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ON SOME THEOREMS IN FRACTIONAL
CALCULUS FOR SINGULAR FUNCTIONS

Abstract

In this paper we show that there are close relationships amongst Can-
tor bar totality, non-integer integral and Hausdorff integral. If a singular
function f has zero Lipschitz (1 − ν)-numbers on a Cantor set C with
H-dim C = 1−ν, 0 < ν < 1, then the 1−ν order fractional derivative of
f exists almost everywhere on [0, T ]. Moreover, under strong assump-
tions on the function f the 1−ν order derivative of f exists everywhere.
Consequently, the ν order fractional integral of f equals f(0)tν . Using
the Concept of th Hausdorff derivative we prove that if a singular func-
tion has a Hausdorff derivative on C, then the fractional derivative of f
exists almost everywhere on [0, T ]. Finally, under some assumptions on
f and C, we establish

(D−νf)(t) =

∫ t

0

∫ u

0

vν−1f ′H(u− v) dv1−ν du

=

∫ t

0

u1−νJν(vν−1f ′H(u− v))(u) du

This identity is similar to the identity

(D−νf)(t) =
1

Bν
tν(Jνf)(t)

which professor R. R. Nigmatullin claimed.
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1 Introduction

In his paper R. R. Nigmatullin [7] pointed out that there is a relationship
between Cantor bar totality and non-integer integral. He claimed that

(D−νf)(t) =
1

Bν
tν(Jνf)(t) Bν constant (1)

where

(D−νf)(t) =
1

Γ(ν)

∫ t

0

(t− u)ν−1f(u) du

(Jνf)(t) = lim
n→∞

1

(2ξ)nt

∫ t

0

dτ

2n∑
m=1

η(t
(n)
2m−1 < τ < t

(n)
2m)f(τ),

see [7, p. 248]. Some mathematicians doubt identity (1). R. S. Rutman [8]
and S. Kempfle [4] showed that in fact (1) is not true. In my previous work
[2] I have shown that the whole convolutional integral (Jνf)(t) is equivalent
to the Hausdorff integral. In this paper we show that there are close re-
lationships amongst Cantor bar totality, non-integer integral and Hausdorff
integral. Moreover, we will give an identity which is similar to the identity
which R. R. Nigmatallin claimed. The identity is

(D−νf)(t) =

∫ t

0

u1−νJν(vν−1f ′H(u− v))(u) du.

B. B. Mandelbrot states “any nondecreasing function can be written as the
sum of a singular function, of a function made of discrete Jumps, and a differ-
entiable function. The last two components are classical in mathematics and
of wide use in physics. On the other hand, the singular component is widely
regarded in physics as pathological and totally devoid of uses. A principal
theme of this Essay is that this last opinion is totally devoid of merit”. Let
us consider the evolution of some physical systems with losses. In the process
there is no loss almost all the time, but there are losses in exceptional time.
(The exceptional time subset has uncountable elements but its Lebesgue mea-
sure is zero.) Therefore, the functions which describe this phenomenon remain
constant in most time and vary in exceptional time. The Cantor type func-
tions (a kind of singular functions) possess this property; so they are suitable
for studying the phenomenon mentioned above.

We begin with a theorem about the existence of the fractional derivatives.
If a singular function f has zero Lipschitz (1− ν)-numbers on a Cantor set C
with H-dim C = 1 − ν, then the 1 − ν order fractional derivative of f exist
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almost everywhere on [0, T ]. This answers, in one way, an open problem posed
by C. Tricot [10], “Are there any relationships between the Lipschitz η-number
and η order fractional derivative of function f ?” Other answers to Tricot’s
question were given by Hardy and Littlewood [3]. Moreover, under strong
assumptions on the function f the ν order derivative of f exist everywhere on
[0, T ]. By elementary Calculus the 1 − ν order fractional integral of f equals
f(0)tν . That is, if a Cantor type function f has bounded Lipschitz (1−ν+ε)-
numbers on C, then the ν order integral of f is equal to the power function
f(0)tν . Using the concept of Hausdorff derivative we prove that if a Cantor
type function f has a Hausdorff derivative on C, then the sequence derivative
of the Riemann-Liouville fractional integral of order ν of the function f exist
almost everywhere on [0, T ]. Finally, under additional conditions on f and C,
we establish the identity

(D−νf)(t) =

∫ t

0

u1−νJν(vν−1f ′H(u− v))(u) du.

2 Notations and Terminology

The Cantor dust of dimension ν is constructed in the usual way. Let [0, T ] be
an interval and let 0 < ξ < 1

2 . A partition of [0, T ] is given by

a1
1 = 0 < b11 = ξT < a2

1 = (1− ξ)T < b21 = T,

write U1 = U1
1 ∪ U2

1 , where U1
1 = [a1

1, b
1
1], U2

1 = [a2
1, b

2
1]. A partition of U j1 ,

j = 1, 2, is given by

a1
2 = a1

1 < b12 < a2
2 < b22 = b11 < a3

2 = a2
1 < b32 < a4

2 < b42 = b21,

where

b12 = a1
1 + ξ2T, a2

2 = b11 − ξ2T, b32 = a2
1 + ξ2T, a2

2 = b21 − ξ2T.

Continue this process to obtain a sequence of intervals {U in}2
n

i=1, n = 1, 2, . . ..
Let

Un =
2n⋃
i=1

U in, and C =

∞⋂
n=1

Un.

We call the closed set C a Cantor dust. It is well known that mC = 0,

ν = H-dim C =
log 2

log 1
ξ

and 0 < Hν(C) <∞, where H-dim denotes Hausdorff

dimension and Hν Hausdorff measure. The points ain or bin, i = 1, 2, . . . , 2n,
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n = 1, 2, . . . are end points of C; The points t ∈ C\ ∪ {ain, bin} are interior
points of C in the sense of related topology. We call a continuous function f a
Cantor type function on C if f is constant on each open interval of [0, T ]\C.
Throughout this paper we will consider Cantor type functions.

The discussion will be related to the concepts of fractional calculus, Haus-
dorff calculus and others.

2.1 Fractional Integral and Fractional Derivative

Let ν be a real positive number and f be a continuous function. The expression

(D−νf)(t) =
1

Γ(ν)

∫ t

0

uν−1f(t− u) du

is the Riemann-Liouville fractional integral of order ν of the function f [10].
The ν order derivative of the function f is defined as

(Dνf)(t) =
d

dt

1

Γ(1− ν)

∫ t

0

u−νf(t− u) du

2.2 Hausdorff Integral and Hausdorff Derivative

For any singular function f on C [2], we define the net extreme Hausdorff
derivative as

N −HDF (t) = lim
n→∞

f(bitn )− f(aitn )

Hν(C
⋂

[aitn , b
it
n )
,

N −HDF (t) = lim
n→∞

f(bitn )− f(aitn )

Hν(C
⋂

[aitn , b
it
n )
,

t ∈ (aitn , b
it
n ), n = 1, 2, . . .

If N −HDf(t) = N −HDf(t), we say that the function f(t) is net Haus-
dorff differentiable at t; this limit is termed the net Hausdorff derivative of
f(t) at t and is denoted by f ′H(t).

A real valued function f on C with H-dim C = S is said to be Hausdorff
integrable on [a, b], if there exists r, such that for every ε > 0 there is a gauge
function δ(t) > 0 on C, such that for any net δ-fine division D = {([u, v], t)}
of C, we have ∣∣∣(D)

∑
f(t)Hν(C ∩ [u, v])− r

∣∣∣ < ε.

As usual, we write
∫ b
a
f(t)dts = r.
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2.3 Sequence Derivative

Let {hn}∞n=1 be a sequence of positive numbers with hn ↓ 0, let f : [0, T ]→ R
and let t ∈ (0, T ). The function f has a sequence derivative with {hn}∞n=1 at
t if both the limits

lim
n→∞

f(t− hn)− f(t)

−hn
and lim

n→∞

f(t+ hn)− f(t)

hn

exist and are equal. We will use (q)dfdt to denote the sequence derivative of f
at t.

2.4 Lipschitz Number

The derivative of the form

Ls(f, t) = lim
y, z → x
y < x < z

f(z)− f(y)

(z − y)s

following Besicovich [9, p. 1] we call the Lipschitz s-number.

2.5 Self-Similar Property

For each t ∈ C, there exists a sequence of intervals {[aitnn , b
itn
n ]} such that

t ∈ [a
itn
n , b

itn
n ]. A Cantor type function f has the self-similar property if there

exists a constant β such that

lim
n→∞

∫ bitnn
a
itn
n

[f(u)− f(a
itn
n )du∫ bitnn

a
itn
n

f ′H(u)dus
= β

where t ∈ [a
itn
n , b

itn
n ], t ∈ C;

∫ bitnn
a
itn
n

f ′H(u)dus 6= 0 for each n and H-dim C = S.

For example the Cantor ternary function has the self-similar property.

2.6 Notations from Henstock Integration Theory

Let I be the set of all closed intervals [u, v] in [a, b] having a nonempty in-
terior. An element ([u, v], t) ∈ I × [a, b] is called an interval-point pair. We
write D = {[u, v], t} where ([u, v], t) denotes a typical interval-point pair in
D. Then D is said to be a partition of [a, b] (C resp.) if {[u, v]; ([u, v], t) ∈
D} is a finite collection of nonoverlapping subintervals of [a, b] and [a, b] =
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∪([α,β],t)∈D[α, β](C = ∪([α,β],t)∈D[α, β]∩C). Let δ(t) be a positive function on
[a, b](E). The partition D is called a δ-fine division of [a, b](E) if ([α, β], t) ∈ D,
then β − α ≤ δ(t).

3 Main Result

We assume for simplicity and without loss of generality that in the following,
the Cantor type functions f are nondecreasing.

Theorem 1 Let f be a Cantor type function on C with H-dim C = 1 − ν,
0 < ν < 1. Suppose that the Lipschitz (1−ν)-numbers L1−ν(f, t) = 0 uniformly
on C. Then

D1−νf(t) =
f(0)

Γ(ν)
tν−1

for t ∈ [0, T )\C. That is the 1 − ν order derivative of the function f exists
almost everywhere.

Proof. We can write

(D−νf(t+ h)−D−νf(t) =
1

Γ(ν)

∫ t

0

uν−1[f(t+ h− u)− f(t− u)] du

+
1

Γ(ν)

∫ t+h

t

uν−1f(t+ h− u) du

=I1(t, h) + I2(t, h)

where h > 0. Clearly

I2(t, h)

h
=

(t+ θh)ν−1

Γ(ν)
f(1− θh) → f(0)

Γ(ν)
tν−1

for h→ 0.

We will show that
I1(t, h)

h
= o(1)(h → 0) for t ∈ [0, T ]\C. Let nt be an

index for which t ∈ (bitnt , a
it+1
nt ). Let ε > 0. Under the assumption on the

Lipschitz numbers of f , there is a δ1 > 0 such that

|f(u+ P1)− f(u− P2)|
(P1 + P2)1−ν < ε1

where u ∈ [0, T ], ε1 =
(
t−bitnt

2 )1−ν

bT 1−ν ε, P1 ≥ 0, P2 ≥ 0 and 0 < P1 + P2 ≤ δ1.
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Let δ = min(δ1,
t− bitnt

2
). For any h, 0 < h < δ, choose an index n such

that hn ≤ h ≤ hn−1 and hn = ξnT . Then the integral I ′1(t, h)(I ′1(t, h) =
1

Γ(ν)I1(t, h)) may be expressed as∫ t−bitnt

0

+

∫ t−bitnt+h

t−bitnt
+ · · ·+

∫ t

t−bitnt+mh
uν−1[f(t+ h− u)− f(t− u)] du

=

∫
I1

+

∫
I2

+ · · ·+
∫
Im+2

uν−1[f(t+ h− u)− f(t− u)] du

=
∑
Ij∈D1

∫
Ij

uν−1[f(t+ h− u)− f(t− u)] du

+
∑
Ij∈D2

∫
Ij

uν−1[f(t+ h− u)− f(t− u)] du

where D1 denotes the collection of all intervals for which the functions f(t−u)
and f(t+h−u) are equal for u ∈ Ij ; and D2 the collection of the other terms
of {Ij}m+2

j=1 . Clearly∑
Ij∈D1

∫
Ij

uν−1[f(t+ h− u)− f(t− u)] du = 0.

Observe that the number of the terms of D2 is less than 3× 2n. Therefore∣∣∣∣∣∣
∑
Ij∈D2

∫
Ij

uν−1[f(t+ h− u)− f(t− u)] du

∣∣∣∣∣∣ ≤ 3× 2n
ε1h

1−ν

(
x−bitnt

2 )1−ν
h.

By our choice of the index n,

2nh1−ν ≤ 2nh1−ν
n−1 ≤ 2× 2n−1ξ

(n−1) log 2

log 1
ξ T 1−ν ≤ 2T 1−ν .

Hence we have∣∣∣∣∣
∑
Ij∈D2

∫
Ij
uν−1[f(t+ h− u)− f(t− u)] du

h

∣∣∣∣∣ ≤ ε1
6T 1−ν

(
x−bitnt

2 )1−ν
= ε

for 0 < h ≤ δ as required. The case for h < 0 is treated in a similar way. �

Theorem 2 Let f be a Cantor type function on C with H-dim C = 1 − ν.
Suppose that the Lipschitz r-numbers Lr(f, t) ≤ A 1− ν < r uniformly on C.
Then

(D−νf)(t) = f(0)tν .
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Proof. Under the assumption on the Lipschitz numbers of f , we have

L1−ν(f, t) = 0

uniformly on C. By Theorem 1

(D1−νf)(t) =
f(0)

Γ(ν)
tν−1

for t ∈ [0, T ]\C. We will show that D1−νf(t) = f(0)
Γ(ν) t

ν−1 for t ∈ C. Let

r = 1− ν + η, η > 0, and let t0 = t− T
η

2(1−ν)

2 . We may write

D−νf(t+ h)−D−νf(t)

=
1

Γ(ν)

∫ T

η
2(1−ν)

2

0

+

∫ t

T

η
2(1−ν)

2

uν−1[f(t+ h− u)− f(t− u)] du

+
1

Γ(ν)

∫ t+h

t

uν−1f(t+ h− u) du

= I1(t, h) + I2(t, h) + I3(t, h).

Arguing as in the proof of Theorem 1 shows that

lim
h→0

I2(t, h)

h
= 0,

lim
h→0

I3(t, h)

h
=
f(0)

Γ(ν)
tν−1.

We decompose I1(t, h) into two groups as

I1(t, h) = I1.1(t, h) + I1.2(t, h)

where I1.1(t, h) is the sum of all integrals
∫
Ij
uν−1[f(t+ h− u)− f(t− u)] du

for which the functions f(t − u) and f(t + h − u) are equal for u ∈ Ij , and
I1.2(t, h) the sum of the other integrals. Consequently, I1,1(t, h) = 0. We will

show that limh→0
I1.2(t,h)

h = 0.
By the assumption on the Lipschitz numbers of f , there is a δ > 0 such

that
|f(t+ P1)− f(t− P2)|

(P1 + P2)r
≤ A

P1 ≥ 0, P2 ≥ 0, 0 < P1 + P2 ≤ δ and t ∈ C, then t ∈ [0, T ]. For any h > 0,
choose an index n such that hn ≤ h < hn−1. By the symmetric distribution of
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{[ain, bin]2
n

i=1}n=1,2,... the number of the terms of I1.2(t, h) is less than 3[2n
η

2(1−ν) ].
Consequently

|I1,2(t, h)| ≤ 3
[
2n

η
2(1−ν)

]
A

hr

h1−ν h.

Therefore ∣∣∣∣I1,2(t, h)

h

∣∣∣∣ ≤ 3A2n
η

2(1−ν)hη ≤ 3A2n
η

2(1−ν)hηn−1

≤ 3A2n
η

2(1−ν)
T
η
2

2n
η

2(1−ν)
h
η
2
n−1 ≤ 3AT

η
2 h

η
2
n−1.

The last inequality shows that limh→0
I1.2(t,h)

h = 0 as required.

We have shown that (D1−νf)(t) = f(0)
Γ(ν) t

ν−1 for each t ∈ [0, T ]. By the

elementary calculus we get (D−νf)(t) = f(0)tν . �

Theorem 3 Let f be a Cantor type function on C with H-dimC = 1− ν.
Suppose that f ′H(t) exists and is continuous on C and f has the self-similar
property. Then

(q)
dD−νf

dt
(t) =

1

Γ(ν)

∫ t

0

uν−1f ′H(t− u) du1−ν +
f(0)

Γ(ν)
tν−1

for t ∈ [0, T ]\C.

Proof. We may write

(D−νf(t+ hn)−D−νf(t)

=
1

Γ(ν)

∫ t

0

uν−1[f(t+ hn − u)− f(t− u)] du

+
1

Γ(ν)

∫ t+hn

t

uν−1f(t+ hn − u) du

=I1(t, hn) + I2(t, hn)

where hn > 0. Clearly

I2(t, hn)

hn
=

(t+ θhn)ν−1

Γ(ν)
f(1− θhn) → f(0)

Γ(ν)
tν−1

as n→∞.



Fractional Calculus for Singular Functions 131

We show that

lim
n→∞

I1(t, hn)

hn
=

1

Γ(ν)

∫ t

0

uν−1f ′H(t− u) du1−ν for t ∈ [0, T ]\C.

Let nt be an index for which t ∈ (bitnt , a
it+1
nt ). Let ε > 0. By the uniformly

continuity of the function uν−1 on [t− bitnt , T ] there is a δ1 > 0, such that

|uν−1 − vν−1| < ε (2)

whenever u, v ∈ [t− bitnt , T ] and |u− v| < δ1. By the self-similarity of f , there
is a positive integer N1 such that∣∣∣∣∣

∫ bin

ain

[f(u)− f(a)] du− β
∫ bin

ain

f ′H(u) du1−ν

∣∣∣∣∣ < ε

∫ bin

ain

f ′H(u) du1−ν (3)

for n > N1. By the continuity of f and f ′H there is a positive integer N2 such
that ∣∣∣∣∣ 1

hn

∫ t

t−b′n
uν−1[f(t+ hn − u)− f(t− u)] du

∣∣∣∣∣ <ε (4)∣∣∣∣∣
∫ t−a′n

t−b′n
uν−1[f ′H(t− u)] du1−ν

∣∣∣∣∣ <ε. (5)

Take an integer N such that hN <
t−bitnt

2 , 2hN < δ and N > max(N1, N2).
Let n > N . We decompose I1(t, hn) as(∫ t−bmn +hn

t−bmn
+

∫ t−bmn +2hn

t−bmn +hn

)
+

(∫ t−bm−1
n +hn

t−bm−1
n

+

∫ t−bm−1
n +2hn

t−bm−1
n +hn

)
+ · · ·

+

(∫ t−b2n+hn

t−b2n
+

∫ t−b2n+2hn

t−b2n+hn

)
+

∫ t

t−b′n
uν−1[f(t+ hn − u)− f(t− u)] du

where bitnt = bmn .
First we compute

I1,j =

∫ t−bjn+hn

t−bjn
uν−1[f(t+ hn − u)− f(t− u)] du

+

∫ t−bjn+2hn

t−bjn+hn

uν−1[f(t+ hn − u)− f(t− u)] du, 2 ≤ j ≤ m
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=

∫ t−bjn+hn

t−bjn
uν−1[f(bjn)− f(t− u)] du

+

∫ t−bjn+2hn

t−bjn+hn

uν−1[f(t+ hn − u)− f(ajn)] du

=(t− bjn + θjhn)ν−1

∫ t−bjn+hn

t−bjn
[f(bjn)− f(u)] du

+ (t− bjn + 1 + θjhn)ν−1

∫ bjn

ajn

[f(u)− f(ajn)] du

Note that∫ bjn

ajn

[f(bjn)− f(u)] du+

∫ bjn

ajn

[f(u)− f(ajn)] du = [f(bjn)− f(ajn)](bjn − ajn).

We have

I1.j = (t− bjn + θjhn)ν−1[f(bjn)− f(ajn)](bjn − ajn)

+ [(t− bjn + 1 + θjhn)ν−1 − (t− bjn + θjhn)ν−1]

∫ bjn

ajn

[f(u)− f(ajn)] du.

Using the above identity we show that

I1(t, hn)

hn
− 1

Γ(ν)

∫ t

0

uν−1f ′H(t− u) du1−ν = o(1).

Because∫ t

0

uν−1f ′H(t− u) du1−ν =

m∑
j=1

∫ t−ajn

t−bjn
uν−1f ′H(t− u) du1−ν ,

we may write
I1(t, hn)

hn
−
∫ t

0

uν−1f ′H(t− u) du1−ν

as

m∑
j=2

[
(t− bjn + θjhn)ν−1

∫ bjn

ajn

f ′H(u) du1−ν −
∫ t−ajn

t−bjn
uν−1f ′H(t− u) du1−ν

]

+

m∑
j=2

[
(t− bjn + 1 + θjhn)ν−1 − (t− bjn + θjhn)ν−1

]
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×

[
1

hn

∫ bjn

ajn

[f(u)− f(ajn)] du− β
∫ bjn

ajn

f ′H(u) du1−ν

]

+ β

m∑
j=2

[
(t− bjn + 1 + θjhn)ν−1 − (t− bjn + θjhn)ν−1

] ∫ bjn

ajn

f ′H(u) du1−ν

+
1

hn

∫ t

t−b1n
uν−1[f(t+ hn − u)− f(t− u)] du−

∫ t−a1n

t−b1n
uν−1f ′H(t− u) du1−ν .

This expression combining (2), (3), (4), (5) yields∣∣∣∣∣I1(t, hn)

hn
−
∫ t

0

uν−1f ′H(t− u) du1−ν

∣∣∣∣∣
≤

m∑
j=2

∫ bjn

ajn

|(t− bjn + θjhn)ν−1 − (t− u)ν−1|f ′H(u) du1−ν

+ ε

m∑
j=2

∣∣(t− bjn + 1 + θjhn)ν−1 − (t− bjn + θjhn)ν−1
∣∣ ∫ bjn

ajn

f ′H(u) du

+ β

m∑
j=2

∣∣(t− bjn + 1 + θjhn)ν−1 − (t− bjn + θjhn)ν−1
∣∣ ∫ bjn

ajn

f ′H(u) du

+
1

hn

∫ t

t−b1n
uν−1|f(t+ hn − u)− f(t− u)| du

+

∫ t−a1n

t−b1n
uν−1f ′H(t− u) du1−ν

≤ε
∫ t

0

f ′H(u) du1−ν + ε2

∫ t

0

f ′H(u) du1−ν + βε

∫ t

0

f ′H(u) du1−ν + 2ε

=ε

[
(1 + ε+ β)

∫ t

0

f ′H(u) du1−ν + 2

]
as required. �

Remark 1 The Hausdorff integral
∫ t

0
uν−1f ′H(t − u) du1−ν exists for

t ∈ [0, T ]\C, since the integrand function uν−1f ′H(t− u) is a continuous func-
tion.

Remark 2 Let G(t) =
∫ t

0
uν−1f ′H(t−u)du1−ν . Then G is defined on each in-

terval (bin, a
i+1
n ], i = 1, 2, . . . , 2n, n = 1, 2, . . .. Since |

∫ t
0
uν−1f ′H(t−u)du1−ν | ≤
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Atν−1, t ∈ (bin, a
i+1
n ], the integral

∫ ai+1
n

bin
G(t) dt exists at least in the improper

sense.

Lemma 1 Let f be a Cantor type function on C with H-dim C = 1 − ν.
Suppose that

1. f ′H(t) exists uniformly and is continuous for t ∈ C.

2.
∫ t

0
uν−1f ′H(t− u) du1−ν exists and is bounded for t ∈ C.

3. f has self-similar property.

4. f(0) = 0 and ξ ≤ 1
3 .

Then there is a constant A such that

|(D−νf)(b
itn
n )− (D−νf)(a

itn
n )|

(bitn )− (aitn )
≤ A

where aitn ≤ t ≤ bitn , t ∈ C.

Proof. We may write (D−νf)(b
itn
n )− (D−νf)(a

itn
n ) as

1

Γ(ν)

∫ a
itn
n

0

uν−1[f(b
itn
n − u)− f(a

itn
n − u)] du

+
1

Γ(ν)

∫ b
itn
n

a
itn
n

uν−1f(b
itn
n − u) du = I1(t, hn) + I2(t, hn).

Note that as n increases the ratio
I2(t, hn)

hn
tends to zero. Therefore, there is

a constant A1 such that ∣∣∣∣I2(t, hn)

hn

∣∣∣∣ ≤ A1 (6)

I1(t, hn)

hn
may be expressed as

1

hn

[∫ hn

0

+

∫ b
itn
n −bitn−1

n

bn

+

∫ b
itn
n −bitn−1

n +2h

b
itn
n −bitn−1

n

+

∫ b
itn
n −bitn−2

n

b
itn
n −bitn−1

n +2h

+ · · ·

+

∫ b
itn
n −b2n+2h

b
itn
n −b2n

+

∫ b
itn
n −b1n

b
itn
n −b2n+2h

uν−1[f(b
itn
n − u)− f(a

itn
n − u)] du

]
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=
1

hn

[∫ hn

0

+

∫ b
itn
n −bitn−1

n +2h

b
itn
n −bitn−1

n

+

∫ b
itn
n −bitn−2

n

b
itn
n −bitn−1

n +2h

+ · · ·

+

∫ b
itn
n −b2n+2h

b
itn
n −b2n

+

∫ b
itn
n −b1n

b
itn
n −b2n+2h

uν−1[f(b
itn
n − u)− f(a

itn
n − u)] du

]
.

Using the identity in the proof of Theorem 3, we have

itn−2∑
j=1

1

hn

∫ a
itn
n −bitn−jn +hn

a
itn
n −bitnn −j

+

∫ a
itn
n −bitn−jn +2hn

a
itn
n −bitn−jn +hn


× uν−1

[
f(b

itn
n − u)− f(a

itn
n − u)

]
du

=

itn−2∑
j=1

(a
itn
n − bitn−jn + θjhn)ν−1[f(b

itn−j
n )− f(a

itn−j
n )]

+

itn−2∑
j=1

[
(a
itn
n − bitn−jn + 1 + θjhn)ν−1 − (a

itn
n − bitn−jn + θjhn)ν−1

]

× 1

hn

∫ b
itn−j
n

a
itn−j
n

[f(u)− f(a
itn−j
n )] du.

Now
I1(t, hn)

hn
may be displayed as

1

hn

∫ hn

0

uν−1
[
f(b

itn
n − u)− f(a

itn
n − u)

]
du

+

itn−2∑
j=1

(a
itn
n − bitn−jn + θjhn)ν−1[f(b

itn−j
n )− f(a

itn−j
n )]

+

itn−2∑
j=1

(a
itn
n − bitn−jn + 1 + θjhn)ν−1 − (a

itn
n − bitnn − j + θjhn)ν−1


× 1

hn

∫ b
itn−j
n

a
itn−j
n

[f(u)− f(a
itn−j
n )] du = I1.1(t, hn) + I1.2(t, hn) + I1.3(t, hn).

Clearly

|I1.1(t, hn)| ≤ C1

hn

∫ hn

0

uν−1h1−ν
n du =

C1

hn

hνn
Γ(ν)

h1−ν
n ≤ A2 (7)
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where A2 is a constant.
By condition (ii) there is a constant C3 such that∣∣∣∣∫ t

0

uν−1f ′H(t− u) du1−ν
∣∣∣∣ ≤ C3.

Let K = I1.2(t, hn)−
∫ t

0
uν−1f ′H(t−u) du1−ν . To show that K is bounded, we

may write K as

itn−2∑
j=1

∫ b
itn−j
n

a
itn−j
n

[(a
itn
n − bitn−jn + θjhn)ν−1 − (t− u)ν−1]f ′H(u) du1−ν

−
∫ t−aitnn

0

uν−1f ′H(t− u) du1−ν −
∫ t−a1n

t−b1n
uν−1f ′H(t− u) du1−ν .

Note that

(a
itn
n − bitn−jn + θjhn)ν−1 − (t− u)ν−1 =

ujhn

(ν − 1)(a
itn
n − bitn−jn + λjhn)2−ν

u ∈ [a
itn−j
n − bitn−jn ], 0 ≤ uj , λj ≤ 2

and ∫ bjn

ajn

uν−1f ′H(t− u)du1−ν ≤ D3h
ν−1
n , D3 constant.

Since ξ ≤ 1
3 ,

(a
itn
n − bitn−jn + θjhn) ≥ jhn.

We have∣∣∣∣∣
itn−2∑
j=1

∫ b
itn−j
n

a
itn−j
n

[(a
itn
n − bitn−jn + θjhn)ν−1 − (t− u)ν−1]f ′H(u) du

∣∣∣
≤

i−2∑
j=1

2D3h
1−ν
n hn

j2−νh2−ν
n

= E3.

Therefore,
|K| ≤ E3 + C3 = A3.

Final, let us estimate I3(t, hN ). As in the proof of Theorem 3, I3(t, hn) may
be expressed as

itn−2∑
j=1

[
(a
itn
n − bitn−jn + 1 + θjhn)ν−1 − (a

itn
n − bitn−jn + θjhn)ν−1

]
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×

 1

hn

∫ b
itn−j
n

a
itn−j
n

[f(u)− f(a
itn−j
n )] du− β

∫ b
itn−j
n

a
itn−j
n

f ′H(u) du1−ν


+ β

itn−2∑
j=1

[(a
itn
n − bitn−jn + 1 + θjhn)ν−1 − (a

itn
n − bitnn − j + θjhn)ν−1]

×
∫ b

itn−j
n

a
itn−j
n

f ′H(u) du1−ν .

By the self-similarity of f , we have

|I3(t, hn)| ≤F3

itn−2∑
j=1

[
(a
itn
n − bitn−jn + 1 + θjhn)ν−1

− (a
itn
n − bitnn − j + θjhn)ν−1

] ∫ b
itn−j
n

a
itn−j
n

f ′H(u) du1−ν .

By an argument similar to that in the above paragraph

|I3(t, hn)| ≤ A4, (8)

combining (3), (6), (7), (8) we have

|(D−νf)(b
itn
n )− (D−νf)(a

itn
n )|

b
itu
n − aitun

≤ A1 +A2 +A3 +A4 + C3 = A. �

We need one more concept to finish this article. Let [a, b] be a closed
interval, let {hn}∞n=1 be a sequence of positive numbers with hn ↓ 0. A division
D of [a, b] is called an admissible division if u = t− α, v = t+ β, α = hn or 0,
β = hm or 0 in the interval point pairs for all the ([u, v], t) ∈ D but associated
point t = b.

Theorem 4 Let f be a Cantor type function on C with H-dim C = 1 − ν,
suppose that f satisfies the conditions 1, 2, 3, 4 in Lemma 1. Then

(D−νf)(t) =

∫ t

0

∫ u

0

vν−1f ′H(u− v)dv1−νdu.

Proof. First let us show that for each interval [bin, a
i+1
n ], i = 1, 2, . . . , 2n,

n = 1, 2, . . . and given ε > 0, there is an admissible division D such that∣∣∣[(D−νf)(ai+1
n )− (D−νf)(bin)]−

∫ ai+1
n

bn

M(t) dt
∣∣∣
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=
∣∣∣[(D)

∑
[(D−νf)(β)− (D−νf)(α)−

∫ β

α

M(t) dt]
∣∣∣ < ε

where M(t) =
∫ t

0
vν−1f ′H(t− v) dv1−ν .

SinceM(t) is a gauge integrable function in the interval [bin, a
i+1
n ] [6, p. 112],

for ε
2 > 0 there is a δ1(t) such that∣∣∣∣∣(D)

∑
M(t)(β − α)−

∫ ai+1
n

bin

M(t) dt

∣∣∣∣∣ < ε

2
(9)

For every δ1-fine division D.
By Theorem 3 for each t ∈ (bin, a

i+1
n ] there is a δ2(t) > 0 such that∣∣∣(D−νf)(β)− (D−νf)(α)−

∫ t

0

u1−νf ′H(t− u) du1−ν
∣∣∣

<
ε

3(ai+1
n − bin)

(β − α) (10)

where α = t − ha, β = t + hm, 0 < β − α < δ2(t). Evidently there is a δ2(bin)
such that ∣∣∣∣∣

∫ t

bin

M(u) du

∣∣∣∣∣ < ε

6
(11)

and ∣∣(D−νf)(t)− (D−νf)(bin)
∣∣ < ε

6
(12)

where 0 < t− bin < δ2(bin).
Let δ(t) = min(δ1(t), δ2(t)). It is a routine argument to check there is a

δ-fine admissible division D of [bin, a
i+1
n ]. We may write

[(D−νf)(ai+1
n )− (D−νf)(bin)−

∫ ai+1
n

bin

M(t) dt

as

(D)
∑

[(D−νf)(β)− (D−νf)(α)]− (D)
∑∫ β

α

M(t) dt

=(D)

′∑
[(D−νf)(β)− (D−νf)(α)] + (D−νf)(βin)− (D−νf)(bin)

− (D)

′∑ ∫ β

α

M(t) dt−
∫ βin

bin

M(t) dt
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where ([bin, β
i
n], bin) ∈ D and (D)

∑′
= (D)

∑
\([bin, βin], bin). Then

(D)
∑

[(D−νf)(β)− (D−νf)(α)]− (D)
∑∫ β

α

M(t) dt

=(D)

′∑ [
(D−νf)(β)− (D−νf)(α)−

∫ t

0

uν−1f ′H(t− u) duν−1(β − α)

]
+ (D)

′∑ [∫ t

0

uν−1f ′H(t− u) duν−1(β − α)−
∫ β

α

M(t) dt

]

+ (D−νf)(βin)− (D−νf)(bin)−
∫ βin

bin

M(t) dt

=I1 + I2 + I3.

Compute I1 by (2)

|I1| ≤ (D)

′∑ ε

b(ainn − bin)
(β − α) <

ε

3
.

By Henstock’s lemma, we have |I2| < ε
2 . Combining (3), (4), gives |I2| < ε

3 as
required.

By changing the index we may write {[bin, ai+1
n ]2

n−1
i=1 }∞n=1 as {[αm, βm]∞m=1}.

For each [αm, βm] there is a δm(t) defined on {[αm, βm] such that∣∣∣∣∣(D)
∑

M(t)(β − α)−
∫ βm

αm

M(t) dt

∣∣∣∣∣ < ε

2m+1
, m = 1, 2, . . .

for every δm-fine division D.
Let A be the constant in Lemma 1 and let δ0(t) = η be small enough. Let

δ(t) =

{
δ0, t ∈ C
δm(t), t ∈ [αm, βm].

By a covering lemma [2, p. 4], there is a net δ-fine division D of [0, T ]. The

(D−νf)(t)−
∫ t

0
M(u)du may be displayed as

(D)
∑[

(D−νf)(β)− (D−νf)(β)−
∫ β

α

M(u) du

]

=
[
(D1)

∑
+(D2)

∑][
(D−νf)(β)− (D−νf)(α)−

∫ β

α

M(u) du

]
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= J1 + J2

where D1 denotes the collection of elements with associated point t ∈ C and
D2 the collection of elements with associated point t ∈ [0, T ]\C. Clearly

|J1| ≤ (D1)
∑

A(β − α) + (D1)
∑

C3(β − α) ≤ (A+ C3)(2ξ)n,

where C3 denotes the upper bounded of M(t).

|J2| ≤ (D2)
∑ ε

2m
≤ ε

2
. (13)

Take η small enough such that

(A+ C3)(2ξ)n <
ε

2
. (14)

Combining (13), (14) ∣∣∣∣(D−νf)(t)−
∫ t

0

M(u) du

∣∣∣∣ < ε.

Since ε arbitrary, we have

(D−νf)(t) =

∫ t

0

∫ u

0

vν−1f ′H(u− v)dv1−νdu. �

Corollary 1 Let f be the function in Theorem 4. Then

(D−νf)(t) =

∫ t

0

u1−νJν(vf ′H(u− v) du.

Proof. Using the identity [2, p. 7]∫ u

0

vν−1f ′H(u− v)dv1−ν = u1−νJν(vf ′H(u− v)). �

Remark 3 Let f ∈ C1, f(0) = 0, It is easy to show

(D−νf)(t) =

∫ t

0

∫ u

0

vν−1f ′(u− v) dv du.

This identity is similar to the above identity, but the function f is smooth.
Note that in our discussion the function f is singular.
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[10] C. Tricot, Dérivées fractionaires et dimension Fractale, Ecole Polytech-
nique de Montréal, 1994.


