα

)
∩ {zα : zα > x, α < γ}. But (C3) implies that this is a

subset of the set (3) and the claim is proved. �

We now show how to choose the points (xγ , yγ , zγ). There are two cases
to consider.

Case 1: There is an open interval J which intersects L′′ but does not inter-
sect R′′.

Case 2: Every open interval J which intersects L′′ also intersects R′′.
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In Case 1 choose an open interval J which intersects L′′ but does not
intersect R′′. Since L′′ is right scattered we choose a subinterval (x, z) ⊆ J
such that (x, z]∩R′′ = ∅ and such that [x, z]∩L′′ = {x}. We set xγ = x and,
using the claim proved above, we choose yγ and zγ from the set (3) in such a
way that xγ < yγ < zγ and |zγ − xγ | < f(xγ)−1.

In Case 2 every open interval which intersects L′′ also intersects R′′. If
L′′ ∪R′′ = ∅ then the process terminates. Otherwise there is an open interval
J intersecting R′′. Since R′′ is left scattered we choose a subinterval (z, x) ⊆ J
such that [z, x)∩L′′ = ∅ and such that [z, x]∩R′′ = {x}. We set xγ = x and,
once more using the claim proved above, we choose yγ and zγ from the set (3)
in such a way that zγ < yγ < xγ and |zγ − xγ | < f(xγ)−1.

In either case the requirements (C1)–(C5) now follow for α = γ and this
completes the proof. �

Corollary 2 Every set that is scattered (resp. left scattered, right scattered) is
the associated scattered (resp. left scattered, right scattered) set of some chain.

3 Complete Splattered Sets

In the preceding section we have seen that every set that is scattered or scat-
tered on just one side can be obtained from a chain of open sets. It is not
true, however, that every splattered set is the associated splattered set of some
chain. It is this fact that prompts the following definition.

Definition 3 A set S is said to be a complete splattered set if for every
nonempty subset A ⊆ S there is an interval (a, b) with (a, b) ∩ A = ∅, so that
at least one of a or b is in A and the other is either ±∞ or else is in S.

It follows immediately from the definition of a splattered set that every
complete splattered set is splattered. If the set S of Definition 3 is also scat-
tered (resp. left scattered, right scattered) then we shall say that S is a com-
plete scattered (resp. left scattered, right scattered) set. Not every splattered
set is a complete splattered set; indeed not every scattered set is complete. For
example let S denote the centers of the intervals complementary to the Cantor
ternary set. Any interval with endpoints in S must contain further points of
S. Thus while S is evidently scattered it cannot satisfy the requirements of
Definition 3. Briefly we say a set is complete if it satisfies Definition 3.

If we consider subsets with more than one element, then the isolating
intervals can always be finite as the following proposition shows.

Proposition 4 A set S is complete if and only if for every subset A ⊆ S with
more than one element, there is an interval (a, b) with (a, b)∩A = ∅ and such
that at least one of a, b is in A and the other is in S.
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Proof. Let S be complete and let A ⊆ S have more than one element. Delete
from A its maximum and minimum elements, if such exist. Call the resulting
set A′. If A′ is empty then we can take a = minA and b = maxA. If A′

is nonempty and has again a maximum or minimum element then a choice
can be easily made: for example if a = maxA′ and b = maxA exist then this
interval (a, b) has the required property. Thus we can reduce to the case where
A′ has no maximum or minimum. Since S is complete, there is an interval
(a, b) such that (a, b)∩A′ = ∅ and such that one of the points a, b is in A′ and
the other in S ∪ ±∞. If b = +∞ then a is a maximum and if a = −∞ then
b is a minimum; hence neither of these points can be infinite since A′ has no
maximum or minimum. It follows that (a, b) ∩ A = ∅ and at least one of a,
b is in A and the other is in S. Conversely if the assertion of the proposition
holds then S is complete by definition. �

This gives immediately the following corollary which will be useful later.

Corollary 5 Suppose I1 ⊆ I2 ⊆ I3 ⊆ . . . are open intervals whose union
covers a set S and such that, for each n, the set S ∩ In is complete. Then S
is complete.

We also have the following proposition showing that portions of complete
sets are complete.

Proposition 6 If S is complete and I is any interval then S ∩ I is also com-
plete.

Proof. Let A be a nonempty subset of S ∩ I. Since A is also a nonempty
subset of S there is an interval (a, b) with (a, b) ∩ A = ∅, so that at least one
of a or b is in A and the other is either ±∞ or else is in S. This interval (a, b)
suffices, too, to establish that S∩I is also complete unless one of its endpoints
fails to be in the interval I. But in that case replace the offending endpoint
with +∞ or −∞ and we are done. �

The removal of a complete subset from a complete scattered set may not
produce a complete set. For example, inside each interval In complementary
to the Cantor ternary set choose three points an < bn < cn with bn (as
before) at the midpoint. Let S1 denote the collection of all the points an, bn
and cn and let S2 denote the collection of all the points an and cn. Then
S1 and S2 are complete scattered sets while S = S1 \ S2 is not complete as
we have seen. These observations can be checked directly or made to follow
from Proposition 8 below characterizing complete sets as those associated with
chains.

The formation of unions, on the other hand, does preserve completeness.
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Proposition 7 If S1 and S2 are complete so too is the union S1 ∪ S2.

Proof. Let A be a nonempty subset of S1 ∪ S2. We wish to find an interval
(a, b) with (a, b) ∩A = ∅ so that at least one of a or b is in A and the other is
either ±∞ or else is in S1 ∪S2. One of the sets A∩S1 or A∩S2 is nonempty;
let us assume that A∩S1 6= ∅. Then, since S1 is complete, there is an interval
(a′, b′) with (a′, b′) ∩ (A ∩ S1) = ∅, at least one of a′ or b′ is in A ∩ S1 and the
other is either ±∞ or else is in S1.

If A∩S2 ∩ (a′, b′) = ∅ then A∩ (a′, b′) = ∅. We take (a, b) = (a′, b′) and we
are done. Suppose then that A2 = A ∩ S2 ∩ (a′, b′) 6= ∅. Since S2 is complete,
there is an interval (a′′, b′′) with (a′′, b′′) ∩ A2 = ∅, at least one of a′′ or b′′

is in A2 and the other is either ±∞ or else is in S2. If both a′′ and b′′ are
in the interval (a′, b′) then we may take (a, b) = (a′′, b′′) and we are done. If
a′′ ∈ (a′, b′) and b′′ > b′ then we take (a, b) = (a′′, b′). If b′′ ∈ (a′, b′) and
a′′ < a′ then we take (a, b) = (a′, b′′). �

Our main proposition in this section now follows. This shows that Defi-
nition 3 characterizes those splattered sets that are directly associated with
some chain.

Proposition 8 A set is complete if and only if it is the associated splattered
set of some (regular) chain.

Proof. Suppose that S is complete. Then S is countable. Fix a bijection

f : S →
{

1
2 ,

1
4 ,

1
8 . . .

}
.

We define inductively a regular chain {Gα} of open sets so that S is precisely
its associated splattered set.

Set G0 = ∅ and suppose that Gα has already been defined. Denote by
Rα the set of right endpoints of components of Gα and by Lα the set of
left endpoints of components of Gα. Suppose that Lα ∪ Rα ⊆ S and let
Cα = Rα ∪ Gα ∪ Lα and let Sα = S \ Cα. If Sα = ∅ then the process
terminates. Otherwise, since S is complete and Sα a nonempty subset of S,
there is an open interval Jα with at least one endpoint aα in Sα and the other
endpoint in S ∪ {±∞} and such that Jα ∩ Sα = ∅. Then Jα ∩ S ⊆ Cα.

If Jα ∩ S = ∅ we define Iα = Jα. If Jα ∩ S 6= ∅ we choose a subinterval
Iα ⊆ Jα with one endpoint aα, the other endpoint in the set Lα ∪ Rα and
sufficiently close to aα that ∑

y∈Iα∩S
f(y) < f(aα). (4)

Since aα is not in the set Cα this is possible.
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In either case we write Gα+1 = Gα ∪ Iα. At limit stages λ we let Gλ =⋃
β<λGβ . This defines the chain. We now proceed to establish that this chain

is regular and has S for its associated splattered set.
First, note that neither endpoint of the interval Iα is in the set Gα. There-

fore Iα must be itself a component of Gα+1. In fact Iα is exactly that compo-
nent of Gα+1 which is not a component of any Gβ for β ≤ α.

We can now show that the chain is regular. Suppose that

Iα1
⊂ Iα2

⊂ Iα3
⊂ . . . (5)

is strictly increasing. Then either aα1
∈ Iα3

or aα2
∈ Iα3

since our construction
required that at each stage aα 6∈ Cα. Therefore, by (4),∑

y∈Iα3
∩S
f(y) > 2

∑
y∈Iα1

∩S
f(y).

Since
∑
y∈S f(y) = 1 it follows that any sequence (5) as above must be finite.

Hence the chain {Gα} is regular and the only components in the chain are the
intervals {Iα} added at each non-limit stage.

Consider now the associated splattered set of the chain, namely the finite
elements of the set

⋃
α Lα ∪ Rα. At each successor stage the process either

terminates (if Sα = ∅) or else a point aα ∈ Sα is placed in the set Lα+1∪Rα+1

while Sα ∩Gα+1 = ∅. It follows that S ⊆
⋃
α Lα ∪Rα.

To establish the other direction in this set inclusion note that both end-
points of Iα were chosen to be in S∪{±∞}. It follows that the finite elements
of
⋃
α Lα ∪Rα are in S and consequently S is the associated splattered set of

our chain.
Conversely suppose that S is the associated splattered set of a chain {Gα}

so that S = R ∪ L. Let A be a nonempty subset of S. We shall exhibit the
interval (a, b) of Definition 3 in order to verify that S is complete. There is a
minimal ordinal α with

A ∩ (Rα ∪ Lα) 6= ∅. (6)

Let (a, b) be a component of Gα with one endpoint in the set (6). Then a and
b are both in S ∪ {±∞} and one of them is in the set (6) and so also in A.
Also A∩ (a, b) = ∅ for if it contains a point that point must be in Rβ ∪Lβ for
some β < α contradicting the choice of α. �

It follows from Proposition 1 that every set that is splattered (resp. scat-
tered, right scattered, left scattered) is contained in a complete set of that
type. One might have expected that there would be a minimal “completion”
but this is not the case. One can remove any point from a complete set and
the resulting set remains complete.
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Proposition 9 Let S be a complete splattered set and let x ∈ S. Then S \{x}
is also complete.

Proof. Let A be a nonempty subset of S\{x}. We wish to prove the existence
of an interval (a, b) with (a, b) ∩ A = ∅, at least one of a or b is in A and the
other is either ±∞ or else is in S \ {x}.

Since A is also a subset of S and S is complete there is, by definition, an
interval (a′, b′) with (a′, b′) ∩ A = ∅, at least one of a′ or b′ is in A and the
other is either ±∞ or else is in S. If x 6= a′ and x 6= b′ then this interval
(a, b) = (a′, b′) suffices for verifying the completeness of S \{x}. If x = a′ then
an adjustment is necessary. Suppose x = a′ and that A∩ (−∞, a′) = ∅. Then
we take the interval (a, b) = (−∞, b′) as our verifying interval. Suppose that
x = a′ and A ∩ (−∞, a′) 6= ∅. Then the set A1 = A ∩ (−∞, a′) is a nonempty
subset of S and so there must be an interval (a1, b1) with (a1, b1) ∩ A1 = ∅,
at least one of a1 or b1 is in A1 and the other is either ±∞ or else is in S. If
b1 < a′ then we take the interval (a, b) = (a1, b1). If b1 ≥ a′ then we take the
interval (a, b) = (a1, b

′). The case x = b′ may be similarly handled. �

4 Sets of Countable Closure

It is easy to check that a set with countable closure is scattered. A slight
strengthening of the definition of a complete splattered set (Definition 3) serves
to characterize the class of sets with countable closure. This reveals a close
connection between these concepts and exhibits them as clearly belonging to
the same general family of exceptional sets.

Proposition 10 A set S has countable closure if and only if for every subset
A ⊆ S there is an interval (a, b) with both a and b in A ∪ {±∞} so that
A ∩ (a, b) = ∅.

Proof. Let S have countable closure and suppose that a subset A ⊆ S fails
to satisfy the condition of the proposition. Then A must have more than two
points and for every x, y ∈ A with x < y there is a z ∈ A such that x < z < y.
From this it follows that A is uncountable which is a contradiction.

Conversely suppose that S has an uncountable closure and let P be a
perfect subset of that closure. Let A be that subset of S obtained by reducing
S in the following way. In each closed interval I contiguous to P , if I ∩ S 6= ∅
then we delete all but one element of I ∩ S. If I has an infinite endpoint then
we delete all of I∩S. Note that P is a subset of A. Then for any interval (a, b)
with a, b ∈ A∪{±∞}} there must be points in P ∩(a, b) and hence also points
in A∩ (a, b). Thus no interval (a, b) as in the statement of the proposition can
be found. �
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We note that as in the definition of complete set the {±∞} can be deleted
if we restrict our attention to subsets with more than one point. The proof is
identical to that of Proposition 4.

Corollary 11 Every set of countable closure is complete.

Proof. Compare Proposition 10 with Definition 3. �
We recall that while the union of complete sets is complete (Proposition 7)

there is no similar assertion for intersections and differences. If one of the sets
has countable closure then more can be said.

Proposition 12 Let S be a complete splattered set and let the set C have
countable closure. Then S ∪ C, S ∩ C and S \ C are complete.

Proof. The statement for the union follows from Proposition 7 and Corol-
lary 11. The statement for the intersection follows from Corollary 11. We
show that S \ C is complete. For this it is enough to show that S \ C is
complete since by Corollary 11 and Proposition 7 it follows then that

S \ C = (S \ C) ∪
(
S ∩ (C \ C)

)
is complete too.

Since S ∪C is nowhere dense we may partition the real line into infinitely
many compact intervals I with the endpoints of each interval in the comple-
ment of S ∪ C. By Corollary 5 and Proposition 7 it is enough to show that(
S \ C

)
∩ I is complete for each such interval I. Fix one of the intervals I.

Let G0 be the complement of C. Inductively we define Gα+1 as the union
of Gα with the points isolated in C \ Gα and, for limit ordinals λ, we let
Gλ =

⋃
α<λGα.

For each point x in C there is a least ordinal α so that x ∈ Gα. (This
ordinal is known as the Cantor-Bendixson rank of x and denoted rank(x).) If
C∩I = ∅ then let us say that the rank of C∩I is 0, otherwise we call the rank
of C ∩ I the maximum of the ranks of the elements of C ∩ I. Such a maximum
must exist since C ∩ I is compact.

We complete the proof by arguing inductively on the rank of C∩I. Assume
that C ∩ I has rank α and that for every compact interval I ′ whose endpoints
are in the complement of S ∪ C and for which the rank of C ∩ I ′ is less than
α the set

(
S \ C

)
∩ I ′ is complete. There are only finitely many elements

of C ∩ I with rank exactly α. We may use these to partition I into finitely
many intervals I1, I2, . . . In. It is enough (by Proposition 7) to show that
each set

(
S \ C

)
∩ Ik is complete. For this it is enough again to show that(

S \ C
)
∩ int(Ik) is complete. But each interval int(Ik) may be partitioned
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into infinitely many compact intervals J with endpoints in the complement of
S ∪ C. But, for each such interval J ,

(
S \ C

)
∩J is complete by the induction

hypothesis. Therefore, by Corollary 5 and Proposition 7, S \ C ∩ int(Ik) is
complete and the proof is finished. �

Sets of countable closure can also be characterized as the associated splat-
tered sets of chains with special properties. Note that in the simplest case
of a chain G0 ⊆ G1 ⊆ G2 . . . of expanding open intervals (i.e. each Gα is an
interval) then the associated endpoints R and L are particularly simple: R is
well ordered by < and L is well ordered by >.

Proposition 13 A set S has countable closure if and only if it is the associ-
ated splattered set of a chain G0 ⊆ G1 ⊆ G2 . . . where each set

⋃
β<αGβ has

only finitely many components.

Proof. We shall say a set S is finitely splattered if it is the associated splat-
tered set of a chain {Gα} such that for each α the open set

⋃
β<αGβ has only

finitely many components. If I is an interval containing both S and
⋃
αGα

then we shall say that S is finitely splattered in I. We wish to show that any
set of countable closure is finitely splattered.

Claim 1 If S is finitely splattered and I = (a, b) is any interval containing
more than one point of S then S ∩ I finitely splattered in I.

To prove this claim, let S be the associated splattered set of a chain {Gα}
which has the property that, for each α,

⋃
β<αGβ has only finitely many

components. Consider the chain {Gα ∩ (a, b)}. If a, b never appear as an
endpoint of a component of an open set in this chain then we are done since
this new chain exhibits S ∩ (a, b) as finitely splattered in (a, b). Otherwise we
have to amend the chain.

Suppose S ∩ (a, b) contains at least two points and that one at least of a,
b appears as an endpoint of a component of an open set in the chain {G′α} =
{Gα ∩ (a, b)}. Let (a,m) be the first component of {G′α} (i.e. with smallest
ordinal) which uses a as an endpoint and let (n, b) be the first component
using b.
Case 1: The number m exists but not n. Since S ∩ (a, b) contains at least two
points, we distinguish the following subcases:

Case 1a: There is a point x in S ∩ (a,m). Then we let n = m and
reassign m to be the value x and go to case 3.

Case 1b: There is a point x in S ∩ (m, b). Then let n = x and go
to case 3.

Case 2: The number n exists but not m. This is handled in a similar way to
case 1.
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Case 3: Both m and n exist and m < n. Let C1 be the chain {Gα ∩ (a,m)}
truncated before the interval (a,m) occurs. Let C2 be the chain {Gα∩ (m,n)}
with (m,n) adjoined at the end. Let C3 be the chain {Gα ∩ (n, b)} truncated
before the interval (n, b) occurs. By repeating sets if necessary, we may assume
that C1 and C3 have the same length. Then form a chain C by adjoining to C2
the union of the chains C1 and C3.
Case 4: Both m and n exist and m ≥ n. Then either m = b or n = a. Then
the interval (a, b) occurs in this chain. By truncating the chain {G′α} before
this occurs we destroy the fact that both m and n exist and hence this reduces
to one of the previous cases.

We have now arrived at a chain that exhibits the fact that S ∩ (a, b) is
finitely splattered in (a, b) and so proving the claim.

Claim 2 If S ∩ (x, y) is finitely splattered and x, y ∈ S then S ∩ [x, y] is
finitely splattered in the interval [x, y].

If S∩(x, y) is empty then the chain consisting of just the one open set (x, y)
works to prove the claim. If S ∩ (x, y) contains one point z then the chain
consisting of just the one open set (x, z) ∪ (z, y) works. If S ∩ (x, y) contains
more than one point then there is a chain that exhibits the set S ∩ (x, y) as
finitely splattered in (x, y) using Claim 1. Adjoin to this chain the interval
(x, y).

Claim 3 Let . . . x−2 < x−1 < x0 < x1 < x2 < . . . be a sequence of at least
two points in S which may be finite or infinite in each direction. Suppose that
for each k, S ∩ [xk, xk+1] is finitely splattered in [xk, xk+1] and suppose that
the collection of intervals {[xk, xk+1]} covers S. Then S is finitely splattered.

To see this, for each k, let {Gkα} be a chain that exhibits the set S ∩
[xk, xk+1] as finitely splattered in [xk, xk+1]. Then the chain formed by {G0

α}
adjoined with {G1

α ∪ (x0, x1)}, then adjoined with {G−1α ∪ (x0, x2)}, then ad-
joined with {G2

α ∪ (x−1, x2)} and so on in this manner will form a chain that
demonstrates that S is finitely splattered.

Claim 4 Let a < b ≤ c < d be such that a ∈ S, d ∈ S and S ∩ (b, c) = ∅.
Suppose also that S∩(a, b) is finitely splattered in (a, b) and S∩(c, d) is finitely
splattered in (c, d). Then S ∩ [a, d] is finitely splattered in [a, d].

To see this let {Gα} be a chain that exhibits the set S ∩ (a, b) as finitely
splattered in (a, b) and {G′α} be a chain that exhibits the set S ∩ (c, d) as
finitely splattered in (c, d). By repeating open sets, if necessary, in either of
the chains we can assume that {Gα} and {G′α} have the same length. Then
we use the chain {Gα ∪G′α} and adjoin

1. (a, b) ∪ (c, d) if both b and c are in S.

2. (a, b) ∪ (b, d) if b ∈ S and c 6∈ S.
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3. (a, c) ∪ (c, d) if b 6∈ S and c ∈ S.

4. (a, d) if neither b nor c is in S.

Then the resulting chain exhibits that S ∩ [a, d] is finitely splattered in [a, d].
Suppose now that S has countable closure. We define the rank of the set S

as rank(S) =
⋃
x∈S rank(x) where rank(x) is an ordinal denoting the Cantor-

Bendixson rank of x as previously used in Proposition 12. We prove that S is
finitely splattered by induction on the rank. Since this is trivial for sets of rank
0 or 1 suppose that S has rank β > 1 and that any set of countable closure with
rank smaller than β is finitely splattered. Let M = {x ∈ S : rank(x) = β}.
Then M must be discrete.

Form a sequence of points . . . x−2 < x−1 < x0 < x1 < x2 < . . . from the set
S ∪M which includes all of the set M and such that the collection of intervals
{[xi, xi+1]} covers S and such that if xi, xi+1 ∈ M then S ∩ (xi, xi+1) = ∅
and such that in each interval (xi, xi+1) the set S is either empty or contains
at least two points. If x < y are any two points in S ∩ (xi, xi+1) then the
induction hypothesis gives us that S ∩ (x, y) is finitely splattered. By Claim 2
then S ∩ [x, y] is finitely splattered in [x, y]. By Claim 3 we get that S ∩
(xi, xi+1) is finitely splattered. By Claim 1, S ∩ (xi, xi+1) is finitely splattered
in (xi, xi+1). On the other hand if S ∩ (xi, xi+1) is empty then, trivially, it is
finitely splattered in (xi, xi+1). If xn ∈ S and m is the least integer greater
than n such that xm ∈ S ∪ {supS} (m = n + 1 or n + 2) then, by Claim 4,
(S ∪ {supS})∩[xn, xm] is finitely splattered in [xn, xm]. We may repeat this in
the other direction so that, by Claim 3, S ∩ [inf S, supS] is finitely splattered.
If inf S 6∈ S then we may replace it with −∞ in the chain and if supS 6∈ S we
may replace it with∞. The resulting chain verifies that S is finitely splattered.
The proof now follows by induction.

Conversely let us suppose that S is the associated splattered set of such a
chain. Because each set

⋃
β<αGβ has only finitely many components we can

enlarge the chain (and hence the set R ∪ L) by adding elements so that at
limit ordinals λ, Gλ =

⋃
β<λGβ . We show that R ∪ L is closed in this case

and it will follow, in general, that R ∪ L has countable closure.
We establish this by induction on the length of the chain. If the chain

has length 1 then R ∪ L is finite and consequently closed as required. If the
statement is true for any chain of length α then it is true for any chain of
length α+ 1 since Rα+1 ∪ Lα+1 is only finite.

It remains to consider limit ordinals λ. Suppose that the statement is true
for any chain of length α < λ and that our chain has length λ. Let {xn} be a
sequence of points in R∪L converging to a point x. We show that x ∈ R∪L.
There are ordinals αn < λ so that xn ∈ Rαn ∪ Lαn . As Gλ has only finitely
many components either the sequence {xn} is eventually constant or else all
but finitely many of the terms are in Gλ. We can assume then, without loss
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of generality, that all terms are in some component of Gλ. If x is an endpoint
of that component then x ∈ R ∪ L and we are done. If not then x must be
an interior point of that component and so belongs to some Gα for α < λ.
Eventually then all xn are also in Gα and so, by the induction hypothesis,
x ∈ Rα ∪ Lα ⊆ R ∪ L as we wished to prove. �

5 The Scattered Baire Category Theorem

In this section we illustrate how chains of open sets (and hence complete
splattered sets) arise from every application of the Baire Category Theorem
on the real line. Suppose that we are given a cover of the reals

R =

∞⋃
i=1

Ei. (7)

Then, by a single application of the Baire Category Theorem, there is a
set Ei dense in some open set G0. Unless G0 = R this process would naturally
repeat: there is a further member Ej somewhere dense in R \ G0 so that
there is a larger open set G1 with Ej dense in G1 \ G0. This process can be
continued transfinitely producing a chain of open sets covering the real line.
We state this simple observation as a proposition. We suggest this name for
the proposition to emphasize the role of the associated scattered and splattered
sets that accompany any chain.

Proposition 14 (Scattered Baire Theorem) Let there be given a cover of
the real line (7). Then there is a chain of open sets {Gα} whose union is all
of R and such that for each α there is an index i so that Ei contains a dense
subset of Gα \

⋃
β<αGβ.

Proof. Inductively define Gα =
(⋃

β<αGβ

)
∪ I where I is an open interval

containing points in

R \
( ⋃
β<α

Gβ

)
(8)

and such that some Ei is dense in I \
(⋃

β<αGβ

)
. The existence of such an

interval is provided by the classical Baire Category Theorem as long as (8) is
nonempty otherwise the process stops. �

It is easy to see that any chain of open sets {Gα} whose union is R might
arise from an application of the scattered Baire Theorem. For example one
could let Eα = Gα \

⋃
β<αGβ and then renumber the transfinite sequence

{Eα} as an ordinary sequence {Ei}∞i=1. If Proposition 14 is then applied to the
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sequence {Ei} then the original chain {Gα} could be recovered. Note however
that the chain constructed by Proposition 14 is not necessarily unique. At
any stage α we have the choice of adding one or several intervals. Also there
may be more than one set Ei that is somewhere dense in R \

⋃
β<αGβ and to

select Gα we would need to choose the right one. One might expect that this
could be done in a more canonical fashion by adding the following condition
(∗) to the Scattered Baire Theorem:

for each index α there is an index i such that

Gα =

⋃
β<α

Gβ

 ∪⋃{
(a, b) : Ei is dense in (a, b) \

⋃
β<αGβ

}
and for each j < i the set Ej is nowhere dense in R \

⋃
β<αGβ.

The following example illustrates that doing so will limit the collection of
chains that might be produced. Consider the chain of open sets defined by

Gn =
(

1
n+1 , 2

)
for n = 0, 1, 2, . . . and Gω = (0, 3). There cannot exist a

sequence E1, E2, E3, . . . such that for all α there is an index i(α) so that (∗)
holds for i = i(α). If this were possible then each i(α) would be distinct. But
then, for some integer n, we would have i(ω) < i(n) and yet Ei(ω) cannot be
nowhere dense in R \Gn.

We can add some regularity conditions to the scattered Baire Theorem.
Let us say that the chain of open sets {Gα} is dense if Gα is dense in

R \
⋃
β<α

Gβ

for each ordinal α. The following variation of Proposition 14 gives a chain
which is explicitly defined from the sequence {Ei}.

Proposition 15 Let there be given a cover of the real line (7). Then there
is a dense chain of open sets {Gα} whose union is all of R and such that for
each α

Gα =

⋃
β<α

Gβ

 ∪⋃{
(a, b) : some Ei is dense in (a, b) \

⋃
β<αGβ

}
(9)

Proof. The proof is the same as for Theorem 14. �

Given a dense chain of open sets {Gα} whose union is R we could again
let Eα = Gα \

⋃
β<αGβ and then renumber {Eα} as an ordinary sequence
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{Ei}∞i=1. Then {Gα} is the unique chain constructed by Proposition 15 from
the sequence {Ei}. It is also possible to construct a sequence consisting of
just two sets {E′1, E′2} which yields, by Proposition 14, the chain {Gα}. One
simply lets E′1 =

⋃
α odd

Eα and E′2 =
⋃
α even

Eα.

6 Applications

We begin with a simple application, a variation of the Cantor-Bendixson the-
orem. Our proof is not much different than the original but it demonstrates
the method of using chains to collect the scattered sets.

Theorem 16 (Cantor-Bendixson) Every set can be partitioned into four
pieces, the first scattered, the second left scattered and with no isolated points,
the third right scattered and with no isolated points, and the fourth set has only
bilateral limit points.

Proof. Let E be an arbitrary set. We define a chain {Gα} inductively. Start
with G0 = ∅. At limit ordinals λ, we let Gλ =

⋃
α<λGα. If α is not a limit

ordinal then consider the set Eα = E\
(⋃

β<α Lβ ∩
⋃
β<αRβ

)
where, as usual,

Lα denotes the set of left endpoints of components of Gα and Rα the set of
right endpoints of components of Gα.

If Eα contains a point x isolated on the right then there is a bα so that
Eα ∩ [x, bα] = {x}. In that case we write Gα =

⋃
β<αGβ ∪ (x, bα). If not

and Eα contains a point x isolated on the left then there is a bα so that
Eα ∩ [bα, x] = {x}. In that case we write Gα =

⋃
β<αGβ ∪ (bα, x). If neither

is so then Eα has no point isolated on either side and the process can stop.

Let R, L be the associated right scattered and left scattered sets of the
chain. Then S1 = E ∩L∩R is scattered, S2 = E ∩L∩ c (R) is right scattered,
S3 = E∩R∩c (L) is left scattered and S4 = E∩c (L)∩c (R) has no point that
is isolated on either side. These four sets are clearly disjoint and S2 ∪ S3 ∪ S4

has no isolated points. The sets S2 and S3, however, may have isolated points.
Repeat this process on S2 obtaining four sets S21, S22, S23 and S24 and repeat
the process on S3 obtaining S31, S32, S33 and S34. Then S22 ∪ S23 ∪ S24 and
S32 ∪ S33 ∪ S34 have no isolated points. Let

S′1 =S1 ∪ S21 ∪ S31,

S′2 =S22 ∪ S23 ∪ S24,

S′3 =S32 ∪ S33 ∪ S34,

S′4 =S4.
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Note that these four sets partition E since

E = S1 ∪ S2 ∪ S3 ∪ S4 = S′1 ∪ S′2 ∪ S′3 ∪ S′4.

Clearly S′1 is scattered since it is a union of scattered sets. The set S′2 is right
scattered, since it is a subset of S2, and has no isolated points. The set S′3 is
left scattered, since it is a subset of S3, and has no isolated points. Finally
S′4 = S4, as already observed, has no point isolated on either side. Hence the
four sets S′1, S′2, S′3, S′4 form the required partition of E. �

Of course the theorem can also be proved in a nonconstructive way, avoid-
ing the introduction of chains. The referee has supplied the following sketch.
Take S4 as the largest bilaterally dense-in-itself subset of E, take S3 as the
largest subset of the (splattered) set E \ S4 which is dense-in-itself from the
left, and take S2 as E \ (S3 ∪ S4). Note that S3 is right scattered and that S2

is left scattered. Take S′2 (resp. S′3) to be the largest dense in itself subset of
S2 (resp. S3). Collect the deleted points in a set S1. Then the four sets S1,
S′2, S′3, S4 form the required partition of E.

Our second application illustrates a useful connection between gauges,
chains and scattered sets. Any gauge function (that is a map δ : R → R+)
leads naturally to a cover of the real line by using Ei = {x : δ(x) > i−1}. If a
gauge is undefined on a countable set N = {z1, z2, z3, . . . } then let

Ei = {z1, z2, . . . , zi} ∪ {x : δ(x) > i−1}.

In any case we have R =
⋃∞
i=1Ei. This covering then naturally leads, by the

scattered Baire Theorem, to an associated chain of open sets and, hence, to
an associated scattered, right scattered, and left scattered set. This natural
process is summed up by the following proposition.

Proposition 17 Let δ be a gauge defined on all of R except possibly for some
countable set. Then, except for a right (left) scattered set, every point x is the
limit from the right (left) of some sequence {xi} for which δ(xi) is bounded
above zero.

Proof. We suppose that δ(x) is defined and positive at every point excepting
for x in a countable set N = {z1, z2, z3, . . . }. Write

Ei = {z1, z2, . . . , zi} ∪ {x : δ(x) > i−1}.

Apply the scattered Baire Theorem to {Ei} using unions at the limit ordinals
to produce a chain {Gα} whose union is all of R and with the property that for
each α there is an index i such that Ei contains a dense subset of Gα\

⋃
β<αGα.

We show that every point x not in the right scattered set L associated with
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the chain is the limit from the right of some sequence {xi} for which δ(xi) is
bounded above zero.

Fix x, let η be the least ordinal such that x ∈ Gη and choose i = i(η) such
that Ei contains a dense subset of Gη \

⋃
β<η Gβ . If x is a right hand limit

point of Ei then it is also a right hand limit point of the set

{x ∈ R \N : δ(x) > i−1}

and we are done. Otherwise x is isolated on the right from Ei and hence also
from Gη \

⋃
β<η Gβ . Choose ε > 0 sufficiently small so that (x, x+ε) ⊆ Gη and

so that (x, x + ε) is disjoint from Gη \
⋃
β<η Gβ . Then (x, x + ε) ⊆

⋃
β<η Gβ

and so x is a left endpoint of a component of
⋃
β<η Gβ and x ∈ L as claimed.

�

For a direct proof of Proposition 17 without invoking the Scattered Baire
Theorem see the companion article [2]. There too further applications are
given and proved using the gauge approach alone.
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