Hanxiang Chen, Department of Mathematics, University of Alabama 1310 37 th St. E. Apt. 92, Tuscaloosa, AL 35405, e-mail:hchen3@ua1vm.ua.edu

A PAIR OF ADJOINT CLASSES OF RIEMANN-STIELTJES INTEGRABLE **FUNCTIONS**

Abstract

The purpose of this paper is to show that the classes of Riemann integrable functions and absolutely continuous functions are adjoint with respect to the (R-S) integral $\int_a^b f \, dg$.

Definition. Let A and B be two classes of functions defined on [a, b]. A and B are said to be adjoint with respect to the $(R-S)\int_a^b f \,dg$, if the following conditions are satisfied:

- (i) If $f \in A$ and $g \in B$, then the $(R-S) \int_a^b f \, dg$ exists;
- (ii) If the $(R-S)\int_a^b f\,dg$ exists for all $g\in B$, then $f\in A$; and
- (iii) If the $(R-S) \int_a^b f \, dg$ exists for all $f \in A$, then $g \in B$.

If A and B are adjoint with respect to the $(R-S)\int_a^b f\,dg$, this means that on condition that the $(R-S)\int_a^b f\,dg$ exists, neither A nor B can be extended at all. For convenience, we write $(A*B)\int_a^b f\,dg$ meaning that A and B are adjoint with respect to the (R-S) $\int_a^b f \, dg$.

We introduce the following symbols for some classes of functions defined on [a,b]:

Mathematical Reviews subject classification: 26A42

Received by the editors May 26, 1996

Key Words: adjoint classes, Riemann integrable functions, the Riemann-Stieltjes integral, functions of bounded variation, absolutely continuous functions

236 HANXIANG CHEN

R[a,b]class of Riemann integrable functions on [a, b]

C[a,b]class of continuous functions on [a, b]

BV[a,b]class of functions of bounded variation on [a, b]

class of absolutely continuous functions on [a, b].

It is known [1] that C[a,b] and BV[a,b] are adjoint with respect to the $(R-S)\int_a^b f\,dg$. In this paper we would like to show that R[a,b] and AC[a,b]are adjoint with respect to the $(R-S)\int_a^b f\,dg$. To do this, we should prove that R[a,b] and AC[a,b] satisfy the three conditions in the definition.

- (i) If $f \in R[a,b]$ and $g \in AC[a,b]$, then $(R-S) \int_a^b f \, dg$ exists (cf. [3] for
- (ii) If $(R-S) \int_a^b f \, dg$ exists for all $g \in AC[a,b]$, then $f \in R[a,b]$. As a matter of fact, taking $g(x) = x \in AC[a,b]$ gives that $f \in R[a,b]$.

 In order to prove statement (iii) "if the $(R-S) \int_a^b f \, dg$ exists for all $f \in R[a,b]$.

R[a, b], then $g \in AC[a, b]$ ", we need the following lemmas.

Lemma 1 (Vitali). [2] Let E be set of finite outer measure and \mathcal{J} a collection of intervals that cover E in the sense of Vitali. Then, given $\epsilon > 0$, there is a finite disjoint collection $\{I_1,\ldots,I_N\}$ of intervals in $\mathcal J$ such that

$$m^* \left[E \sim \bigcup_{n=1}^N I_n \right] < \epsilon.$$

Lemma 2. Let f be a function on [a,b] such that f'=0 a.e. Then, f has the following property: (S) Given $\epsilon > 0$, $\delta > 0$, there is a finite collection $\{[y_k, x_k]\}\$ of nonoverlapping intervals on [a, b] such that

$$\sum |x_k - y_k| < \delta$$

and

$$\sum |f(x_k) - f(y_k)| > |f(b) - f(a)| - \epsilon.$$

PROOF. Let $E \subset (a,b)$ be the set of measure b-a in which f'(x)=0, and ϵ and δ be arbitrary positive numbers. To each x in E there is an arbitrarily small interval [x, x+h] contained in (a, b) such that $|f(x+h)-f(x)| < \epsilon \cdot h/(b-a)$. By Lemma 1, we can find a finite collection $\{[x_k, y_{k+1}]\}$ of nonoverlapping intervals of this sort which cover all of E except for a set of measure less than δ . If we label the x_k so that $x_k < x_{k+1}$, we have

$$a = y_0 < x_0 < y_1 < x_1 < y_2 < \dots < y_{n-1} < x_{n-1} < y_n < x_n = b$$

and

$$\sum_{k=0}^{n} |x_k - y_k| < \delta.$$

Now

$$|f(b) - f(a)| = \left| \sum_{k=0}^{n} [f(x_k) - f(y_k)] + \sum_{k=0}^{n-1} [f(y_{k+1}) - f(x_k)] \right| < \sum_{k=0}^{n} |f(x_k) - f(y_k)| + \epsilon.$$

Thus

$$\sum_{k=0}^{n} |f(x_k) - f(y_k)| > |f(b) - f(a)| - \epsilon.$$

Note. If the function f in Lemma 2 is continuous, then we can find a finite collection $\{[y_k, x_k]\}$ of nonoverlapping intervals in (a, b) instead of [a, b] such that the above two inequalities hold, too.

We are now in a position to prove the statement (iii):

Theorem. If the (R-S) $\int_a^b f \, dg$ exists for all $f \in R[a,b]$, then $g \in AC[a,b]$.

PROOF. First of all, the fact that

$$C[a,b] \subset R[a,b], BV[a,b] \subset R[a,b],$$

$$(C*BV)\int_a^b f\,dg$$
 and the $(R-S)\int_a^b f\,dg$ exists for all $f\in R[a,b]$,

implies that $g \in C[a,b] \cap BV[a,b]$. So, it follows that g = G + F with $G \in AC[a,b]$ and $F \in C[a,b]$, $F^{'} = 0$ a.e. on [a,b]. To show $g \in AC[a,b]$, it suffices to show F = const. on [a,b]. By hypothesis, the $(R-S)\int_a^b f \, dg$ exists for all $f \in R[a,b]$ and so does the $(R-S)\int_a^b f \, dF$. Suppose that $F(x) \neq const.$ on [a,b]. Then, there is a point $c \in (a,b]$ such that $F(c) - F(a) \neq 0$. For convenience, let c = b. We shall now construct a function $f \in R[a,b]$ such that the $(R-S)\int_a^b f \, dF$ does not exist.

Let ϵ be a number with $0 < \epsilon < |F(b) - F(a)|$, and $\{\delta_n\}$ be a sequence satisfying $\delta_n \downarrow 0$ $(n \to \infty)$. Since $F \in C[a,b]$ and F' = 0 a.e. on [a,b], by the note of Lemma 2, the function F has property (S). That is, for $\epsilon > 0$ and $\delta_1 > 0$, there is a finite collection $\{[y_k^{(1)}, x_k^{(1)}]\}$ of nonoverlapping intervals in (a,b) such that

$$\sum_{k=0}^{n_1} \left| x_k^{(1)} - y_k^{(1)} \right| < \delta_1$$

238 Hanxiang Chen

and

$$\sum_{k=0}^{n_1} \left| F(x_k^{(1)}) - F(y_k^{(1)}) \right| > |F(b) - F(a)| - \frac{\epsilon}{2}.$$

We call $\{[y_k^{(1)}, x_k^{(1)}]\}$ the first level of the collection of nonoverlapping intervals. Then, for every integer h > 1, we can inductively find the h-th level of it, denoted by

$$\mathcal{J}_h = \{ [y_k^{(h)}, x_k^{(h)}] \}_{k=0,\dots,n_k},$$

such that

(1)
$$\sum_{k=0}^{n_h} |x_k^{(h)} - y_k^{(h)}| < \delta_h;$$

(2)
$$\sum_{k=0}^{n_h} \left| F(x_k^{(h)}) - F(y_k^{(h)}) \right| > |F(b) - F(a)| - \epsilon \cdot (2^h - 1)/2^h;$$

(3)
$$I_h \subset I_{h-1}^{\sim}$$
, where define $I_h = \bigcup_k \left[y_k^{(h)}, x_k^{(h)} \right]$ and $I_h^{\sim} = \bigcup_k \left(y_k^{(h)}, x_k^{(h)} \right)$.

Assume \mathcal{J}_h is found. We wish to find \mathcal{J}_{h+1} . To do this, we shall make use of Lemma 2 repeatedly. Applying Lemma 2 on each interval $\begin{bmatrix} y_i^{(h)}, x_i^{(h)} \end{bmatrix}$ in \mathcal{J}_h $(i=0,1,\ldots,n_h)$, we can find a finite collection $\{ \begin{bmatrix} y_{k(i)}^{(h+1)}, x_{k(i)}^{(h+1)} \end{bmatrix} \}$ of nonoverlapping intervals in $(y_i^{(h)}, x_i^{(h)})$ such that

$$\sum_{k(i)} \left| x_{k(i)}^{(h+1)} - y_{k(i)}^{(h+1)} \right| < \frac{\delta_{h+1}}{2^{i+1}}$$

and

$$\sum_{k(i)} \left| F(x_{k(i)}^{(h+1)}) - F(y_{k(i)}^{(h+1)}) \right| > \left| F(x_i^{(h)}) - F(y_i^{(h)}) \right| - \frac{\epsilon}{2^{h+i+2}}.$$

Collecting all of

$$\{[y_{k(i)}^{(h+1)}, x_{k(i)}^{(h+1)}]\}$$
 $(i = 0, 1, \dots, n_h)$

gives us a finite collection of nonoverlapping intervals in I_h^\sim , denoted by

$$\mathcal{J}_{h+1} = \left\{ \left[y_k^{(h+1)}, x_k^{(h+1)} \right] \right\}_{k=0,\dots,n_{h+1}}.$$

Then, we have that

$$\sum_{k=0}^{n_{h+1}} \left| x_k^{(h+1)} - y_k^{(h+1)} \right| < \delta_{h+1} \left(\frac{1}{2} + \dots + \frac{1}{2^{n_h+1}} \right) < \delta_{h+1}$$

and

$$\sum_{k=0}^{n_{h+1}} \left| F(x_k^{(h+1)}) - F(y_k^{(h+1)}) \right| >$$

$$> \sum_{k=0}^{n_h} \left| F(x_k^{(h)}) - F(y_k^{(h)}) \right| - \epsilon \left(\frac{1}{2^{h+2}} + \dots + \frac{1}{2^{n_h + h + 2}} \right)$$

$$> \left| F(b) - F(a) \right| - \frac{\epsilon (2^h - 1)}{2^h} - \frac{\epsilon}{2^{h+1}}$$

$$= \left| F(b) - F(a) \right| - \frac{\epsilon (2^{h+1} - 1)}{2^{h+1}} .$$

It is clearly true that $I_{h+1} \subset I_h^{\sim}$.

Therefore, the above \mathcal{J}_{h+1} is indeed the (h+1)-th level of the finite collection of nonoverlapping intervals with properties (1), (2) and (3).

We now define a function f_1 on [a, b] by

$$f_1(x) = \begin{cases} \operatorname{sign} \left[F(x_k^{(h)}) - F(y_k^{(h)}) \right] & \text{if } x = y_k^{(h)} \text{ for } h \ge 1 \text{ and } k = 0, 1, \dots, n_h \\ 0 & \text{if } x \in [a, b] \sim \cup_{k, h} \left\{ y_k^{(h)} \right\} \end{cases}.$$

Since $I_{h+1} \subset I_h^{\sim}$ and \mathcal{J}_h is the collection of nonoverlapping intervals for $h \geq 1$, and so $y_k^{(h)} \neq y_j^{(i)}$ if $(h,k) \neq (i,j)$. Whence, the function f_1 is well defined on [a,b]. We must show $f_1 \in R[a,b]$. If $x_0 \in I_h^{\sim} \sim I_{h+1}$ for an integer $h \geq 0$ (denote $I_0 = [a,b]$), then in view of the definition of f_1 , there is an open interval $O(x_0,\eta) = (x_0 - \eta, x_0 + \eta) \subset I_h^{\sim} \sim I_{h+1}$ such that $f_1(x) = 0$ if $x \in O(x_0,\eta)$. Thus f_1 is continuous at x_0 . Let E be the set of this sort of points x_0 . It is not hard to see that

$$E = (a, b) \sim \bigcap_{h=0}^{\infty} I_h \sim \bigcup_{k, h} \{ y_k^{(h)} \} \sim \bigcup_{k, h} \{ x_k^{(h)} \},$$

where the last two terms are countable sets.

Also, from

$$m(I_h) = \sum_{k=0}^{n_h} |x_k^{(h)} - y_k^{(h)}| < \delta_h \to 0 \quad (h \to \infty)$$

and

$$I_{h+1} \subset I_h \qquad (h \ge 0)$$

we have

$$m\big(\cap_{h=0}^{\infty}I_h\big)=0$$

and so m(E) = b - a.

240 Hanxiang Chen

Hence, the bounded function f_1 is continuous almost everywhere on [a,b], that is, $f_1 \in R[a,b]$. We shall now show that the $(R-S) \int_a^b f_1 dF$ does not exist. Given $\lambda > 0$. There is a positive integer h such that $0 < \delta_h < \lambda$. Let P be a subdivision, $a = x_0 < x_1 < \dots < x_n = b$, of [a,b] with $\max_i \{\Delta x_i\} < \lambda$ such that each interval $[y_k^{(h)}, x_k^{(h)}]$ of \mathcal{J}_h is one of the subintervals of P. Let σ be a Stieltjes sum, corresponding to P. Then, $\sigma = \sum_{i=0}^{n-1} f_1(\xi_i)[F(x_{i+1}) - F(x_i)]$, where $\xi_i \in [x_i, x_{i+1}]$. If $[x_i, x_{i+1}] = [y_k^{(h)}, x_k^{(h)}]$, then we choose $\xi_i = y_k^{(h)}$. Otherwise, there is a point $\xi_i \in [x_i, x_{i+1}]$ such that $f_1(\xi_i) = 0$. Thus, we have that

$$\sigma = \sum_{k=0}^{n_h} \text{sign} \left[F(x_k^{(h)}) - F(y_k^{(h)}) \right] \cdot \left[F(x_k^{(h)}) - F(y_k^{(h)}) \right]$$

$$= \sum_{k=0}^{n_h} \left| F(x_k^{(h)}) - F(y_k^{(h)}) \right|$$

$$> |F(b) - F(a)| - \frac{\epsilon(2^h - 1)}{2^h}$$

$$> |F(b) - F(a)| - \epsilon > 0.$$

On the other hand, however, if we choose $\xi_i \in [x_i, x_{i+1}]$ such that $f_1(\xi_i) = 0$ for $i = 0, 1, \ldots, n-1$, then, this leads to another Stieltjes sum $\sigma_1 = 0$. The fact that when $\lambda \to 0$, $\sigma - \sigma_1 \ge |F(b) - F(a)| - \epsilon > 0$ implies the $(R-S) \int_a^b f_1 dF$ does not exist. This contradicts that the $(R-S) \int_a^b f dF$ exists for all $f \in R[a, b]$. Hence, F = const. on [a, b], and so g = G + F is absolutely continuous on [a, b]. Thus the theorem is proved.

Consequently, we see that R[a,b] and AC[a,b] are adjoint with respect to the $(R-S)\int_a^b f \, dg$.

References

- [1] T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York and London, 1963, p. 56.
- [2] H. L. Royden, Real Analysis, 3 ed., New York, London, Macmillan, 1988.
- [3] K. R. Stromberg, An introduction to classical Real Analysis, 1981.