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ON A CONJECTURE OF AGRONSKY AND
CEDER CONCERNING
ORBIT-ENCLOSING w-LIMIT SETS

Abstract

In [1] the following conjecture was stated:

A continuum K C E* is an orbit-enclosing w-limit set if and
only if it is arcwise connected.

The main aim of this paper is to disprove this conjecture by giving an
example of an orbit-enclosing w-limit set S in E? (cf. Theorem 3 below)
which is not arcwise connected. Moreover, we show that S can be chosen
with non-empty interior, and the mapping F', with respect to which S
is an orbit-enclosing w-limit set can be chosen as a triangular map.

1 Terminology and Notation

Suppose A is a topological space, x € A, f : A — A a continuous map,
and N the set of natural numbers. We will use f"(x) to denote the n-th
iteration of x under f. By the trajectory of x under f we mean the set
Y(z, f) = {f"(x); n € NU{0}}. By w(z, f), called the w-limit set with respect
to f and x, we mean the set of limit points of the sequence {f"(x)}52,. We
say that w(x, f) is orbit-enclosing if v(x, f) C w(zx, f). We say that a subset B
of A is an orbit-enclosing w-limit set (with respect to f and x) if there exists
a continuous map f : A — A and a point € A such that B = w(z, f) and
w(x, f) is orbit-enclosing. If for any nonvoid subsets U and V of A, both
relatively open in A, there exists n € N such that f*(U)NV # (), then we say
that f is topologically transitive on A (or briefly, transitive). By a continuum

Key Words: omega-limit set, orbit-enclosing omega-limit set, topological transitivity,
arcwise connected continuum, triangular map
Mathematical Reviews subject classification: Primary: 26A18, 58F12. Secondary:

58F08
Received by the editors August 12, 1997

*This research was supported, in part, by the Grant Agency of Czech Republic, grant
No. 201/97/0001.

773



774 MARTA BABILONOVA

we mean any compact connected set which contains more than one point.
A set M C A is arcwise connected if each two points in M belong to some
homeomorph of [0, 1] which lies in M. A map F from A; X As into itself is
called triangular if it is of the form F(x,y) = (f(x), g(z,y)).

2 Main Results

Let [0, 1] denotes the unit square, W the curve y = %Jr% sin T for x € [1,2),
and T = {2} x [0,1] the vertical line. Put S = [0,1]2UW UT. Clearly, the
continuum S is not arcwise connected, because no homeomorph of [0, 1] lying
in S intersects both T and [0,1]2 U W.

To prove that S is an orbit-enclosing w-limit set, we will use the following

key result.

Theorem 1. Let D = [0,1]2 U ([1,00) x {3}). For z € [0,00) put T = (z, 1).
Then there exists a continuous triangular surjective map ¢ : D — D which is
transitive and for which lim,_, o |¢(ZT) — | = 0.

The proof of the theorem, including the construction of ¢, is postponed to
Section 3. Now, let D, W and ¢ be as above. Define map h: D — [0,1]?UW

by
) — " if t € [0,1]2,
= (2 B %7 % n %sin(—tﬂ)) otherwise.

Obviously, h is bijective. Let F': S — S be given by

P hopoh™! on[0,12UW,
~\id onT.

Remark 1. The construction of ¢ in the Section 3 ensures that ¢ is a trian-
gular map so that F is a triangular map, too.

We will take advantage of the following theorem to show that the set S is
an orbit-enclosing w-limit set with regard to F.

Theorem 2. ([2, p. 105]) Let A C E™ be a nonvoid compact set. Then there
exists a continuous map f : A — A such that f is topologically transitive on
A if and only if A is an orbit-enclosing w-limit set.

Theorem 3. The set S is an orbit-enclosing w-limit with regard to F'.

PROOF. The map F' defined above is continuous, since lim,_,, |(Z) —Z| = 0.
Transitivity of ¢ on the set D implies transitivity of F on the set [0,1]2 U W,
and hence, on the closure S of [0,1]2 U W. O
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3 Proof of Theorem 1

The construction of the map ¢ from Theorem 1 will be divided in three steps.
Step 1. A transitive map 1 : [0,1]> — [0,1]2. Let C' C [0,1] be the Cantor
set. It is known that each point z € C can be written in the triadic system

uniquely in the form x = xyzow3--- = 5+ + 53 + 53 +... , where z; € {0, 2},
i=1,2,3,... (see [5]).

Suppose x € C, z = z12273 ... . We define the map 1 : C' — [0, 1]? by the
relation ¥(z) = (zyz52y ..., ooz ... ) = (z¥,y*), where zj = & and z*, y*

are written in the dyadic system.

The map ¥ is obviously surjective and continuous.

Now we will introduce the following notions:

Contiguous interval U C [0,1] of order n, n € N, is an arbitrary closed
interval of length 1/3™, that contains just two points of C' (these points are
obviously the end points of the interval). Non-contiguous interval J C [0,1]
of order n, n € N, is the closure of one of the intervals, complementary to
the union of all contiguous intervals of order < n. For any intervals Jy, Ji,
Jo < Ji denotes that Jy lies on the left of J;.

The next lemma is easy and follows immediately from the properties of the
Cantor set.

Lemma 1. Let k > 1. Let J be a non-contiguous interval of order 2k, let
Jo < Ji be the non-contiguous intervals of order 2k + 1 contained in J, and
Joo < Jo1 the non-contiguous intervals of order 2k + 2 contained in Jo. Then

(i) ¥(J) is a square K of size 1/2F x 1/2F.

(ii) ¥ (Jo) and (J1) are rectangles Ko and K1, each of size 1/28T1 x 1/2F
forming the left and right half of K, respectively.

(iii) (Joo) and (Jo1) are squares, each of size 1/28+1 x 1/28+1 " forming
the lower and upper half of Ky, respectively.

(iv) The end-points of the contiguous interval J\ (Jo U J1) are mapped onto
the end-points of ¥(Jo) NY(J1).

(v) The end-points of the contiguous interval Jo \ (Joo U Jo1) are mapped
onto the end-points of ¥(Joo) N (Jo1)-

Let o : [0,1] — [0,1]* be the piecewise linear map given by o(0) = [3,1],
o(3)=11,3],0(2)=10,1], (1) = [1,0]. Extend the map 1, which is defined
on C, to [0,1] as follows. Let J and K be as in Lemma 1. If U C J is the
contiguous interval of order 2k + 1, and Uy C Jy the contiguous interval of
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order 2k + 2, then let the graph of ) : U — K be the affine copy of o, and
the graph of v : Uy — [0, 1]? the set ¥(Joo) N1 (Jo1), i. e. a horizontal line of
length 1/2k+1,

Define a map 71 : [0,1]2 — [0,1] by 71 = % o 7, where 7 is the projection
to the z-axis.

In the sequel, we say that a map ¢ : X — X is expansive with a coefficient
s > 1, if there is an € > 0 such that for any set A C X with diam(A4) < e,
diam(p(A)) > s - diam(A).

Lemma 2. Let U be a contiguous interval of order n, and L a subinterval of U.
Then mot|r, is expansive and the coefficient of expansion s, = |(wo)(L)|/|L|
being such that
. k . k —

6 OR) = sy 2 Y2 Ffh 1% ()
Proor. If n = 2k 4 1, then U is mapped by 7 o1 to an interval of length
1/2% (cf. (i) of Lemma 1). Moreover, 7 o1 on U is two-to-one and piecewise
linear with constant slope. This implies (1). Formula (2) follows similarly by
the fact that for n = 2k, 7 o1 maps U linearly onto an interval of length 1/2%
(cf. (ii) of Lemma 1). O

Lemma 3. The map 11 : [0,1]2 — [0, 1]? is a triangular map which is surjec-
tive, continuous and transitive.

PrROOF. The map 71 = 1 o 7 is surjective, since 9 is surjective and clearly,
71 is triangular.

Let {U,}22, be the sequence of contiguous intervals. Then ¢ is continuous
since each of the maps ¥|¢, ¥|y, is continuous, and lim,,_, o, diam(¢(U,)) = 0.
Finally, 7 = ¢ o 7 is continuous as a composition of two continuous maps.

It remains to show that the map 73 = v o 7 is transitive, or equivalently
that 7 o ¢ is transitive. So, let L' C [0,1] be an interval. Obviously, there
always exists an interval L C L’ such that L C U, U is a contiguous interval.
Suppose |L| = 1/3™, n > 3, and put M = (woe))(L). According to (1) and (2),
M| > 9|L|. Let Uy be the contiguous interval with which M has the longest
intersection.

For any interval K of length 1/3° the longest interval of set K \ C has
length at least 1/3+1, then the set M \ C contains an interval N of length at
least 1/3"~1. By the induction we instantly get that there exists k € N such
that (7 o )*(L) \ C contains an interval of length at least 1/9. The rest of
the proof is obvious. O
Step 2. A transitive map 75 : [1,00) x {3} — [1,00) x {}. For short, for any
z € [0,00), put T = {x} x {1}, and similarly define J for any interval J, etc.
Furthermore, let ag =1, an =1+ 3+ ¢+ + A5 =14+, =45
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Let 7 be the piecewise linear map given by

m2(ao) = aa, m2(a1) = ao,

To(Qar) = Qokt2, T2(G2k41) = Qok—1, K =1,2,3,....
The following lemma is obvious.

Lemma 4. The map 73 : [1,00) — [1,00) is continuous and transitive.

Step 3. A map ¢: D — D.
Define ¢ by o(z) =7 (z) if n(z) €[0,1]\ [%,

©loo

I,

o(x) = m(z) if z € [ag,00),
and let ¢ be piecewise linear on ([Z, §] x [ 1])U[L, ), given by o(& %0, ID:
17 QP(E [07 1]) = 2a 90(5 [ ]) = (%)7 and (P(a()) = (171)7 <)0(61) = (%)7
p(az) = as.

PrROOF OF THEOREM 1. By Lemmas 3 and 4, ¢ is a continuous triangular
map, which is surjective and transitive, and

lim |(p ) — f| = lim \90(621@“) — 62k+1| = lim |62k,1 — 62k+1|
T—00 k—o0 k—o0
1

2k+4}:

+ O

lim |———
b
Remark 2. If we do not require the set S has non-empty interior, then it
can be simply the union of the curve W and the vertical line T defined above,
and it is necessary to slightly modify the map F from the Theorem 1 on the

surroundings of the point [1, %]
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