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ON A CONJECTURE OF AGRONSKY AND
CEDER CONCERNING

ORBIT-ENCLOSING ω-LIMIT SETS

Abstract

In [1] the following conjecture was stated:

A continuum K ⊂ Ek is an orbit-enclosing ω-limit set if and
only if it is arcwise connected.

The main aim of this paper is to disprove this conjecture by giving an
example of an orbit-enclosing ω-limit set S in E2 (cf. Theorem 3 below)
which is not arcwise connected. Moreover, we show that S can be chosen
with non-empty interior, and the mapping F , with respect to which S
is an orbit-enclosing ω-limit set can be chosen as a triangular map.

1 Terminology and Notation

Suppose A is a topological space, x ∈ A, f : A → A a continuous map,
and N the set of natural numbers. We will use fn(x) to denote the n-th
iteration of x under f . By the trajectory of x under f we mean the set
γ(x, f) = {fn(x); n ∈ N∪{0}}. By ω(x, f), called the ω-limit set with respect
to f and x, we mean the set of limit points of the sequence {fn(x)}∞n=0. We
say that ω(x, f) is orbit-enclosing if γ(x, f) ⊆ ω(x, f). We say that a subset B
of A is an orbit-enclosing ω-limit set (with respect to f and x) if there exists
a continuous map f : A → A and a point x ∈ A such that B = ω(x, f) and
ω(x, f) is orbit-enclosing. If for any nonvoid subsets U and V of A, both
relatively open in A, there exists n ∈ N such that fn(U)∩V 6= ∅, then we say
that f is topologically transitive on A (or briefly, transitive). By a continuum
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we mean any compact connected set which contains more than one point.
A set M ⊂ A is arcwise connected if each two points in M belong to some
homeomorph of [0, 1] which lies in M . A map F from A1 × A2 into itself is
called triangular if it is of the form F (x, y) = (f(x), g(x, y)).

2 Main Results

Let [0, 1]2 denotes the unit square, W the curve y = 1
2 + 1

2 sin π
x−2 for x ∈ [1, 2),

and T = {2} × [0, 1] the vertical line. Put S = [0, 1]2 ∪W ∪ T . Clearly, the
continuum S is not arcwise connected, because no homeomorph of [0, 1] lying
in S intersects both T and [0, 1]2 ∪W .

To prove that S is an orbit-enclosing ω-limit set, we will use the following
key result.

Theorem 1. Let D = [0, 1]2 ∪
(
[1,∞)× { 12}

)
. For x ∈ [0,∞) put x = (x, 12 ).

Then there exists a continuous triangular surjective map ϕ : D → D which is
transitive and for which limx→∞ |ϕ(x)− x| = 0.

The proof of the theorem, including the construction of ϕ, is postponed to
Section 3. Now, let D, W and ϕ be as above. Define map h : D → [0, 1]2 ∪W
by

h(t) =

{
t if t ∈ [0, 1]2,(
2− 1

t ,
1
2 + 1

2 sin (−tπ)
)

otherwise.

Obviously, h is bijective. Let F : S → S be given by

F =

{
h ◦ ϕ ◦ h−1 on [0, 1]2 ∪W,
id on T .

Remark 1. The construction of ϕ in the Section 3 ensures that ϕ is a trian-
gular map so that F is a triangular map, too.

We will take advantage of the following theorem to show that the set S is
an orbit-enclosing ω-limit set with regard to F .

Theorem 2. ([2, p. 105]) Let A ⊂ En be a nonvoid compact set. Then there
exists a continuous map f : A → A such that f is topologically transitive on
A if and only if A is an orbit-enclosing ω-limit set.

Theorem 3. The set S is an orbit-enclosing ω-limit with regard to F .

Proof. The map F defined above is continuous, since limx→∞ |ϕ(x)−x| = 0.
Transitivity of ϕ on the set D implies transitivity of F on the set [0, 1]2 ∪W ,
and hence, on the closure S of [0, 1]2 ∪W .
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3 Proof of Theorem 1

The construction of the map ϕ from Theorem 1 will be divided in three steps.
Step 1. A transitive map τ1 : [0, 1]2 → [0, 1]2. Let C ⊂ [0, 1] be the Cantor
set. It is known that each point x ∈ C can be written in the triadic system
uniquely in the form x = x1x2x3 · · · = x1

31 + x2

32 + x3

33 + . . . , where xi ∈ {0, 2},
i = 1, 2, 3, . . . (see [5]).

Suppose x ∈ C, x = x1x2x3 . . . . We define the map ψ : C → [0, 1]2 by the
relation ψ(x) = (x′1x

′
3x
′
5 . . . , x

′
2x
′
4x
′
6 . . . ) ≡ (x∗, y∗), where x′i = xi

2 and x∗, y∗

are written in the dyadic system.
The map ψ is obviously surjective and continuous.
Now we will introduce the following notions:
Contiguous interval U ⊂ [0, 1] of order n, n ∈ N, is an arbitrary closed

interval of length 1/3n, that contains just two points of C (these points are
obviously the end points of the interval). Non-contiguous interval J ⊂ [0, 1]
of order n, n ∈ N, is the closure of one of the intervals, complementary to
the union of all contiguous intervals of order ≤ n. For any intervals J0, J1,
J0 < J1 denotes that J0 lies on the left of J1.

The next lemma is easy and follows immediately from the properties of the
Cantor set.

Lemma 1. Let k ≥ 1. Let J be a non-contiguous interval of order 2k, let
J0 < J1 be the non-contiguous intervals of order 2k + 1 contained in J , and
J00 < J01 the non-contiguous intervals of order 2k + 2 contained in J0. Then

(i) ψ(J) is a square K of size 1/2k × 1/2k.

(ii) ψ(J0) and ψ(J1) are rectangles K0 and K1, each of size 1/2k+1 × 1/2k,
forming the left and right half of K, respectively.

(iii) ψ(J00) and ψ(J01) are squares, each of size 1/2k+1 × 1/2k+1, forming
the lower and upper half of K0, respectively.

(iv) The end-points of the contiguous interval J \ (J0 ∪ J1) are mapped onto
the end-points of ψ(J0) ∩ ψ(J1).

(v) The end-points of the contiguous interval J0 \ (J00 ∪ J01) are mapped
onto the end-points of ψ(J00) ∩ ψ(J01).

Let σ : [0, 1] → [0, 1]2 be the piecewise linear map given by σ(0) = [ 12 , 1],
σ( 1

4 ) = [1, 34 ], σ( 3
4 ) = [0, 14 ], σ(1) = [12 , 0]. Extend the map ψ, which is defined

on C, to [0, 1] as follows. Let J and K be as in Lemma 1. If U ⊂ J is the
contiguous interval of order 2k + 1, and U0 ⊂ J0 the contiguous interval of
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order 2k + 2, then let the graph of ψ : U → K be the affine copy of σ, and
the graph of ψ : U0 → [0, 1]2 the set ψ(J00) ∩ ψ(J01), i. e. a horizontal line of
length 1/2k+1.

Define a map τ1 : [0, 1]2 → [0, 1]2 by τ1 = ψ ◦ π, where π is the projection
to the x-axis.

In the sequel, we say that a map ϕ : X → X is expansive with a coefficient
s > 1, if there is an ε > 0 such that for any set A ⊂ X with diam(A) < ε,
diam(ϕ(A)) > s · diam(A).

Lemma 2. Let U be a contiguous interval of order n, and L a subinterval of U .
Then π◦ψ|L is expansive and the coefficient of expansion sn = |(π◦ψ)(L)|/|L|
being such that

6 · (9/2)k ≥ s2k+1 ≥ 3 · (9/2)k, k = 0, 1, 2, . . . , (1)
s2k = (9/2)k, k = 1, 2, . . . . (2)

Proof. If n = 2k + 1, then U is mapped by π ◦ ψ to an interval of length
1/2k (cf. (i) of Lemma 1). Moreover, π ◦ ψ on U is two-to-one and piecewise
linear with constant slope. This implies (1). Formula (2) follows similarly by
the fact that for n = 2k, π ◦ψ maps U linearly onto an interval of length 1/2k

(cf. (ii) of Lemma 1).

Lemma 3. The map τ1 : [0, 1]2 → [0, 1]2 is a triangular map which is surjec-
tive, continuous and transitive.

Proof. The map τ1 = ψ ◦ π is surjective, since ψ is surjective and clearly,
τ1 is triangular.

Let {Un}∞n=0 be the sequence of contiguous intervals. Then ψ is continuous
since each of the maps ψ|C , ψ|Un is continuous, and limn→∞ diam(ψ(Un)) = 0.
Finally, τ1 = ψ ◦ π is continuous as a composition of two continuous maps.

It remains to show that the map τ1 = ψ ◦ π is transitive, or equivalently
that π ◦ ψ is transitive. So, let L′ ⊂ [0, 1] be an interval. Obviously, there
always exists an interval L ⊂ L′ such that L ⊂ U , U is a contiguous interval.
Suppose |L| = 1/3n, n ≥ 3, and put M = (π◦ψ)(L). According to (1) and (2),
|M | ≥ 9|L|. Let U0 be the contiguous interval with which M has the longest
intersection.

For any interval K of length 1/3i the longest interval of set K \ C has
length at least 1/3i+1, then the set M \C contains an interval N of length at
least 1/3n−1. By the induction we instantly get that there exists k ∈ N such
that (π ◦ ψ)k(L) \ C contains an interval of length at least 1/9. The rest of
the proof is obvious.
Step 2. A transitive map τ2 : [1,∞)× { 12} → [1,∞)× { 12}. For short, for any

x ∈ [0,∞), put x = {x} × { 12}, and similarly define J for any interval J , etc.
Furthermore, let a0 = 1, an = 1 + 1

4 + 1
5 + · · ·+ 1

n+3 = 1 +
∑n
k=1

1
k+3 .
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Let τ2 be the piecewise linear map given by
τ2(a0) = a2, τ2(a1) = a0,
τ2(a2k) = a2k+2, τ2(a2k+1) = a2k−1, k = 1, 2, 3, . . . .

The following lemma is obvious.

Lemma 4. The map τ2 : [1,∞)→ [1,∞) is continuous and transitive.

Step 3. A map ϕ : D → D.
Define ϕ by ϕ(x) = τ1(x) if π(x) ∈ [0, 1] \ [ 79 ,

8
9 ],

ϕ(x) = τ2(x) if x ∈ [a2,∞),

and let ϕ be piecewise linear on
(
[ 79 ,

8
9 ]× [0, 1]

)
∪ [1, a2], given by ϕ( 7

9× [0, 1]) =

1, ϕ( 37
45 × [0, 1]) = 2, ϕ( 8

9 × [0, 1]) = ( 1
2 ), and ϕ(a0) = (1, 1), ϕ(a1) = ( 1

2 ),
ϕ(a2) = a4.
Proof of Theorem 1. By Lemmas 3 and 4, ϕ is a continuous triangular
map, which is surjective and transitive, and

lim
x→∞

|ϕ(x)− x| = lim
k→∞

|ϕ(a2k+1)− a2k+1| = lim
k→∞

|a2k−1 − a2k+1|

= lim
k→∞

∣∣ 1

2k + 3
+

1

2k + 4

∣∣ = 0 .

Remark 2. If we do not require the set S has non-empty interior, then it
can be simply the union of the curve W and the vertical line T defined above,
and it is necessary to slightly modify the map F from the Theorem 1 on the
surroundings of the point [1, 12 ].
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