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AN ELEMENTARY PROOF OF THE
BANACH-ZARECKI THEOREM

Abstract

In this paper we shall give a new, elementary proof of the Banach—
Zarecki theorem, based on the following classical result [3] (p. 183): If
{A;}; is a sequence of decreasing sets in a measurable space (X, M, p)
and /,L(Al) < +o0o then M(mzAz) = 11m1_>00 /.L(AZ)

There is a very rich literature concerning the Banach—Zarecki Theorem,
such as the books of Saks [5] (p. 227), Natanson [4] (p. 250), Foran [3] (p.
357), Ene [1] (pp. 81, 104) and a paper of Varberg [6] (p. 835). This theorem
asserts that if a continuous and VB function satisfies Lusin’s condition (N)
on an interval then it is also AC on that interval.

The proofs in [5], [3], [6] and [1] (p. 81) are based on the following result
(see Theorem 6.5 of [5], p. 227; Theorem 1 of [6], p. 834; Theorem 8.1 of
[B]): If a function F is derivable at every point of a measurable set D, then
m*(F(D)) < (£) [, |F (x)]da

In [4], the Banach—Zarecki Theorem is proved in a totally different way,
namely using Lebesgue’s Convergence Theorem as well as the fact that the
Banach indicatriz for a continuous and VB function on [a,b] is summable
(see Theorem 3 of [4], p. 225).

In [1] (p. 104), the Banach—Zarecki Theorem is a consequence of some
general notion (AC, VB etc.). Here the Banach indicatrix has also an
important role, but the proof is different from that in [4].

In this paper we shall give a new, elementary proof of the Banach—Zarecki
theorem, based on the following classical result [3] (p. 183): If {A;}; is a
sequence of decreasing sets in a measurable space (X, M, 1) and u(A;) < +o00
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Let m(A) denote the Lebesgue measure of the set A, whenever A C R is
Lebesgue measurable, and m*(X) the outer measure of the set X. We denote
by O(F;]a,b]) the oscillation of the function F on [a,b], and by V(F};[a,b])
the variation of F' on [a,b]. For the definitions of VB and AC see [5].

Lemma 1. Let f : X = Y and Yy = {y € Y : f~1(y) contains more than
one point}. If (X;)ier is a family of subsets of X then

(Nierf(Xi)\ Y1 C f(NierXi) € Nier f(Xi).

PROOF. Let y € (Nierf(X;)) \ Y1. Then there exists a unique point z € X
such that y = f(z). Since y € f(X;) for each ¢ € I, it follows that there exists
x; € X; such that f(x;) = y, so x; = . We obtain that = € X; for each
i € I, hence z € NicrX;. It follows that y = f(z) € f(NierX;). The last
(well-known) inclusion is easy to verify. O

Lemma 2. Let F : [a,b] — R be an increasing function and let B = {y €
[F(a), F(b)] : F~Y(y) contains more than one point}. Then:

(i) B is at most countable, hence B is a Borel set;
(i) If Z C (a,b) is a Gs-set then F(Z) is a Borel set.
Moreover, if Z = N2,G;, where each G; is an open set, then
m(F(Z)) = m(NZ, F(Gy)) -

PROOF. (i) For y € B let z, = inf(F~!(y)) and z, = sup(F~!(y)). By
hypotheses ) # (z,,z,) C F~(y). Since

1"

(xyl ) my1) N ($y2 ) .’17y2) = (Z) Whenever Y1 ;ﬁ Y2,

it follows that B is at most countable.
(ii) Let Z = N2, G;, where each G; is an open set. Then by Lemma 1 we
have
(M2 F(Gi)\ B C F(NZ,Gi) © N2y F(Gy). (1)

Since F is increasing, each F'(G;) is a countable union of intervals (some of
them might be degenerate). Hence each F(G;) is a Borel set and by (1),
F(N$2,G;) is also a Borel set.

The last part follows by (i) and (1) O

Lemma 3. Let F : [a,b] — R be a continuous and increasing function. Then
F € (N) on [a,b] if and only if m(F(Z)) = 0 whenever Z is a compact subset
of [a,b] and m(Z) = 0.
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PrRoOF. “=7" This is obvious.

“<” Suppose on the contrary that F ¢ (N) on [a,b]. Then there exists
a set Z C la,b], with m(Z) = 0 such that m*(F(Z)) > 0. We may suppose
without loss of generality that Z is of Gs—type (because for Z there exists a
Gs—set Z; of measure zero, such that Z C Zy, so m*(F(Z1)) > 0). Then F(Z)
is a Borel set of positive measure (see Lemma 2). Let K be a compact subset
of F(Z) of positive measure. Then K; := F~1(K) is a compact subset of Z
(because F' is continuous), and F(K;) = K, a contradiction. O

Remark 1. In [2], Foran introduces the following condition: A function is
said to satisfy condition (N,) provided the image of closed sets of measure 0
is of measure 0.

Using this condition, Lemma 3 from above can be stated as follows: Let
F :a,b] — R be a continuous and increasing function. Then F' € (N) if and
only if F e (N).

Foran showed that conditions (N) and (N') coincide for Baire functions
(in fact his results are much stronger). Hence Lemma 3 is a special case of
this result. On the other hand, our proof in this particular case is elementary.

Lemma 4. Let F : [a,b] — R be such that F([a,b]) is an interval. Suppose
that P is a perfect set containing the points a and b, and let {(a;,b;)}; be the
intervals contiguous to P. Then

[F'(b) — F(a)| <m(F([a,b])) <m™(F(P)) + ZO(F; [ai, bi]) -

PrOOF. We have
F([a,b]) = F(P U (U2 (ai, b)) = F(P) U (U2 F((ai, b)) ,

hence

[F'(b) = F(a)| <m(F([a,b]) <m™(F(P)) + Zm*(F((aubi))) <

<m*(F(P))+ Y _ O(F;a;, bi]).
i=1

O

Lemma 5. ([4], p. 224). Let f : [a,b] = R be a continuous function. Subdi-
vide [a,b] by means of the points

To=a<x] <x2< - <xp=">b with max(xgy; —xk) = A,
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and form the sums
n—1
V=3 |f(@e) = flan)l.
k=0

If A — 0 then each of the sums V tends to the total variation V (f;[a,b]) of
the function f(x) (we do not suppose that the variation is finite).

] — R be a continuous and VB function, and let

Lemma 6. Let F : [a,b
=V(F;a,z]). Then F € (N) if and only if H € (N).

H:[a,b]— R. H(x)

PROOF. “=" Clearly H is increasing and continuous on [a, b] (see Theorem 1
of [4], p. 223). Suppose on the contrary that H ¢ (N). By Lemma 3 it follows
that there exists a compact set Z C [a, b] of measure zero, such that H(Z) is
a compact set (because H is continuous) of positive measure. Let ¢ = inf(Z2),
d = sup(Z). We may suppose without loss of generality that Z is a perfect set
(if necessary eliminating the isolated points of Z, that are at most countable).
Let {(a;,b;)}: be the intervals contiguous to Z. Let a = m(H(Z)) > 0. For
each positive integer n let [¢;,d;], i = 1,2,...,n be the closed subintervals of
[c,d] left after extracting the open intervals (a;,b;), i = 1,2,...,n — 1. Let
An = max} (d; — ¢;). Since m(Z) = 0 it follows that lim,_,oo A, = 0. Let
c=2, <x1 <2 < -+ <, =d be a division of [¢,d] that contains all ¢
and d;, each (¢;,d;) containing no xj, and such that z; — x;_1 < \,, for each
7=12,...,p. Let
P
Sn =Y |F(x;) = F(zj-1)]

j=1

and

n n—1
Vii= Y |F(di) = Fle)| + Y V(F;[ai, b)) 2)
i=1 i=1
Then S, <V,, <V :=V(F;][c,d]). By Lemma 5 we have
lim S, =V, so IlmV,=V.
n—roo n—roo

It follows that there exists a positive integer n, such that

Vo>V — % ,  whenever n >n,. (3)
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By Theorem 5 of [4], p. 217, we obtain

n n—1

V= V(Fiferd) + Y] V(F: fa,bi]) =

i=1 =1

n—1

=Y (H(di) = H(ep)) + Y V(F;[as, bi)
i=1

i=1
By (2), (3) and (4), for n > n, it follows that

n n

S IF(d) = Fle)| > YO (H(:) — Hie)) -

\V]

Clearly

hence, by (5)

i|F cl|>§

i=1

By Lemma 4 (since m*(F(Z)) = 0), for each i = 1,2,...,n we have

|F(di) — F(ei)| < > O(F [aj, b5]) ,
{s:la;,b;]Clei,di]}

hence .
Z|F(d F(e;) |<Z(9 ilaj, b;
i=1

By (6) and (7) it follows that for each n Z n, we have

oo
Z ilag: by

I\D\Q

But 3.7, O(F;[a;,b;]) <V, so

J;H;OZO

299

9)

By (8) and (9) we obtain that § < 0, a contradiction. Therefore H € (N) on

[a, b].
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“<” Let Z C [a,b], m(Z) = 0. We may suppose without loss of generality
that Z is a Gs-set of the form Z = N2, G;, G; open sets and G; D G2 D - - -.
By Lemma 2,

m(H(Z)

) =m(NZ,H(Gi)) = 0.
Since the sequence of sets {H(G;)}; is decreasing it follows that

lim m(H(Gy)) =0.

17— 00

Let G := U352, (a},b}). For each i we have

]’] 3273

m(F(Z)) = m(F(U2,(Z N (a, b)) i (F;Z 0 (ai, b)) <

<> O(F;al, b}]) Z H(a})) = m(H(G,)).

J=1

Therefore m(F(Z)) = 0. O

Lemma 7. Let F : [a,b] — R be a continuous and increasing function, satis-
fying Lusin’s condition (N). Then F € AC on [a,b].

PrOOF. We shall follow the first part of the proof of the Banach—Zarecki
Theorem ([4], p. 250). Suppose that F' ¢ AC on [a,b]. Then there is a
number €, > 0 having the following property: for every § > 0 there exists a
finite family of pairwise disjoint open intervals {(ax, bx)}x, K =1,2...,n such
that

n n
> bk —ax) <& and Y (F(bk) — F(ax)) > €.

k=1 k=1
Let Zf; d; be a convergent series of positive terms, and for every §;, let
{(al,bi)}k, k= 1,2,...,n; be a collection of pairwise disjoint open intervals
such that

Uz

ST —ap) <6 and Y (F(b)) — Fla}) > €.
k=1 k=1
Let
E; =Y (aj,b}) and A=n2 (U2, E).
k=1
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It is easy to verify that m(A) = 0. By hypotheses it follows that m(F(A)) = 0.
Let G, := U52  E;. Then

m(F(Gp)) = m(F(Ey)) = Y (F(b) - Flaj,) = €.

By Lemma 2 we have

0=F(A) =m(N}L,F(Gy)) = lim m(F(G,)) > ¢,

n—o00 -

a contradiction. O

Lemma 8. Let F,H : [a,b] = R, H(x) = V(F;[a,2]). If H € AC on [a,}]
then F € AC on [a,b].

PrOOF. This follows by the fact that |F(3)—F ()| < H(B)— H(a) , whenever
[, B] C [a, b]. O

The Banach—Zarecki Theorem. Let F' : [a,b] — R. If F is a continuous
and VB function, satisfying Lusin’s condition (N) then F is AC on [a,b).

PRrROOF. Let H : [a,b] — R, H(z) := V(F;[a,z]). By Lemma 6, H is con-
tinuous and increasing, and satisfies condition (N) on [a,b]. By Lemma 7,
H € AC on [a,b]. By Lemma 8 it follows that F' € AC on [a, b]. O
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