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Abstract

The change of variables formula for the Riemann integral is discussed
and a theorem is proved which perhaps compares favorably with its
counterpart in Lebesgue theory.

1 Introduction

It is often convenient to rewrite the usual formula for the change of variable∫ G(b)

G(a)

f =

∫ b

a

f ◦G ·G′

in the form ∫ G(b)

G(a)

f =

∫ b

a

f ◦G · g, (1)

with G(t) = G(a) +
∫ t

a
g. Throughout this paper we shall assume that g

is Riemann integrable on [a, b] and G its Riemann primitive. According to
Hobson [2, p. 508] Lebesgue as far back as in 1909 proved (1) for a monotone G
and R-integrable f . In this paper we show that (1) holds as long the integrand
on either side of (1) is Riemann integrable. Our aim is also to give proofs within
the framework of Riemann theory and accessible to undergraduates. First we
prove (1) for a monotone G.
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2 Monotone Substitution

We need a weak variant of Henstock’s lemma for the Riemann integral which
is an immediate consequence of the definition based on upper and lower sums.
Given ε > 0 there is a partition

D ≡ a = t0 < t1 < · · · < tn = b (2)

such that

n∑
1

|G(ti)−G(ti−1)− g(τi)(ti − ti−1)| < ε, (3)

for any set of τi with ti−1 ≤ τi ≤ ti. Moreover (3) persists for any refinement
of D.

Theorem 1 If f is bounded on the range of G and g ≥ 0 on [a, b] then

∫ G(b)

G(a)

f =

∫ b

a

f ◦G · g, (4)∫ G(b)

G(a)

f =

∫ b

a

f ◦G · g. (5)

If either g ≥ 0 or g ≤ 0 then if one side of (1) exists as a Riemann integral so
does the other and equality holds.

Proof. It suffices to prove (4), the relation for the lower integrals follows by
using (4) on −f . The rest of the theorem follows from (4–5). Let |f | ≤ Mf ,
|g| ≤Mg, denote by Mi and M̃i the least upper bound of f ◦G and f ◦G · g,
respectively, on the interval [ti−1, ti]. We choose a partition (2) such that

n∑
1

M̃i(ti − ti−1) ≤
∫ b

a

f ◦G · g + ε
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and (3) hold simultaneously. On every [ti−1, ti] we find τi such that Mi − ε <
f(G(τi)), denote xi = G(ti)

1 and have∫ G(b)

G(a)

f ≤
n∑
1

Mi(xi − xi−1) =

n∑
1

Mi[G(ti)−G(ti−1)]

≤
n∑
1

Mig(τi)(ti − ti−1) +

n∑
1

Mi [G(ti)−G(ti−1)− g(τi)(ti − ti−1)]

≤
n∑
1

[f(G(τi)) + ε]g(τi)(ti − ti−1) +Mfε

≤
n∑
1

[f(G(τi))]g(τi)(ti − ti−1) +
(
Mf +Mg(b− a)

)
ε

≤
n∑
1

M̃i(ti − ti−1) +
(
Mf +Mg(b− a)

)
ε

≤
∫ b

a

f ◦G · g +
(
Mf +Mg(b− a) + 1

)
ε.

Consequently we have (4) with = replaced by ≤. For proving the reversed
inequality we find a partition (2) such that

n∑
1

Mi[G(ti)−G(ti−1)] ≤
∫ G(b)

G(a)

f + ε

and (3) hold simultaneously. On [ti−1, ti] we choose τi such that M̃i < f ◦G ·
g(τi) + ε. Then we have∫ b

a

f ◦G · g ≤
n∑
1

M̃i(ti − ti−1) ≤
n∑
1

f(G(τi))g(τi)(ti − ti−1) + ε(b− a)

≤
n∑
1

Mi [G(ti)−G(ti−1)] + ε(b− a)

+Mf
n∑
1

|G(ti)−G(ti−1)− g(τi)(ti − ti−1)|

≤
∫ G(b)

G(a)

f + ε(b− a+ 1 +Mf ).

�
1Not all xi need to be distinct but that does not affect the proof.
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3 Substitution Merely an Integral

In this situation the existence of the integral
∫ G(b)

G(a)
f places no restriction on

the behavior of f outside [G(a), G(b)] therefore it is natural to replace this
assumption by integrability of f on the range of G.

Theorem 2 The change of variables formula (1) is valid if either

(i) f is Riemann integrable on the range of G, or

(ii) f is bounded on the range of G and the Riemann integral on the right-
hand side of (1) exists.

For the proof we need the following

Lemma 3 If z is a Lipschitz function on [a, b] and z′ ≤ 0 almost everywhere
then z(b) ≤ z(a). If z is Lipschitz and z′ = 0 almost everywhere then z(b) =
z(a).

Proof. It suffices to prove the first part of the lemma. Let K > 0 be a
Lipschitz constant for z. Given ε > 0, there exists a countable system of open
disjoint intervals Jn, n = 1, 2, . . . covering the set where z′ either does not
exist or is positive and such that

∞∑
1

|Jn| <
ε

2K
.

Since

z′ <
ε

2(b− a)

on

[a, b] \
∞⋃
1

Jn,

it is easily seen that the least upper bound of all x ∈ [a, b] such that

z(x)− z(a) ≤ ε(x− a)

2(b− a)
+

∞∑
1

K |Jn ∩ (a, x)|

is the number b, and consequently z(b)− z(a) ≤ ε. �
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Proof of Theorem 2. Let E = {x ∈ (a, b); g continuous at x}, E0 = {x ∈
E; g(x) = 0}, E− = {x ∈ E; g(x) < 0}, E+ = {x ∈ E; g(x) > 0}. Assuming
(i) let

F (t) =

∫ G(t)

G(a)

f,

L(t) =

∫ t

a

f ◦Gg.

On E0 we have F ′(t) = L′(t) = 0 because f is bounded, G′(t) = 0 and g
continuous at t with g(t) = 0. Let t ∈ E+, there is a positive α such that
g > 0 on [t− α, t+ α]. If |h| < α then

F (t+ h)− F (t) = L(t+ h)− L(t)

by Theorem 1. It follows that

(F − L)′(t) = 0 (6)

for t ∈ E+. Similarly for t ∈ E−. Consequently (6) holds on E and hence a.e.
on [a, b]. By the Lemma with z = F − L we obtain∫ G(b)

G(a)

f =

∫ b

a

f ◦Gg. (7)

Similarly ∫ G(b)

G(a)

f =

∫ b

a

f ◦Gg. (8)

Consequently ∫ b

a

f ◦Gg =

∫ b

a

f ◦Gg =

∫ G(b)

G(a)

f.

Assume (ii). Let

L(t) =

∫ G(t)

G(a)

f,

F(t) =

∫ t

a

f ◦Gg.

The first part of the proof applies mutas mutandis with F , L replaced by F ,
L, respectively. �
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The assumption that f is bounded in (ii) seems undesirable but, in fact,
is essential. If f(1/n) = n and g(1/n) = 0 for n = 1, 2, . . . , and f(x) = 0,
g(x) = 1 otherwise then the integral on the right hand side of (1) exists but
the one on the left hand side does not when a = 0 and b = 1.

4 Concluding Remarks

Theorem 1 remains valid if Riemann integrability is replaced by Lebesgue or
Perron integrability. On the other hand the counterpart (i) of Theorem 2 for
L-integral is false. This is because a composition of two AC functions need not
be AC. The analog of Theorem 2 is not valid for the Perron integral either.
This follows from the Corollary on p. 104 in [3]. If both integrals in (1) exist as
Lebesgue or Perron integral then equation (1) holds. For the Lebesgue integral
this was established by de la Valée Poussin already in 1915, [6], see also [5]
Corollary 8, the proof (of a more general theorem) for the Perron integral is in
Goodman [1]. Theorem 2 is perhaps one of the rare examples when a theorem
naturally and generally formulated within the framework of a theory is valid
for the Riemann but not for the Lebesgue integral.
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[6] de la Valée Poussin, Sur l’intégrale de Lebesgue, Trans. Amer. Math. Soc.,
16 (1915), 435–501.


