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ON ABSOLUTELY HENSTOCK
INTEGRABLE FUNCTIONS

Abstract

In this note, we shall prove that every absolutely Henstock inte-
grable function is McShane integrable, without using the measurability
of Henstock integrable functions and gauge functions.

The result that every absolutely Henstock integrable function is McShane
integrable is well-known. In [1, 2], the proof has been simplified without using
Egoroff’s theorem and truncated functions. In this note, we shall further
simplify the proof in [1] without using the measurability of Henstock integrable
functions and gauge functions. It has the advantage that, in a more general
setting, the measurability of integrable functions and gauge functions may not
make sense or its verification may be very involved. Lemma 2 in this note is
crucial, though the proof is elementary.

By an interval E in Rm, we mean the ‘box’ [a1, b1]× [a2, b2]× · · · [am, bm],
where ai, bi ∈ R for i = 1, 2, · · · ,m. We denote the volume of E by |E|. Given
a fixed interval E an elementary set is a subinterval of E or a union of finite
number of non-overlapping subintervals of E. We denote by B the collection
of open sets whose complement with respect to E is an elementary set or an
empty set. Given a ξ ∈ E and a positive δ, we let B(ξ, δ) = {x ∈ E : |x− ξ| <
δ}, that is the ball centered at ξ and radius δ.

A real-valued function f defined on E is said to be Henstock integrable to
F (E) if for every ε > 0, there is a δ(ξ) > 0 such that for any δ-fine full division
D = {(I, ξ)} of E, i.e. ξ ∈ I ⊆ B(ξ, δ(ξ)), we have∣∣(D)

∑
f(ξ)|I| − F (E)

∣∣ < ε.

It can be showed that whenever f is Henstock integrable on E, it is Henstock
integrable on any subinterval I of E. A function f is said to be absolutely
Henstock integrable on E if both f and |f | are Henstock integrable on E.
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A real-valued function f defined on E is said to be McShane integrable to
M if for every ε > 0, there is a δ(ξ) > 0 such that for any δ-fine full division
D = {(I, ξ)} of E, i.e. I ⊆ B(ξ, δ(ξ)), but ξ does not necessarily belong to I,
we have ∣∣(D)

∑
f(ξ)|I| −M

∣∣ < ε.

The following lemma can be proved readily.

Lemma 1. Let f be an Henstock integrable function on E. Then G ∈ B
implies f is Henstock integrable on G.

Lemma 2. Let f be non-negative, Henstock integrable on E with F (I) =
∫
I
f ,

I is any subinterval of E. Let X be any subset of E. Then for any ε > 0, there
exists G(ε) ∈ B with X ⊂ G(ε) such that whenever there is a finite collection
{I1, I2, · · · , In} of non-overlapping subintervals of E with Ii ⊆ G(ε) − X for
each i, we have

n∑
i=1

F (Ii) < ε.

Proof. Let X ⊂ E. Define the class B∗ = {G ∈ B : X ⊂ G}, which is
non-empty as E ∈ B∗. Since f is Henstock integrable on E, it is Henstock
integrable on G, for each G ∈ B∗. Let A = inf{

∫
G
f : G ∈ B∗}, which exists

and 0 ≤ A <∞. For a given ε > 0, there exists G(ε) ∈ B∗ such that

0 ≤
∫
G(ε)

f −A < ε/2.

Suppose {I1, I2, · · · , In} is a collection of non-overlapping subintervals of E
with Ii ⊆ G(ε) − X for each i. Let G′ = G(ε) − ∪ni=1Ii. Then G′ ∈ B∗.
Moreover,

0 ≤
∫
G′
f −A ≤

∫
G(ε)

f −A ≤ ε/2.

Thus, 0 ≤
∑n
i=1 F (Ii) =

∫
G(ε)

f −
∫
G′ f < ε.

For an absolutely Henstock integrable function f , we have
∑∣∣F (I)

∣∣ ≤∑
G(I) where G(I) =

∫
I

∣∣f ∣∣. Furthermore, the constant function c(x) ≡ 1 is
Henstock integrable and C(I) =

∫
I
c = |I|. Thus, we have

Corollary 1. Suppose f is an absolutely Henstock integrable function on E
with F (I) =

∫
I
f , where I is any subinterval of E. Let X be any subset of E.

Then for any ε > 0, there exists G(ε) ∈ B with X ⊂ G(ε) such that whenever
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there is a finite collection {I1, I2, · · · , In} of non-overlapping subintervals of E
with Ii ⊆ G(ε)−X for each i, we have

n∑
i=1

∣∣F (Ii)
∣∣ < ε and

n∑
i=1

|Ii| < ε.

Theorem 1. If f is absolutely Henstock integrable on E, then f is McShane
integrable on E.

Proof. The idea is similar to that of Theorem 1 in [1]. Let ε > 0 be given.
Since f is Henstock integrable, there is δ(ξ) such that 0 < δ(ξ) ≤ 1 and
(D)

∑∣∣f(ξ)|I| − F (I)
∣∣ < ε whenever D = {(I, ξ)} is a partial δ-fine division

of E, by Henstock’s Lemma.

For each integer k, we define the set X(ε, k) = {x ∈ E : (k − 1)ε ≤ f(x) <
kε} so that for any x, x′ in X(ε, k), we have

∣∣f(x)− f(x′)
∣∣ < ε.

Now, for each positive integer n greater than or equal to 2, we define the
set X(ε, k, n) = {x ∈ X(ε, k) : 1/n < δ(x) ≤ 1/(n− 1)}.

Next, we divide E into p(n) subintervals I(n, q), where q = 1, 2, · · · , p(n)
such that diagI(n, q) ≤ 1/n where diagI is the diagonal of I. We denote by
X(ε, k, n, q) the set X(ε, k, n)∩Io(n, q), where Io(n, q) is the interior of I(n, q).
We note that whenever ξ ∈ X(ε, k, n, q), we have I(n, q) ⊂ B(ξ, δ(ξ)).

By Corollary 1, with E replaced by I(n, q), there exists G(ε, k, n, q) such
that X(ε, k, n, q) ⊂ G(ε, k, n, q) ⊂ I(n, q) and satisfying the property in Corol-
lary 1, with ε replaced by ε/(|k|+ 1)2|k|+n+q.

We shall now define δ′(ξ) for each ξ ∈ E. Note that ξ ∈ X(ε, k, n, q) or
ξ is on the boundary of I(n, q) for some (n, q). Let S be the union of the
boundary of all I(n, q). We define δ′ on S in such a way that for any δ′-fine
partial division D = {(I, ξ)}, with ξ ∈ S, we have

(D)
∑∣∣f(ξ)|I|

∣∣ < ε/2 and (D)
∑∣∣F (I)

∣∣ < ε/2.

For ξ ∈ X(ε, k, n, q), we shall define δ′(ξ) such that 0 < δ′(ξ) < δ(ξ) and
B(ξ, δ′(ξ)) ∩ I(n, q) ⊆ G(ε, k, n, q) ⊂ I(n, q).

Suppose we have a δ′-fine McShane division D′ = {(I, ξ)} of E. If ξ 6∈ I
and ξ ∈ X(ε, k, n, q), then either I ∩X(ε, k, n, q) = φ or I ∩X(ε, k, n, q) 6= φ.
For the former, I ⊆ G(ε, k, n, q)−X(ε, l, n, q) so that, summing over all such
I,
∑

1

∣∣F (I)
∣∣ < ε,

∣∣∑
1 f(ξ)|I|

∣∣ < ε, by Corollary 1.

For I with I ∩ X(ε, k, n, q) 6= φ, there exists ξ′ ∈ I ∩ X(ε, k, n, q). Hence
we have

ξ′ ∈ I ⊂ B(ξ, δ′(ξ)) ⊂ I(n, q) ⊂ B(ξ′, δ(ξ′))
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so that (I, ξ′) is δ(ξ′)-fine and ξ′ ∈ I. Summing over all I with I ∩X(ε, k, n, q)
6= φ, we get

∣∣∑
2

f(ξ)|I| − F (I)
∣∣ ≤ ∣∣∑

2

(f(ξ)− f(ξ′))|I|+ f(ξ′)|I| − F (I)
∣∣

≤
∑
2

∣∣ (f(ξ)− f(ξ′))|I|
∣∣+
∣∣∑

2

f(ξ′)|I| − F (I)
∣∣.

The full summation can now be done in the following way:

∣∣(D′) ∑
(I,ξ)

f(ξ)|I| − F (I)
∣∣ ≤ ∣∣∑

ξ∈S

f(ξ)|I| − F (I)
∣∣+
∣∣∑
ξ 6∈S

f(ξ)|I| − F (I)
∣∣.

By our choice of δ′, the first sum,
∣∣∑
ξ∈S

f(ξ)|I| − F (I)
∣∣ ≤ ε, whereas for the

second sum, we get

∣∣∑
ξ 6∈S

f(ξ)|I| − F (I)
∣∣ ≤ ∣∣∑

ξ∈I

f(ξ)|I| − F (I)
∣∣+
∣∣∑
ξ 6∈I

f(ξ)|I| − F (I)
∣∣

≤
∣∣∑
ξ∈I

f(ξ)|I| − F (I)
∣∣+
∣∣∑

1

f(ξ)|I| − F (I)
∣∣+
∣∣∑

2

f(ξ)|I| − F (I)
∣∣

≤
∣∣∑
ξ∈I

f(ξ)|I| − F (I)
∣∣+
∣∣∑

1

f(ξ)|I| − F (I)
∣∣

+
∣∣∑

2

(f(ξ)− f(ξ′))|I|+ f(ξ′)|I| − F (I)
∣∣

≤
∣∣∑
ξ∈I

f(ξ)|I| − F (I)
∣∣+
∣∣∑

2

f(ξ′)|I| − F (I)
∣∣+
∣∣∑

1

f(ξ)|I| − F (I)
∣∣

+
∣∣∑

2

(f(ξ)− f(ξ′))|I|
∣∣.

The total of the first two summations is less than ε, since (I, ξ), (I, ξ′) form
a partial δ-fine division, with ξ ∈ I, ξ′ ∈ I. The subsummation

∑
1 is less than

2ε, by Corollary 1. For the last summation,
∣∣∑

2(f(ξ)− f(ξ′))|I|
∣∣ ≤∑2 ε|I| ≤

ε|E| since ξ, ξ′ ∈ X(ε, k, n, q) so that
∣∣f(ξ)− f(ξ′)

∣∣ < ε. Hence f is McShane
integrable on E.
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