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ON MONOTONIC AND ANALYTIC
FUNCTIONS IN C*

Abstract
We generalize the theorem of Bernstein that any infinitely many
times differentiable function on an interval, I, that is regularly mono-
tonic on I must be a real analytic function on I.

Let f be a function in C'* (that is, f has derivatives of all orders) on the
interval (—d, d). S. Bernstein in [1] proved a classic result.

Theorem B. For each n let f) not change sign on (=d,d). Then f is a
real analytic function on (—d,d).

For an easier proof of Theorem B consult [3]. Unfortunately many analytic
functions on (—d, d) do not satisfy the hypothesis of Theorem B. Consider, for
example, the elementary functions sinz and cosz on (—4,4). We will provide
a variation on Theorem B whose hypothesis is satisfied by a wider class of
functions including most of the elementary functions on all the interiors of
compact intervals on which they are analytic. We offer:

Theorem 1. Let (¢,,) be a sequence of real numbers such that the sequence
(%) is bounded and the functions f™) —¢,, do not change sign on the interval

(=d,d). Then for any x € (—d,d) we have

> f(n)

It seems to be difficult to construct a convergent power series on (—1,1)
whose sum has bounded derivatives of all orders and fails to satisfy the hy-
pothesis of Theorem I for all appropriate sequences (¢;,). Consult the problems
at the end of this paper.

We also offer:
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Theorem II. Let (¢c,,) be a sequence of real numbers such that the sequence
e d”

(T) is bounded and the functions ™) — ¢, do not change sign on (—d,0)
or on (0,d). Then for any u € (—%d, %d) and x € (u — %d,u + %d), we have

Functions in C*(a, b) satisfying the hypotheses of Theorem B on an inter-
val (a,b) are called regularly monotonic on (a,b). We modify this definition
as follows:

Definition. We say that f € C*(a,b) is a generalized regularly monotonic
function on (a,b) if at each = € (a,b), there exist a positive number d and a
sequence of numbers (c,,), depending on x, such that the sequence (%) is

bounded and for any n the function f(™) —¢, does not change sign on (z —d, z)
or on (z,x + d).

Theorem III. If f is a generalized regularly monotonic function on (a,b),
then f is a real analytic function on (a,b).

This follows from Theorem II.

Theorem IV. Let f € C*(R) and let f satisfy the hypothesis of Theorem II.
Let f(z + 2d) = f(z) for all x. Then f is a real analytic function on R, and
the interval of convergence of the Taylor series of f at any point in R has
length > d.

This also follows from Theorem II.

Until further notice, let the hypothesis of Theorem I be satisfied. We
classify the indices n > 0 as follows. We say that n is a glide index if f(™ —¢,
and ("t —¢, .| have the same sign. We say that n is a jump index if f(™) —¢,
and f(»1) — ¢, 1 have opposite sign. (Here we discard the possibility that
f — ¢, is identically zero for some index n; for then f(z) would equal a
polynomial in z on (—d,d).)

The plan is to prove Theorem I under various restrictions until all cases
are covered. We begin with:

Lemma 1. Let all but finitely many indices n be glide indices. Then

f(x) = i mx" for all z € (—d,d).

n!
n=0
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Proor. Let d, < 0. It suffices to prove the conclusion on the interval
(—dy,d,) because d, is arbitrary. Note that the series ) % converges
because (%) is bounded. Let N be an index such that n > N implies that
n is a glide index and Icnﬁ < 1. Without loss of generality, we assume that

f) —¢, >0 forn> N. (The proof for the opposite inequality is analogous.)
For each N and z € (0,d,), put

pn(l') — i f(j?'(o) ,Tj Z CJ :L‘j
§=0

J! « J!

It follows that py11(z) < pyia(x) < pyis(z) < .... By Taylor’s Theorem,

n () . (n+1) v
Ru(e) = f) - 3L ,!<0)xj _fO0)

(n+1)!
for some v € (0,z). It follows that
Cntl i1 enady
R > d R —_ > 1.
n(z) > nt 1)!33 an n(z) > (01 1)1 >

Hence

. G (0) .
pn Z xj = Z f (33) - Rn(x) < f(x) +1

From the fact that Zj ~0 7 Za7 converges, we deduce that (p,(z ))n is a non-

decreasing sequence bounded above. Hence (pn( ))n converges and likewise

(o &) ,
Z;’o 0 ! Jj( L2200 4 converges for x € (0,d,). Clearly Z?’;O L,(O)xj converges for

7!
€ (—do,d,). Put g(x) = Z;io %x]’. Then g is a real analytic function
n (—d,,d,).

It remains to prove that f(z) = g(z) for v € (—d,,d,). Select u > 0
such that 2u < d,. For each n > N, let v, € (u—d,,d, —u). Put h,(z) =
f™(x) = ¢, 112 for each n > N. Then k!, does not change sign on (—d,d). It
follows that Ay, (v,) lies between h,(u — d,) and h,(d, — u), and therefore

| (v3)| < B (1 = do) | + | (do — w)] -
Hence

|f(n)(vn)_cn+1vn| < |f(n)(u_do)_cn+1(u_do)|+|f(n)(do_u)_cn+l(do_u)|
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and
| £ wn)| < £ (w = do)| + [ ™ (do — w)| + 2]ensr (w — do)| + |ens1vn] -
We multiply by “~ " to obtain

O dln (=l Sl

‘f“’) (va)u"
|

n! n! n!

(n)( ") (g —
But Y % and > % converge by the same argument as
in the precedmg paragraph. From the hypothesis and from u < d we deduce
that > cj;,“ converges. Finally,

(n) _ n (n) _ n
U (d, —uw)u 0 and F™(u—dy)u
n! n!

Cn+1u”
n!

— 0, — 0.

It follows that M — 0. But w has the form of the remainder
R, in Taylor’s Theorem

for any t € (2u—d,,d,—u). Thus f is analytic at each point in (2u—d,, d, —u).
But u > 0 is arbitrary, so f is analytic on (—d,,d,). Moreover, f equals
the analytic function g on some neighborhood of 0, so f(z) = g(z) for z €
(=do, dy).
The conclusion follows from the fact that d, < d was arbitrary. O
Next we see that jump index can replace glide index in Lemma 1.

Lemma 2. Let all but finitely many indices n be jump indices. Then

flz) = i f(j?(()) 2 for all x € (—d,d).

=
PrROOF. Put g(z) = f(—z) for € (—=d,d). Then ¢ (z) = (=1)"f") (—z)
for all n and all z € (—d,d). It follows that each jump index for g is a glide

index for f, and each glide index for g is a jump index for f. Thus all but
finitely many indices are glide indices for g. By Lemma 1,

Z g—xj for z € (—d, d).
J!

j=1
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Finally, for z € (—d, d),

f@) = g(-0) =S O gy o 3 EVT0O) 5 T
j=0 J: j=0 J: =0 J]:

PROOF. [Proof of Theorem I] In view of Lemmas 1 and 2 we can assume,
without loss of generality, that there are infinitely many jump indices and
infinitely many glide indices. Fix an index N that exceeds at least one jump
index and exceeds at least one glide index. Fix u € (0,d). We write

fuy = 3 L0 D )

o J! (n+1)! ’
"L F@D0)(—u)d 0D () ()t
ﬂfuyzzg (}f L (;jgy) ’

for each index n, where ¢, is some point in (0,u) and s, is some point in
(—u,0). Put

" @ 0)ud "L fO(0)(—u)
En(u)zz#y En(_u)zz%a
j=0 J: §=0 J:
(n+1) n+1 (n+1) _,\n+1
(n+ 1! (n+1)!

Thus f(u)=FE,(u) + R,(u) and f(—u)=E,(—u)+ R,(—u) for each index n.

Suppose that m is a jump index and m + 1,m + 2,...,m + v are glide
indices. Then

) Rn(_u)

Epy(w) = f(u) + 75 = T 7'n>u e

has the same sign as

B cm+1um+1 - f(m+1)(0)um+1 Cm+1um+1

Em+1(u) — En (u)

(m+1!  (m+1) (m+1)!

and likewise the same sign as

C u
E7n+2 (u) - ET)’L-‘rl(u) - L

Em+1)(u) - Em+1)—1(u) -
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and )
m+v+
Cm+v+1U
f(u) +o() (m+v+1)!
_ f(m+v+1)(tm+v+l)um+'u+1 B cm+v+lum+v+1
(m+v+1)! (m+v+1)!

The sum of these terms is

cmum m4v+1 c j

B () = B + 20 = 37

j=m+1

The absolute value of the sum of terms of the same sign is at least as large as
the absolute value of any one of the summands, so

cmt™ "R g
‘Em71<u) = B (u) + m 2 ]j' ‘ S
j=m+1 (1)
> |E E Cmpot™ Y
2 [Bmsoft) = By () = S22
Now (m)
m O u™
Eni1(u) — Ep(u) = _%
and (m-+v)
_ [t
Epyo() = Epppy_1(u) = Tmtol

From (1) we obtain

(m) (0) ™ mtvtl, g (m+v) ()M
‘f ()U’ ‘+2 Z |CJ|U’ >‘f () (2)

J! (m+v)!

m!
j=m

It follows that for any glide index k > N, there is a jump index m < k such
that

f(m) (O)um
‘ m!

k+1 ; k) k
lejlu? | FP(0)u
T2 > [ 3)
i=m

Note that (—u)?u/ is positive for j even and negative for j odd. It follows that
the roles of glide and jump index reverse in the preceding paragraph when —u
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replaces u, (—1)™¢, replaces ¢, and s, replaces t,. Thus for any jump index
p > N, there is a glide index n < p with

F(0) (=) +2pz+‘j (D esl(=w)? P (0)(—u)?
3! - p! ’

(4)

We obtain from (3) and (4) that for any index k& > N there is an index m < k
such that inequality (3) holds. _
We deduce from [u| < d and from the hypothesis that Y% |cjj|!u < .

We conclude from (3) and (4) that for any index k > N there is an index
q < N such that

Consequently the sequence (|M|) is bounded Now (|ﬂk),§7?)"§|)

Z \cg\u > ’f ‘ (5)

7=0

is

k
*)

also bounded for u < u, < d, so indeed > -, ! (0) converges. It suffices

to prove that it converges to f(u) for u € (— d ,d).

If u € (0,d) and n is a jump index, then

cpu” Ot u™ cpu®
By (u) = nl n! ol

and

Cn+1un+1 B f(n+1)(tn+1)un+l cn+1un+l

(n+1)! (n+1)! (n+1)!

have opposite sign. Because there are infinitely many jump indices, it follows

that Ry (u) = 0 and f(u) = Y22 270 On the other hand, if n is a glide
index, then

Rn+1 (u) -

Cn(—u)" Cnpr (—u)? L
Rn(fu)f% and Rn+1(u)+(TL(_i_1)>!

have opposite sign. Because there are infinitely many glide indices, it follows
that

Rno(—u) >0 and f(— Zf )

This gives the desired result for u € (—d, d). O
Before tackling Theorem IT we need a nuts and bolts type lemma.
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Lemma 3. Let g be a twice differentiable function on [—r,r| such that ¢’ and
g’ do not change sign on interval (—r,0) or on interval (0,r). Let s be a
number such that 0 < s < 1. Then

(1= 9)[g(0)] < [g()| + |g(=r)| + |g(sr)] -

ProoOF. The argument is divided into several cases.

Case 1. ¢ > 0on (—r,0) and ¢’ > 0 on (0,r). Here g is nondecreasing on
(—r,) and hence (1 — 8)|g(0)] < [g(0)| < lg(—r)| + lg(r)].

CASE 2. ¢ <0on (—r,0), ¢ <0on (0,r). Apply Case 1 to —g.

Cast 3. ¢ > 0on (—7,0), ¢ <0on (0,7), ¢” <0 on (—r,0) and on (0,7),
and ¢g(0) < 0. Here g < 0 on (—r,7) and g(0) is the maximum value of g.
Hence (1 - 5)|g(0)| < lg(0)] < |g(r)]

Case 4. ¢ <0on (—7,0), ¢ > 0on (0,r), ¢ > 0 on (—r,0) and on (0,r),
and ¢(0) > 0. Apply Case 3 to —g.

CASE 5. ¢ > 0on (—r,0), ¢ <0on (0,7), ¢ <0 on (—r,0) and on (r,0),
and g(0) > 0. Here g(0) is the maximum value of g on (—r,r). Moreover, g
is concave down, so (1 — s)g(0) + sg(r) < g(sr) and (1 — s)|g(0)] < |g(sr)| +
slg(r)| < lg(sr)| + lg(r)l.

CASE 6. ¢ <0on (—7,0), g > 0on (0,r), ¢ > 0 on (—r,0) and on (0,r),
and ¢(0) < 0. Apply Case 5 to —g.

If g(0) = 0, there is nothing to prove. We have covered all possibilities. [
PRrROOF. [Proof of Theorem II] Let s be a number such that 0 < s < 1. We
divide our argument into cases and find an inequality in each case. Fix an
index n.

Case 1. f+1) — ¢, 1 does not change sign on (—d,d). Here the function
f(x) — ¢pq 1 is monotonic on (—d, d), and hence

£ < |5 (~5d) + Fensad] + [ £ (3d) — genrad],

and
£OO] <17 (3] + 119 Ga)| + [enald.

Casg 2. f(*+1)_¢, | has opposite sign on (—d, 0) and (0, d), and f*+2) —¢, 5
has opposite sign on (—d,0) and (0,d). Here f("*1V(0) — ¢,41 = 0. Put

g(@) = fT(2) = cpa1z — 5ensaa®.

Then ¢'(0) = 0 and ¢” has opposite sign on (—d,0) and (0,d). It follows that
g is monotonic on (—d, d), and

1900)] < |g(=3d)| + |9(34) ],
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and hence

my | — )1 Cnprd Cn+2d " (Ld ~cupid  cpgod®
£ = |7 (5d) + =23 |G - = - =

We obtain

Casg 3. f("*+1) —¢, . has opposite sign on (—d,0) and on (0,d), and f(*+2) —
Cny2 does not change sign on (—d,d). It follows that f(**1(0) — ¢,41 = 0,
and if

gla) = [ (x

)
then ¢g” does not change sign on (—d,d), ¢'(0) = 0, and ¢’ has one sign on
(—d,0) and the opposite sign on (0, d) By Lemma 3,

1 2
— Cp41T — Cn+2x )

(1= )lg(0)] < lg(=3d)] + lg(3d)] + |g(55d),

and hence
(L= )| D) <[ £ (<L) | + |1 (3a)| + | £ ($sd) |+
(1)
+ 2|Cn+1|d+2}cn+2|d2.
In any of these cases (1) holds. For 0 < u < 1sd,
(n) n (M) (L) ) (L) ym
(1_S)|f Ou” (g | UG
n! n! n!
(2)

+|f(n)(%5d)|u" N +2Cn+1dun n 2|cnyo|d*u”

n! n! n!

)

and we deduce from Theorem I and the hypothesis on ¢, that lim U(n)nﬂ =0.

But s is an arbitrary number in the interval (0,1), so lim Miﬁ))lul = 0 for
0<u<3d
Now f(")(z) — ¢p412 is monotonic on (0,d), so if v, € (0, d), then

| £ (0a) = engrva] < [FO0)] + ™ (2d) - Lepsad],

£ < DO+ 17 (3a)]| +2lensald.
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and

[f a)lu™_ [fO)um [fGA) | 2enga|du”
< + +
n! n! n! n!
. f(n)(ld)un . c du™
But lim =——2—— = 0 can be deduced from Theorem I, and lim =+— = 0

can be deduced from the hypothesis. Thus
o )l

=0 f0r0<u<%d.
n

We deduce from this and Taylor’s Theorem that for any u € (0, %d),

% £(n) ()"
fly =3 L0 3)

n.
n=0

Analogous arguments prove (3) for u € (—3d,0). (Or consider f(—z).) Thus
f is analytic at 0. It follows from Theorem I that f is a real analytic function
n (—d,d).
But f(™(z) — ¢,412 is monotonic on (0,d). Fix v € (0, 3d). Then

£ () = engav| < [FPO)] + £ (3d) = Leniad]

and
[FP @] < [F )] + 77 Gd)| + [ensa(v +d)].
Thus for |u| < %d,

n=0

)
! (v)“ must
n.

We have that all the series on the right side converge, so Y.~ ,
converge also. But f is analytic on (—d,d), and it follows that

> £(n)(y
:an'( )(1‘—’1))"
n=0 ’

for v € (0, %d) and = € (v — %d,v + %d) The argument for v € (f%d, 0) is
analogous. O
To prove Theorem IV, apply Theorem II to f on each interval ((n— 1)d, nd)
where n is an integer, positive, negative or 0. To prove Theorem III, apply
Theorem II locally to f. We leave the details.
We conclude with some problems that might be topics for further study.
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1) Does there exist a power series on (—1, 1) whose sum F' has bounded deriva-
tives of all orders such that for any sequence of real numbers (¢,,) for which
(%) is bounded, F(™) — ¢, must change sign on (—1, 1) for infinitely many
n?

2) Does there exist a real analytic function on (a, b) that is not a generalized
regularly monotonic function on (a,b)?

3) If the answer to 2) is yes, can monotonicity be used to give a necessary and
sufficient condition for a real function in C'*° to be analytic?

I conjecture that the answers are 1) yes, 2) yes, and 3) no.
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