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INTERSECTION PROPERTIES OF
DIRECTIONAL ESSENTIAL CLUSTER

SETS

Abstract

Jarnik [3] in 1936 proved a remarkable property of directional cluster
sets. This result states that for a function f defined on the open upper
half plane to the extended real line, each pair of directional cluster sets
intersect at all points on the real line but a countable set of points. In [5]
an example was constructed to show that the exact analogue of Jarnik’s
result fails for directional essential cluster sets. Here we shall establish
a certain variant of this analogue for directional essential cluster sets
of measurable functions. The result which will be proved here is also
related with the results in Theorem 2 of [1] and in Theorem 2 of [2].

1 Preliminaries

Let H, R, M∗(A) and A denote, respectively, the open upper half plane, the
real line, Lebesgue outer measure of the set A, and the closure of the set A.
The Lebesgue outer measure is linear or planar and which will be clear from
the context.

For x ∈ R, h > 0 and θ ∈ (0, π) we set

K(x, h) =
{
z : z ∈ H, |z − x| < h

}
,

Lθ(x) =
{
z : z ∈ H, arg(z − x) = θ

}
and

Lθ(x, h) = Lθ(x) ∩K(x, h) .
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For each pair of directions, u and v, 0 < u < v < π, let Suv be a sector in H
with vertex at the origin, defined by

Suv =
{
z : z ∈ H, u < arg(z) < v

}
.

By Suv(x) we mean the translate of Suv which is obtained by taking the origin
at x. If there is no confusion we shall simply write S and S(x) for the sets
Suv and Suv(x). Further set

S(x, h) = S(x) ∩K(x, h) .

The sectorial upper outer density d
∗
(E, x, S) and the sectorial outer den-

sity d ∗(E, x, S) of E ⊂ H at x ∈ R are respectively defined as

d
∗
(E, x, S) = lim sup

h→0

M∗
(
E ∩ S(x, h)

)
M∗
(
S(x, h)

)
and

d∗(E, x, S) = lim
h→0

M∗
(
E ∩ S(x, h)

)
M∗
(
S(x, h)

) .

The directional outer densities d
∗
(E, x, θ) and d∗(E, x, θ) of E ⊂ H at x ∈ R

and in the direction θ ∈ (0, π) can be defined as sectorial outer densities by
replacing S(x, h) by Lθ(x, h) and considering the linear outer measure.

Whenever the sets concerned are measurable then we drop the word “outer”
and the mark “ ∗ ”.

Let f : H →W , where W is a topological space. The directional essential
cluster set Ce(f, x, θ) of f at x in the direction θ ∈ (0, π) is the set of all w in W

such that for every open set U of W containing w, d
∗
(f−1(U), x, θ) > 0. The

directional cluster set C(f, x, θ) can be defined as Ce(f, x, θ), but d
∗
(E, x, θ) >

0 is to be replaced by

Lθ(x, r) ∩ f−1(U) 6= ∅ for all r > 0 .

A set E ⊂ H is said to have Baire property if E = G∆Q, where G is an
open set and Q is a first category set in H. If, in particular Q is a countable
set then the set E is said to have restricted Baire property.

A function f : H → W , where W is a topological space, is said to have
Baire (resp. restricted Baire) property if for every open set U in W , f−1(U)
has Baire (resp. restricted Baire) property.
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Let E ⊂ H be measurable. For x ∈ R set

Π(E, x) =
{
θ : 0 < θ < π, d(E, x, θ) = 0

}
V(E, x) =

{
θ : 0 < θ < π, d(E, x, θ) = 1

}
,

and for φ < ϕ in (0, π), Vφϕ(E, x) = V(E, x) ∩ (φ, ϕ) .
For positive integer m, positive and fixed real K < 1, and rationals α, β,

γ and δ in (0, π) with α < β, γ < δ and (α, β) ⊂ (0, π) \ [γ, δ] let

Vαβm(E, x, γ, δ) =

=

{
θ : θ ∈ (α, β), M

(
E ∩ Lθ(x, h)

)
> Kh, for all h, 0 < h <

1

m

}
.

Then clearly for all α1 and β1 with α1 < β1 in (0, π) \ [γ, δ]

Vα1β1(E, x) ⊂ ∪α ∪β ∪mVαβm(E, x, γ, δ) , α1 < α < β < β1 . (A)

These sets and relation will be used in the sequel. The density function
d(E, x, θ) is measurable [6, Lemma 2], so the sets Π(E, x) and V(E, x) are
measurable. It can also be shown that the sets Vαβm(E, x, γ, δ) are also mea-
surable (see Lemma 1 in [6]).

Lemma 1. If E ⊂ H is measurable then the set

T (E) =
{
x : x ∈ R, MΠ(E, x) > 0 and MV(E, x) > 0

}
is countable.

Proof. For rationals α, β, γ, δ, µ and ν with 0 < α < β < γ < δ < µ < ν < π
and positive integers m, n and rationals p and q in (0, 1) set

Tαβγδmp =
{
x : x ∈ R, M

(
Π(E, x)∩ (γ, δ)

)
> 0 and MVαβm(E, x, γ, δ) > p

}
and Tµνγδnq be a similar set and it is obtained by replacing α, β, m and p
with µ, ν, n and q. Then using the relation (A) it can be shown that

T (E) ⊂ ∪
(
Tαβγδmp ∪ Tµνγδnq

)
, (1)

where the union is taken for all rationals α, β, γ, δ, µ and ν in (0, π) with
α < β < γ < δ < µ < ν, for all positive integers m and n and all rationals p
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and q in (0, 1). For fixed α, β, γ, δ, m and p let T = Tαβγδmp. Suppose x′ ∈ T
is a left limit point of T . Let {xk} ⊂ T be a sequence such that xk < xk+1 < x′

for all k and limk→∞ xk = x′. Suppose k1 is the first integer so that

Sαβ

(
xk,

1

m

)
∩ Sγδ

(
x′
)

is a quadrilateral for all k ≥ k1. Let u and v be such that γ < u < v < δ and
(v − u) < π/3. Then for all k ≥ k1,

Sαβ

(
xk,

1

m

)
∩ Suv

(
x′
)

is also a quadrilateral, say it Qk. Let k ≥ k1 be fixed and xk = x0. For θ ∈
(α, β) set Iθ = Q0∩Lθ(x0). Then Iθ∩E is measurable for θ ∈ Vαβm(E, x0, γ, δ)
= D (say). Henceforth, for convenience, we shall simply write I, Q and x for
Iθ, Q0 and x0, respectively. For θ ∈ D and φ ∈ [u, v] let

rθφ =
∣∣Lθ(x) ∩ Lφ(x′)− x

∣∣ ,
i.e. rθφ is the distance between x and Lθ(x) ∩ Lφ(x′). Now it can be shown
that

rθv =
rθu sin(u− θ) sin v

sin(v − θ) sinu
. (2)

Then we get

M(Q ∩ E) ≥
∫
D

∫
I∩E

r dr dθ .

Further we have∫
I∩E

r dr > rθvM(I ∩ E) = rθv

∣∣∣M(Lθ(x, rθu) ∩ E
)
−M

(
Lθ(x, rθv) ∩ E

)∣∣∣ .
Hence rθvM(I ∩ E) > |Prθu − Prθv| · rθv, where P is the minimum of

M
(
Lθ(x, rθu) ∩ E

)
rθu

and
M
(
Lθ(x, rθv) ∩ E

)
rθv

.

Now using (2) we get

rθv ·M(I ∩ E) > rθv · rθu · P
(

sin θ sin(v − u)

sin(v − θ) sinu

)
.

Since sin θ > sinα · sinβ, 0 < sin(v − θ) sinu < 1 and P ≥ K, so we get after
simple calculations

M(Q∩E) > K · sin(v− u) · sinα · sinβ · (x′ − x)2

∫
D

sinu · sin v
sin(v − θ) sin(u− θ)

dθ .
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Again since

0 < sin(v − θ) · sin(u− θ) < 1 and sinu · sin v > sin2 γ · sin2 δ ,

setting

h0 = max

{
sinβ

sin(v − β)
,

sinβ

sin(u− β)

}
· (x′ − x) ,

we get

M(Q ∩ E) > h2
0 · sin(v − u) · p ·K · sinα · sin2 γ · sin2 δ · sin2(ϕ− β) , (B)

where ϕ = v or u according to the requirement. Now, since sin(ϕ − β) >
sin(γ − β) · sin(δ − β) and 2 sin θ > θ for 0 < θ < π/3, we get from (B)

M
(
Suv(x

′, h0) ∩ E
)
> M

(
Suv(x

′, h0)
)
· k̂ ,

where
k̂ = K · sinα · sin2 γ · sin2 δ · sin2(γ − β) · sin2(δ − β) · p .

Thus one gets
M
(
Suv(x

′, h0) ∩ E
)

M
(
Suv(x′, h0)

) > k̂ , 0 < k̂ < 1 . (3)

Since (3) is true for all xk (= x0) for k ≥ k1 and since hk → 0 as xk → x′, so
taking limit as xk → x′ ultimately we get

d(E, x′, Suv) ≥ k̂ ,

for all u and v with v − u < π

3
and 0 < γ < u < v < δ < π .

(4)

For positive integer t let
Πt(E, x

′, γ, δ) =

=

{
θ : γ < θ < δ, M

(
Lθ(x

′, h) ∩ E
)
< k̂ · h

2
for all h, 0 < h <

1

t

}
.

Then clearly,
Π(E, x′) ∩ (γ, δ) ⊂ ∪∞t=1Πt(E, x

′, γ, δ) .

Since M
(
Π(x′) ∩ (γ, δ)

)
> 0 so there is a t such that M

(
Πt(E, x

′, γ, δ)
)
> 0.

Let ϕ be a point of density of Πt(E, x
′, γ, δ). Then for ε, 0 < ε < k̂2/4 there

is η, 0 < η < π/6, such that for all r, 0 < r < η and γ < ϕ− r < ϕ+ r < δ,

M
(
Πt(E, x

′, γ, δ) ∩ (ϕ− r, ϕ+ r)
)
> 2r(1− ε) . (5)
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Let r = r0 < η < π/6 be fixed and let ϕ − r0 = i > γ and ϕ + r0 = j < δ.
Then for h, 0 < h < 1/t and writing (i, j) = Π and Πt(E, x

′, γ, δ) = V we get

M
(
Sij(x

′, h) ∩ E
)

=

1

2

∫
Π∩V

(
M(Lθ(x

′, h) ∩ E)
)2
dθ +

1

2

∫
Π\V

(
M(Lθ(x

′, h) ∩ E)
)2
dθ <

<
1

2

(
h2 · k̂

2

4
·MΠ + h2 · ε · 2r0

)
< M

(
Sij(x

′, h)
)
· k̂

2

2
,

using (5), and 2r0 = MΠ and ε < k̂2/4. We get

M
(
Sij(x

′, h) ∩ E
)

MSij(x′, h)
<
k̂2

2
.

Taking limit as h→ 0, finally we get

d(E, x′, Sij) <
k̂2

2
. (6)

Since γ < i < j < δ and (j − i) < π/3, so (4) and (6) are contradictory and
hence the set T = Tαβγδmp is countable for all rationals 0 < α < β < γ <
δ < π, all integers m and for all rationals p in (0, 1). By approaching from the
right it can be shown as above that no point of Tµνγδnq is a right limit point
of it. Thus, the set T (E) in (1) is countable. This completes the proof.

Lemma 2. If E ⊂ H is open then the set K(E) = {x : x ∈ R, Π(E, x) and
V(E, x) are second category sets in (0, π)} is countable.

Proof. For rationals α, β, γ, δ, µ and ν in (0, π) with α < β < γ < δ < µ < ν,
and positive integers m and n let Kαβγδm = {x : x ∈ R, Π(E, x) ∩ (γ, δ) is a
second category set and Vαβm(E, x, γ, δ) is dense in (α, β)}, and Kµνγδn be a
similar set but α, β and m are replaced by µ, ν and n respectively. Then by
using the relation (A), it can be shown that

K(E) ⊂ ∪
(
Kαβγδm ∪Kµνγδn

)
, (1)

where the union is taken for all rationals α < β < γ < δ < µ < ν in (0, π) and
positive integers m and n.

For x ∈ Kαβγδm, the facts Vαβm(E, x, γ, δ) is dense in (α, β) and E is a
closed set, imply that for every θ ∈ (α, β), M(Lθ(x, h) ∩ E) ≥ Kh for all h,
0 < h < 1/m. Let x′ ∈ Kαβγδm be a left limit point of the set Kαβγδm.
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Then just replacing the sets E and D = Vαβm(E, x0, γ, δ) by the sets E and
(α, β) throughout the first part of the proof of Lemma 1, we can get a real k,

0 < k < 1, analogous to k̂ such that

d(E, x′, Suv) ≥ k , (2)

for all u, v with γ < u < v < δ and (v − u) < π/3.
Defining the set Πt(E, x

′, γ, δ) as in the second part of the proof of Lemma 1

replacing k̂ by k we get

Π(E, x′) ∩ (γ, δ) ⊂ ∪∞t=1 Πt(E, x
′, γ, δ) .

As Π(E, x′) ∩ (γ, δ) is a second category set, there is a positive integer t = p
so that Π = Πp(E, x

′, γ, δ) is dense in an open interval (φ, ϕ) ⊂ (γ, δ) with
ϕ−φ < π/3. Since E is open and Π is dense in (φ, ϕ), so for every θ ∈ (φ, ϕ),

M
(
Lθ(x

′, h) ∩ E
)
≤ kh

2
, for all h, 0 < h <

1

p
.

Thus, for 0 < h < 1
p , we have

M
(
Sφϕ(x′, h) ∩ E

)
=

∫ ϕ

φ

1

2

(
M
(
Lθ(x

′, h) ∩ E
))2

dθ <
1

2
k2h2(ϕ− φ) ,

i.e.,
M
(
Sφϕ(x′, h) ∩ E

)
< k2 ·M

(
Sφϕ(x′, h)

)
.

Since for bounded open set F ⊂ H, M(F ) = M(F ), we get

M
(
Sφϕ(x′, h) ∩ E

)
= M

(
Sφϕ(x′, h) ∩ E ) = M

(
Sφϕ(x′, h) ∩ E

)
.

Thus we get from above

M
(
Sφϕ(x′, h) ∩ E

)
MSφϕ(x′, h)

< k2 .

Taking limit as h→∞ we ultimately get

d(E, x′, Sφϕ) ≤ k2 . (3)

Since (2) and (3) are contradictory, each set Kαβγδm is countable.
Proceeding from the right it can be similarly shown that no point of Kµνγδn

is a right limit point of it. Thus, the set K(E) is countable.
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Lemma 2.1. If E ⊂ H is open then the set T ′(E) = {x : x ∈ R, MΠ(E, x)
> 0 and V(E, x) is second category in (0, π)} is countable.

Lemma 2.2. If E ⊂ H is open then the set K ′(E) = {x : x ∈ R, Π(E, x) is
second category in (0, π) and MV(E, x) > 0} is countable.

The proofs are quite similar to that of Lemma 2, so we have omitted them.

Lemma 3. Let F : H → W be arbitrary, where W is a compact topological
space. If G is an open set and F is a closed set in W such that Ce(f, x, θ) ⊂ G
and Ce(f, x, φ) ∩ F = ∅ then

d∗
(
f−1(G), x, θ

)
= 1 and d∗

(
f−1(F ), x, φ) = 0 .

Proof. The first part is proved in Lemma 2 of [4] and the proof of the second
part is similar.

Theorem. Let f : H →W be measurable, where W is a compact, normal and
second countable topological space. Then except possibly at most a countable
set of points x ∈ R, for almost every θ in (0, π)

Ce(f, x, θ) ∩ Ce(f, x, φ) 6= ∅

for almost every φ ∈ (0, π).
If further f is continuous then except possibly at most a countable set of

points x ∈ R, for almost every and nearly every θ ∈ (0, π)

Ce(f, x, θ) ∩ Ce(f, x, φ) 6= ∅

for almost every and nearly every φ ∈ (0, π). (“Almost every and nearly every”
means except at most a measure zero set of the first category.)

Proof. Let B = {Bn} be a countable basis for the topology of W and K∗

be the collection of all sets G each of which can be expressed as a finite union
of members of B. Then K∗ is also a countable collection of sets G. Let L be
the exceptional set of the first part of the theorem. Let x ∈ L. Then there
is a set D(x) of positive outer measure in (0, π) such that for each θ ∈ D(x)
there is a set Dθ(x) at x in (0, π) of positive outer measure such that for each
φ ∈ Dθ(x), Ce(f, x, θ) ∩ Ce(f, x, φ) = ∅. Thus, for each φ in Dθ(x) there is a
Gφ ∈ K∗ with the property that

Ce(f, x, θ) ⊂ Gφ and Ce(f, x, φ) ∩Gφ = ∅ .

For G ∈ K∗, let f−1(G) = G∗. Since K∗ is a countable collection and
M∗Dθ(x) > 0, so there is a Gφ = G0 such that

Ce(f, x, θ) ⊂ G0 and Ce(f, x, φ) ∩G0 = ∅
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for a set of directions φ of positive outer measure in Dθ(x). Thus by Lemma 3,
we get θ ∈ V ′(G∗0, x), where

V ′(G∗0, x) =
{
θ : θ ∈ (0, π), d∗(G∗0, x, θ) = 1

}
,

and M∗Π′(G∗0, x) > 0, where

Π′(G∗0, x) =
{
φ : 0 < φ < π, d∗(G∗0, x, φ) = 0

}
⊂ Dθ(x) .

Thus it is proved that

D(x) ⊂ ∪
{
V ′(G∗, x) : G ∈ K∗ and M∗Π′(G∗, x) > 0

}
.

Since M∗D(x) > 0 there is G ∈ K∗ such that M∗V ′(G∗, x) > 0 and also
M∗Π′(G∗, x) > 0. These facts together with the measurability of f imply
that MV(G∗, x) > 0 and MΠ(G∗, x) > 0. These facts further imply that
x ∈ T (G∗), where T (G∗) is the set T (E) of Lemma 1 with E = G∗. Thus, it
is finally proved that

L ⊂ ∪
{
T (G∗) : G ∈ K∗

}
.

By Lemma 1, each T (G∗) is countable, and since K∗ is a countable collection
so L is a countable set. It completes the proof of the first part.

The proof of the second part can be completed in three more stages, the
proof of each stage is almost similar to the proof of the first stage, i.e. proof
of the first part, but the term “positive outer measure” is to be replaced by
the term “second category” wherever it is needed, and Lemma 1 is to be
replaced by Lemma 2 or by Lemma 2.1 or by Lemma 2.2, conforming to the
requirement.

Corollary. Let f : H →W be measurable, where W is a compact, normal and
second countable topological space. Then except possibly at most a countable
set in R, every set Π(x) in (0, π) of positive outer measure contains a pair of
direction {θ, ϕ} such that

Ce(f, x, θ) ∩ Ce(f, x, ϕ) 6= ∅ .

If further f is continuous then, except possibly at most a countable set in R,
every second category set Π(x) in (0, π) contains a pair of direction {θ, ϕ} such
that

Ce(f, x, θ) ∩ Ce(f, x, ϕ) 6= ∅ .

Proof. The proof follows from the theorem.
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Remark. From the definition of functions having restricted Baire property,
it appears that the continuous function in our theorem can be replaced by the
function having restricted Baire property. This type of extension can be made
in several theorems of essential cluster sets for continuous functions.

Question. Does the theorem remain true when

(1) “measurable” is replaced by “arbitrary” and

(2) “continuous” is replaced by measurable”?
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