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PERTURBED TYPE RANDOM CANTOR
SET*

Abstract
We define the perturbed type random Cantor set which is a variation
of Falconer’s random Cantor set, and calculate its Hausdorff dimension
by using game fairer with time. It is a generalization of a Falconer’s
result about random Cantor set.

1 Introduction

Recently many authors ([3], [5], [7]) investigated random fractals associated
with random Cantor sets and computed their Hausdorff dimensions. We gen-
eralize some of their results related to random Cantor sets. In this paper we
deal with only random Cantor sets.
First we introduce a probability space (2, F, P) [4] such that the sample
space 2 is the class of all decreasing sequences of sets [0,1]=Fy D Eq D Es D
. satisfying the following conditions.

1) Each E, consists 2" disjoint closed intervals I}, where j € {1,2}".

2) Each interval I; of E,, contains the two intervals I;; and I, o of E,4q
with the left endpoints of I; and I;; and the right endpoints of I; and
I; > coinciding.

3) For fixed numbers a and b such that 0 < a < b < 3, we write

Cil,...,i = ‘Iz /|Ii1,...,in_1|7cl = |I1|702 = |I2|

n

15-0050n

and require a < Cy, . ;. < b for all i1,...,i,, where |I| denotes the
diameter of the interval I, and a probability measure P is defined on a
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suitably large o-field F of subsets of 2 such that the ratios C;, .. ;. are
random variables. (The number b is considered for a simpler calculation.)

We consider an increasing sequence of sub o-fields of F, {F,,}22; such that
Fo = 10,9},
Fn=0(Fn-1;Cj,5 € {1,2}"), n=1,2,....
In fact, F contains U2 o F,. We assume that P is a probability measure of
F such that C;; has the same distribution as C;; and Cj2 has the same
distribution as C; o respectively where j € {1,2}" and ¢ is the element of
singleton {1}",n=0,1,2,....

We note that Falconer [4] assumed that C; ;1 and C;2 have the same dis-
tribution as Cy and Cs respectively for all j.

From now on, we write C; 1, C;2 as Ly, R, respectively for each n =
0,1,2,... and ¢ is the element of singleton {1}"”. We assume that the C; s are
independent random variables, except that for each j we do not require Cj
and C 2 to be independent.

If the above conditions are satisfied, the set F' = N2 E,, is called a per-
turbed type random Cantor set, where {E,}52, € Q.

In this paper, we do not require the (L,, R,,) to be identically distributed,
but we will impose a condition on these random variables to obtain some
results. Note that there is a unique solution s,, € [0,00) of E(L3" + R3n) =1
for each n = 1,2,.... It is not difficult to show if Y - log E(LS + RS)
converges for some number s, then s, converges to s. We note that if {s,}> ;
converges to some number s, then E(L? + R?) converges to 1.

Now we attempt to find the Hausdorff dimension of the perturbed type ran-
dom Cantor set satisfying the condition that Y | log E(L$ + R$) converges
for some number s by studying the values of E(LS + R?).

We define a sequence of random variables X,, = > ;. |I|* for each n =
1,2,.... (Each E, has 2" disjoint closed intervals I; where j € {1,2}". Thus
I € E,, means that I is one of 2" such intervals.) Then {X,}32; forms an
adapted sequence of random variables with respect to [Q, F, P; (Fy,,n € N)]
(cf. [6]).

Using the independence of the C; s, we obtain the conditional expectation
of X,, with respect to F,,, E(X,|Fm) = HZ:m—‘rl E(L;+R;) X, forn > m+1.
We recall that an adapted sequence {X,,}52; is a game fairer with time [2], if
given € > 0,6 > 0, there exists M > 0 such that n >m > M,

P(E(Xn|Fm) = Xom| < 6) >1—c¢.

Also we recall the s-dimensional Hausdorff outer measure H*(F) = lims_q
Hi(F), where H3(F) = inf{> " | |Us|*|{U,} is a 6-cover of F} [4].
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2 The Hausdorff Dimension

Henceforth we write X,, = > ;. |I|* foreachn =1,2,... and {E,};2; € Q.
We use the following lemma to find the Hausdorff dimension of the perturbed
type random Cantor set. The proof of the lemma is easy, so it is omitted.

Lemma 1. If Y°0°  log E(L$ + R%) converges, then
(1) TIo—, E(L:, + R) converges in (0,00),

(2) T1x2,., E(Ly 4+ R;) have an upper bound U(< oo) and a lower bound
L(> 0) for every mg > mq, and

(3) supysp, | [iepme1 E(L} 4 RE) — 1| converges to 0 as m — oo.

Proposition 2. If >°7 log E(L{ + R%) converges, then {X,}2, is L*-
bounded. Hence {X,}52, is uniformly integrable.

ProOOF. Fix n. Let v, be the variance of L] + R}, i.e. v, = E[(L} +
R$)? — [E(L§ + R{)])* with vo = 1, and oy, = [E(L§ + R})]? with a1 = 1,
Br = BE(L?* + R?%) with By =1, B_1 = 1, where k =1,2,--- ,n. Then

E(X2|Fac) =E( Y (C51+C5o)(Coy + Coo) LI |* | Fuoa)
Ji.j'e{1,23n -1
= E( Z (C51+ C;,2)2|Ij‘25
je{1,2}»—1
+ > (C5 +CE)(Coy + C LI || Fasa)
Ji#i’
gi'e{1,23m !

= > B+ RILP

je{1,2}nt
+ Y B+ R)PILE
it

g.ile{1,2ymt

= Y EUL +R)PIGP L on Y

J.j'e{1,23n-t je{1,2}n—1
—an > LGP P4, > L
Jaref{12ynt je{1.2nt

=a, X2 | +v, Z 11?5,
je{1,23n—t
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Thus

B(X3|Fo2) = an B(X3_{|Fr2) + UnE( Z |Ij‘2s|—7:n72)
je{1,2}n~t
= o B( Z (C51 4+ C3)(CFr 1+ CF )P L | | Fr—2)
j,j/e{l’Q}n—z
+unB( Y (C3+ OO | Fus)
je{172}n_2
= an(an—lxz_Q + Vn—1 Z ‘Ij|28)
Jje{1,2}n=2
+unB(LY | + RY ) Z 1>
je{172}n_2

2 2s
= anan—IXn_Q + apUn—1 E ‘Ij|
je{1,2}n—2

+’Un5n71 Z |Ij|28~

je{1,2}n=2

From the above calculation, we easily obtain the following equality.

n—1 n+1 m
EX)) =EXpFo)= Y ( [T edoma( ] 8)
m=—1 i=m+42 j=—1

(Note that a1 =1 and By = f-1 = 1).

Since [[:2,[E(L; 4+ R$)]* converges, H:inllﬁ «; is bounded above by some

bound B(> 1) which is independent of the choice of m and n with n > m+1(cf.
Lemma 1). Since

Bj = E(LY + R¥) < E(V[L; + R}]) = V" E(L} + R),

we have
IT 8 <o) ] E&; + R) < (0°)" B,

Jj=-1 Jj=1

where m > 1. Now for m > 1,

vm = B[(Ly, + Ry,)?] = [B(Ly, + R;,))?
S (2b5)2 _ (2&8)2 — 4(b2s _ a2s).
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Hence
n—1 )
B(X2) < B+ Y 4(0* —a®)B(b°)"
m=0
1—(b%)"
= B + %4(()25 — aQS)B%.
Thus

4(b2s _ a2s)B%

sup E(X]) < B+ b

(We note that the constants a,b are the numbers given in Introduction.)
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Lemma 3. ([2]). If {X,,}22 is a uniformly integrable game fairer with time,

then {X,} converges in L*.

From now on, we write

Xo(I)= Y ] forj e {1,2}",
IEL;NE,

where an integer K > 0and n=%k,k+1,... .

Corollary 4. Assume that Y- log E(L$ + RS) converges. Then {X,}22,
is a uniformly integrable game fairer with time and hence converges in L'.
Further, the sequence of random variables {X,(I1;)}>° . is also a uniformly
integrable game fairer with time for each j € {1,2}* and hence converges in

L.

PrROOF. Fix an integer k > 0 and j € {1,2}¥. We note that Xo(Is) = 1.
Now, [X,([;)]? < X2, so {X,(I;)}2, is L?-bounded and hence, uniformly
integrable. Now, fix €,6 > 0. Since {X,,([;)}7°, is uniformly integrable, we

can find a > 1 such that

/ Xpn(I;dP < €
(X (1;)>0)

for all m > k. Then P(X,,(I;) > a) < ¢/a < ¢ for all m > k. By Lemma 1,

we can choose M > k such that for allmn >m > M

’ H B(L; + B) — 1| < §/a.

1=m-+1
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Hence in (X,,([;) < «) for all n > m > M,

|E(Xn(lj)|]:m) - Xm(Ij)| = ‘ H E(Lf +Rf) - 1) Xm(Ij)

i=m-+1

< ] ﬁ E(Lf+Rf)71)’a<6.

i=m-+1

Remark 5. Because ) - log E(L$ + R%) converges, {X,(;)}5°  is a uni-
formly integrable game fairer with time whereas the condition of Falconer
that L, = L and R,, = R for all n makes {X,,(;)}2°, a uniformly integrable
martingale.

Now we compute an upper bound for the Hausdorff dimension of a certain
perturbed type random Cantor set.

Theorem 6. Suppose that {X,}°2, is a uniformly integrable game fairer
with time and lim, s, = s. Then the Hausdorff dimension of the perturbed
type random Cantor set F' is equal to or less than s for almost all F' (i.e., for
P-almost all {E,}52, € Q).

PROOF. By Lemma 3, {X,,} has an L!-limit X. Since E(X) < 00, X < 00 a.s.
on Q. Since {X,,}22, converges to X in L', there is a subsequence {X,,, }3°,
that converges to X a.s. In particular, there is a random variable M such that

Xn, = Z I < M < oo for all k as..

I€Ey,,

Then H3(F) < ZleEnk || < M ifn; > —logd/log?2 a.s.. Hence H*(F) < M

a.s..

Corollary 7. If Y log E(LS + R?) converges, then the Hausdorff dimen-
sion of the perturbed type random Cantor set F' is equal to or less than s for
almost all F'.

We will use the energy of some mass distribution([4]) p on F to find a lower
bound for the Hausdorff dimension of the perturbed type random Cantor set
F. To attain the goal, we first generate a mass distribution g on F' by using
the L'-convergence of {X,,}5° ;.

Lemma 8. Assume thaty ., log E(L$ +R:) converges. If we define random
variables

p(l;) = Lim S, forje {12} andk=0,1,2,...,

IelNE,
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(Here, Lim denote the L-limit) then u extends to a mass distribution on the
perturbed type random Cantor set F' for P-almost all F in €.

PROOF. In fact, p(I;) = Lim,, 00 X,,(I;) and its L'-limit exists by Corollary

4. Since
,LL(I]) = Lim X (I ) = Lim (Xn(Ij,l) +Xn(I]72))

n—oQ n—oo

and
plln) = Lim X (L), p(l2) = Lim Xo.(Z2),

we have
p(l;) = p(ln) + p(lj2) as. on L.

Clearly £([0,1]) = Lim,,, o0 X, and

E(Lim X,) = lim F(X,)= lim E(X,|F)

n—oo n— oo n—roo

:nlggonlE Ly +R;) = li[lE(LfL—i-RfL).

Thus p([0,1]) < oo a.s., and p([0,1]) > 0 with positive probability. Let
1([0,1]) = 0 with probability ¢ < 1. Observing the construction of the per-
turbed type random Cantor set, we easily see that p(I;) = 0 with probability

q'/?" where j € {1,2}" and TI( ‘3 = 0 with the same probability. Now we

show that ¢ must be zero. For j € {1,2}",

e - e

k
= (Jim. T s+ mi| )15

= [ B&; +R).

i=n+1

Using agruments similar to those in the proof of Proposition 2, we obtain for
fixed k > n and j € {1,2}",

k—1 k+1 m

) ]= £ (11 eema( 11 #)

m=n—1 i=m+2 =n—1
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where o; = [E(L§ + R{)|? with ajq1 = 1, v, = 1, B = E(L?* + R?*) with
Brn_1 = Pn = 1. It is not difficult to show that

s

2] < B+ for some B > 1.

1—-10¢

By Fatou’s theorem, for all n and every j € {1,2}",

3
2

E|:<M(Ij;)>2i| Shimk%mE[(Xk(];j))Q} <B4+ A(b* — a®)B

[Z;]° [l ~ 1~ 1—0b
for some B > 1. This implies {’I‘ ;I]s) Jje{1,2}"}2, is uniformly integrable.
Hence we find @ > 0 such that [ . o) |I( ‘S) dP < for all j € {1,2}"

(r5f=>
and all n. Assume that 0 < ¢ < 1. Then there is an integer N such that
(1-¢"*"a < % for all n > N. Thus for all n > N and every j € {1,2}",

E(M(Ij)) :/ M(I)dp+/ L) b
|15 L ’>a) |75 (0< 422 <a) |75

1\5

But noting that £ (% T, IS)) = 12,1 E(L; + Ry) for every j € {1,2}" and that

limy, o0 [ [72,,41 E(L; + Rf) = 1, we have a contradiction. Hence x([0,1]) =0
with probability ¢ = 0. By Proposition 1.7[4], p is uniquely extendable to the
Borel sets in [0, 1] and the support of p is contained in F = N E,, C [0,1],
for P-almost all F' in €.

Lemma 9. Forn>k+2 and 0 <t <s,

E(LI™ Y Yo PP Fer)

IEIj,lﬁE" IIEIJ',QOE"

n
2
= [ II E@; + )| 11 10l Ll
i=k+2

for j € {1,2}*.
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PrOOF. Let j € {1,2}%.

E(LI™ ) Y HPIPIFa-)

I€l; \NE, I'€l; 2NE,
=B Y S (Cry + GG,
Li€l;iNEy_11,€l; 2NE,_1
+ Cj )it |*| Fr1)
=[5 > ST By + R)PILI| L)

IiEijlﬁEnfl I;eljﬁgﬂEn71

By the independence of (C; 1,Cir 1), (Ci1,C 2) (Ci2,Cir 1) and (Cj 2, Cy 2).

E(LI™ ) Yo UPHPIFazs)

Iel; 1NE, I'el; 2NE,
= |I;| " E(LS + R;)PE( 3
ILiel;1NE, 2
Y (@G
Ii/EijgﬁEn_2
(Cira +Cf/,2>ui/|8\fn,2)
= |L|BE(LE + RE)P[E(LE_y + RE_)]?

S ILPI .

Liel;\NE, 2 1€l 2NE, 2
Continuing in this fashion, we obtain the conclusion.

Theorem 10. If Y7 log E(LS + RS) converges, then the Hausdorff dimen-
sion of the perturbed type random Cantor set F is equal to or greater than s

for almost all F.

PRrROOF. Let xz,y € F. Let x A y denote the interval in E,, contining x and y
with the greatest possible integer n. We note that the gap of I;; and I; is
equal to or greater than d|I;|, where d = 1 —2b. Let 0 < t < s, fix j € {1,2}"
and consider the mass distribution g in Lemma 8. Then

E<//W_1j |z —y| " du(z) du(y))

<247 E(L| " (I 1) (15 2))
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= 2d_tE(‘Ij|_t Lim Xn(—[j,l) Lim Xn(Ij’Q))
n— oo n— o0

Since X,,(1;,1) z, p(l;,1) and X, (I;2) z, p(1j,2), there exists {nx};2, such
that X, (I;1) = M(I] 1) and there ex1sts {nk, }32,, a subsequence of {ny}72,
such that X, (I;2) 2% u(I;2). Clearly Xy, (Lj,1) 22 u(I;1). Hence

E<//my=1j |z —y| ™" dp(z) du(y))

<2d7'E(|L;|™" Jm X, (L) im X, (22))

=2d7'B(IL|™ lim > I lim Y |I])
freo I€1;1NEn,, free I'€1;20En,,
:2d—tE =t 13 s|7!|s
(1717 Jim > i)
IEIj,lﬂEnke
I’GIj’gﬁEnkl
<2d~'lim, , E(L|™" > [I*[I']*) [Fatou’s Lemma]
IEIj,lﬂEnk[
I/eljysznk'K
’I’Lk[ 2 ’
=247y o | [T B+ B)| EQLI 1|1 a]") [Lemma 9
i=k+2
< 2d7'BE(|L;|*™")

for some B < oo [Lemma 1(2)]. We note that B is independent of k.

Now we choose € > 0 such that b5~ — ﬁ Then there exists a large
number N such that E(Lj + R}) < 1 + ¢ for all £k > N. Therefore for all

k>N,

B( Y 1TB~) < B (L5 + R)-- B (L + BY)
IeEy

2

—1 k
VTUE(L + Ry) [ o E(L; + RY)
i=N

I
=

T

< [I "B + B -7

<
Il
—



PERTURBED TYPE RANDOM CANTOR SET 233
Let TIYS 0P E(LS + R?) = o. Then

iE(Z\IPSt ialfe N = afe < o0
k=N k=N

I€FEy

Hence for k > N,

SE(S [, o )
<208y B(Y 1)

k=N IcEy
<2d 'Ba/e.

E //\x—yrtdu(x)du(y))

- E Z > //Ay_jj |z —y| ™" dp() du(y))

Now

koje{m}k
N—

- Z S [ el dute).aut)
k je{1,2yr 7 ery=l;

oS )

k=N je{1,2}k 7 7 2AY=1;
N-—1
< 2d*tBE<Z 3 |1j|2H) +2d7'Bz/a
k=0 je{1,2}*
N—-1
< 2d_tB<Z oFp2s—t 4 5) < 0.
k=0

[~ y| ™" du(x) du(y) )

We note that p is a mass distribution on F' for almost all F' (cf. Lemma 8).
Thus the Hausdorff dimension of F' = N{%E,, is greater than or equal to ¢
for almost all F since the F has finite t-energy of u (cf. Theorem 4.13 (a)[4]).

Corollary 11. If > 77 log E(L$ + Rs) converges, then the Hausdorff dimen-
sion of the perturbed type random Cantor set F' is s for almost all F'.
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Corollary 12. ([4]) If L,, = L and R, = R for all n, then the Hausdorff
dimension of the perturbed type random Cantor set F is s for almost all F,
where s is the solution of the expectation equation E(L® + R®) = 1.

Remark 13. We see that there is a close connection between the Hausdorff
dimension s of the perturbed type random Cantor set and the values of E(L? +
R?). We note that its Hausdorff dimension does not depend on the similarities
of the distribution functions (L, R, ), but on their expectation values E(L? +
R?). For there are many examples such that Lo, 1 = L, Ly, = L', Rop—1 = R,
Ry, = R’ with E(L: + R?) = 1 for each n for some number s and (L, R) and
(L', R') are not identically distributed.

In particular, if we consider a specific {2 consisting of only one member, the
perturbed type random Cantor set is in fact a perturbed Cantor set([1]). Then
we see that the Hausdorfl dimension of the perturbed type random Cantor set
(in fact, a perturbed Cantor set) is s, where log E(L? 4+ R?) converges to 0 as
n increases to co without the condition that Y- | log E(L$ + R%) converges
(Corollary 8 [1]).
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