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POINTS OF INCREASE OF FUNCTIONS IN
THE PLANE

Abstract

The set of continuous functions of a single nonnegative real variable
with at least one point of increase is a “small” set under two natural
definitions: on the one hand, it is a set of first Baire category, and on
the other hand, according to a famous result of Dvoretsky, Erdös and
Kakutani, it is also a set with Wiener measure zero. In this paper,
an analogous question for continuous functions of two nonnegative real
variables is examined. Consider the set of continuous functions f on the
nonnegative quadrant for which there exists a monotone curve along
which the restriction of f has a point of increase. In this paper, it is
shown that this set is “small” in the sense that it is of first Baire category.
However, this set is “large” in the sense that it has full measure under
the probability measure induced by the standard Brownian sheet.

1 Introduction

A real-valued function u 7→ α(u) defined on an interval of the real line R is
said to have a point of increase at u0 if there is δ > 0 such that α(u) < α(u0)
for u ∈ [u0− δ, u0[ and α(u) > α(u0) for u ∈ ]u0, u0 + δ]; we will say that u0 is
a wide sense point of increase of α(·) if there is δ > 0 such that α(u) ≤ α(u0)
for u ∈ [u0 − δ, u0] and α(u) ≥ α(u0) for u ∈ [u0, u0 + δ]. Points of decrease
and wide sense points of decrease are defined analogously.
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Though any smooth (non-constant) function obviously has many points of
increase or decrease, it is well-known that the set I1 of real-valued functions
defined on R+ that admit a point of increase or decrease is a small set. Indeed,
a famous result of Dvoretsky, Erdös and Kakutani [5] asserts that the Wiener
measure of I1 is zero, or equivalently, with probability one, sample paths of a
Brownian motion have no points of increase or decrease.

A natural question is whether or not the set I1 is small in the topological
sense of Baire category. Bruckner and Garg [3] extended a result of Jarnik [6]
and showed that I1 is of first Baire category, that is, typical functions have no
points of increase or decrease. Recent accounts of these proofs are contained in
the books of Bruckner [1, Chapter 13] and Bruckner, Bruckner and Thomson
[2, Section 10.6].

In this paper, motivated by the results of [4] concerning the random func-
tion of two variables known as the Brownian sheet, we examine the questions
analogous to those above for functions of two non-negative real variables. No
knowledge of properties of the Brownian sheet are needed in this paper, but
for completeness, we recall that the Brownian sheet is one of the natural ex-
tensions of Brownian motion to functions of two real variables, more precisely,
it is the mean-zero continuous Gaussian process W = (W (t), t ∈ R2

+), with
the covariance

Cov(W (s)W (t)) = min(s1, t1) min(s2, t2),

for all s = (s1, s2) and t = (t1, t2) in R2
+. This stochastic process induces a

probability measure on the set C(R2
+,R) of continuous functions on R2

+, that
we call Brownian sheet measure.

Consider now the set I2 of real-valued functions f defined on R2
+ for which

there exists a monotone path along which f has a point of increase (precise
definitions are given in Section 2). Again, one can ask whether this set is large
or small. In [4], it was proved that sample paths of the Brownian sheet belong
to I2 almost surely, or equivalently, the set I2 has measure 1 under Brownian
sheet measure. In this probabilistic sense, the set I2 is large.

The objective of this paper is to determine whether or not I2 is also large
in the topological sense of Baire category. We shall prove that in fact, the set
I2 has first Baire category, and therefore I2 is small in the topological sense.
This proves in particular that for a typical function in C(R2

+,R), there is no
monotone path along which the function has a point of increase. Even though
these functions are the rule rather than the exception, we are not aware of any
explicit construction of a function with these properties.

We note that the results of this paper remain valid (along with the proofs)
if R2

+ is replaced by R2.
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2 Terminology

The set R2
+ is endowed with the (partial) order ≤ defined by

s = (s1, s2) ≤ t = (t1, t2) ⇐⇒ s1 ≤ t1 and s2 ≤ t2.

A convenient norm on R2 is |t| = |t1| + |t2|. An increasing curve is a totally
ordered and connected subset of R2

+. A (canonically parameterized) increasing
path (resp. decreasing path) γ is a continuous function defined on some interval
of R with values in R2

+ with the property that γ(u) ≤ γ(v) (resp. γ(u) ≥ γ(v))
when u ≤ v and |γ(u) − γ(v)| = |u − v|. This last condition implies that the
map γ is one-to-one. Recall [8, Theorem 2.7] that a set is an increasing curve
if and only if it is the image of an increasing path. Moreover, increasing or
decreasing paths are Lipschitz functions, therefore, when equipped with the
topology of uniform convergence, the set of increasing or decreasing paths
defined on a compact interval with values in a compact set is compact.

It is also natural to consider another (partial) order E on R2
+ defined by

s = (s1, s2)E t = (t1, t2) ⇐⇒ s1 ≤ t1 and s2 ≥ t2.

The definitions of increasing curve and increasing or decreasing path relative
to the (partial) order E also make sense and the properties mentioned above
remain valid. A curve that is increasing or a path that is increasing or decreas-
ing with respect to either of the (partial) orders ≤ or E is termed a monotone
curve or a monotone path.

A function f ∈ C(R2
+,R) has a point of increase (resp. a wide sense point

of increase) along a monotone path γ if the function f ◦ γ admits a point of
increase (resp. a wide sense point of increase).

3 The Baire category argument

Consider the space C(R2
+,R) of continuous real-valued functions on R2

+, equip-
ped with the topology of uniform convergence on compact sets. This space is
a complete metric space, so by the Baire Category Theorem [7, Chapter 7.7],
it is not a set of first Baire category.

Let I2 be the set of functions f ∈ C(R2
+,R) with the following property:

there exists r > 0 and a monotone path γ : [−r, r]→ R2
+ such that

f(γ(−x)) ≤ f(γ(0)) ≤ f(γ(x)), for all x ∈ [0, r].

The main result of this paper is the following.
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Theorem 1 The set I2 is of first Baire category, that is, for a typical function
f in C(R2

+,R), there is no monotone path along which f has a wide sense point
of increase.

In order to show that I2 is a set of first Baire category, we must show that
I2 is a countable union of closed nowhere dense sets (recall that a subset of
C(R2

+,R) is nowhere dense if its complement is dense in C(R2
+,R)). Note that

I2 =
⋃

r>0, n∈N
I(r, n),

where

I(r, n) = {f ∈ C(R2
+,R) : there exists a monotone path γ : [−r, r]→ R2

+

such that |γ(0)| ≤ n and f(γ(−x)) ≤ f(γ(0)) ≤ f(γ(x)),

for all x ∈ [0, r]}.

We recall that |γ(±r) − γ(0)| = r, so the monotone path in the definition of
I(r, n) has length r at least.

Lemma 2 For n ∈ N and r > 0, the set I(r, n) is closed in C(R2
+,R).

Proof. Fix n ∈ N and r > 0. Let f ∈ C(R2
+,R) and (fi, i ∈ N) be a

sequence of elements of I(r, n) such that fi converges uniformly on compact
sets to f . We must show that f ∈ I(r, n).

Because fi ∈ I(r, n), there is a monotone path γi : [−r, r]→ R2
+ such that

|γi(0)| ≤ n and

fi(γi(−x)) ≤ fi(γi(0)) ≤ fi(γi(x)), for all x ∈ [0, r]. (1)

By the compactness property of the set of monotone paths mentioned in Sec-
tion 2, there is a subsequence (γij ) that converges uniformly on [−r, r] to a
monotone path γ. Because fij converges uniformly to f on [0, n+ r]2, we can
pass to the limit in (1) to get |γ(0)| ≤ n and

f(γ(−x)) ≤ f(γ(0)) ≤ f(γ(x)), for all x ∈ [0, r].

Consequently, f belongs to I(r, n). �

Lemma 3 For n ∈ N and r > 0, the complement of I(r, n) is dense in
C(R2

+,R).
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Proof. Because the set L(R2
+,R) of Lipschitz continuous functions on R2

+ is
dense in C(R2

+,R), it suffices to show that for all f ∈ L(R2
+,R), for all n ∈ N

and for all η > 0, there exists g ∈ C(R2
+,R)\ I(r, n) such that |f(t)−g(t)| < η

for all t ∈ [0, n]2. For given f , n and η, we shall take g to be of the form

g(t) = f(t) + η h

(
t

δ

)
,

where the function h is defined below and δ is chosen appropriately. The
function h will be such that g 6∈ I(r, n) and |h| ≤ 1. This will complete the
proof of Lemma 3.

4 The construction of the function h

For t ∈ N2 and ε > 0, let ∂B(t, ε) denote the circle of radius ε centered at t.
Set

Ce(k, l) = ∂B((2k, 2l),

√
2

2
), Co(k, l) = ∂B((2k + 1, 2l + 1),

√
2

2
).

Note that Ce(k, l) has a single point of intersection with the four circles Co(k−
1, l − 1), Co(k − 1, l), Co(k, l − 1), and Co(k, l), with a ±45o tangent at this
point of intersection, and Ce(k, l) is disjoint from all other Co(k′, l′), and from
Ce(k′, l′) if (k′, l′) 6= (k, l). Set

C =
⋃

(k,l)∈N2

(Ce(k, l) ∪ Co(k, l)).

A portion of the set C is shown in Figure 1.
Let tk,l = (k + 1

2 , l + 1
2 ). Observe that

D = {tk,l, (k, l) ∈ N2}

is the set of points that belong to more than one of the circles Ce(k′, l′) or
Co(k′, l′).

For s and t in R2, let d(s, t) denote the Euclidean distance between s and
t. For F ⊂ R2 and t ∈ R2, let

d(t, F ) = inf{d(t, s), s ∈ F},

and for ε > 0, we set

Fε = {t ∈ R2 : d(t, F ) < ε}.

The diameter of F is the number sups, t∈F d(s, t).
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Figure 1: The set C.

Lemma 4 (a) There is ε0 ∈ ]0, 1[ such that for all distinct t, t′ ∈ D, there is
no monotone curve contained in Cε0 that has one extremity within ε0 of t and
the other within ε0 of t′.

(b) For 0 < ε < 1
4ε

2
0, Cε contains no monotone curve with length ≥ 3.

Proof. Observe that C \D is a countable union of connected components,
each of which is an quarter circle (without the two extremities) whose diameter
is ≤ 1. It therefore suffices to prove (a) for fixed t, t′ ∈ D such that |t−t′| = 1.

It is clear from the definition of C that if t, t′ ∈ D are such that |t−t′| = 1,
then there is no monotone curve contained in C with extremities t and t′.
Suppose by contradiction that there were no ε0 > 0 with the property stated
in (a). Then for all ε > 0, there would be a monotone path γε with one
extremity within ε of t and the other within ε of t′, and with range contained
in Cε. By the compactness property of monotone paths mentioned in Section
2, there would be a sequence εn ↓ 0 such that γεn would converge uniformly
to a monotone path γ. This monotone path would have extremities t and t′

and its range would be contained in C, a contradiction. This proves (a).
Before proving (b), note that elementary geometric considerations yield

the following: for any ε > 0, C \D√4ε is a union of closed components, each
with diameter ≤ 1, and the distance between two such components is at least
2ε. Therefore, Cε \ D√4ε is also a union of disjoint components, each with
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diameter ≤ 1.
To prove (b), fix 0 < ε < 1

4ε
2
0 and suppose that γ is a monotone curve

of length ≥ 3 contained in Cε. Because the components of Cε \ D√4ε have
diameter ≤ 1, γ must meet at least three distinct components of this set, and
therefore, there are two distinct points t, t′ ∈ D such that γ passes within

√
4ε

of t and t′. Because
√

4ε < ε0 and ε < 1
4ε

2
0 < ε0, this contradicts (a). �

Define a function h : R2
+ → R+ by the formula

h(t) = max

(
0, 1− d(t, C)

ε0

)
.

Clearly, h is continuous, takes the value 1 on C and 0 on R2
+ \ Cε0 .

Proposition 5 For any monotone path γ : [−6, 6]→ R2
+, either

sup
x∈[−6,0]

h(γ(x))− h(γ(0)) ≥ 1

2
or inf

x∈[0,6]
h(γ(x))− h(γ(0)) ≤ −1

2
. (2)

Proof. Note that all connected components of R2
+ \ C have diameter ≤ 2.

Let t = γ(0) and suppose first that d(t, C) ≥ ε0/2. Then h(t) ≤ 1
2 . Because

|γ(−6) − γ(0)| = 6, d(γ(−6), γ(0)) ≥ 3, so there is x ∈ [−6, 0] such that
γ(x) ∈ C, and therefore

h(γ(x))− h(γ(0)) = 1− h(γ(0)) ≥ 1

2
,

that is, the first inequality in (2) holds.
Now suppose that d(t, C) < ε0/2. Then h(t) > 1

2 . Because |γ(6)− γ(0)| =
6, d(γ(6), γ(0)) ≥ 3, so Lemma 4 (b) implies that there is x ∈ [0, 6] such that
γ(x) 6∈ Cε0 , that is,

h(γ(x))− h(γ(0)) = 0− h(γ(0)) ≤ −1

2
,

and so the second inequality in (2) holds. �

5 End of the proof of Lemma 3

Fix f ∈ L(R2
+,R), n ∈ N, r > 0 and η > 0. Let M > 0 be such that

|f(t)− f(s)| ≤M |t− s| if s, t ∈ [0, n+ r]2.
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Fix δ > 0 such that
δ ≤ min

(r
6
,

η

18M

)
,

and set

g(t) = f(t) + η h(
t

δ
).

Let γ : [−r, r]→ R2
+ be any monotone path such that |γ(0)| ≤ n. Note that if

|x| < 6δ, then |x| < r and

|f(γ(x))− f(γ(0))| ≤M |γ(x)− γ(0)| ≤M · 6δ ≤ η

3
. (3)

On the other hand, the range of the function x 7→ γ(x)/δ is a monotone curve
and |γ(±6δ)/δ − γ(0)/δ| = 6. By Proposition 5,

sup
x∈[−6δ,0]

η(h(
γ(x)

δ
)− h(

γ(0)

δ
)) ≥ η

2

or

inf
x∈[0,6δ]

η(h(
γ(x)

δ
)− h(

γ(0)

δ
)) ≤ −η

2
.

Therefore, either

sup
x∈[−6δ,0]

g(γ(x))− g(γ(0)) ≥ −η/3 + η/2 > 0

or
inf

x∈[0,6δ]
g(γ(x))− g(γ(0)) ≤ η/3− η/2 < 0.

This implies that g 6∈ I(r, n) and, and because |f(t)−g(t)| < η for all t ∈ [0, n]2,
the proof of Lemma 3 is complete. �

6 Proof of Theorem 1

As already observed, the set C(R2
+,R) is not a set of first Baire category. On

the other hand, the set I2 is the union of the sets I(r, n), and this union can
be made countable by only considering rational values of r > 0. By Lemmas
2 and 3, each of these sets is closed and nowhere dense, therefore I2 is a set
of first Baire category. This proves Theorem 1. �
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