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ON DERIVATIVES VANISHING ALMOST
EVERYWHERE ON CERTAIN SETS

Abstract

Let g be a measurable real valued function on a bounded, measurable
subset of the real line. We prove that if g(E) has measure 0, then 0
is one of the derived numbers of g at almost every point in E. We
find a function H on the real line that is nondecreasing and closely
associated with G, such that if g(F) has measure 0, the H’ vanishes
almost everywhere. Moreover, if g is an N-function on E and if H’
vanishes almost everywhere, then g(E) has measure 0.

1

In this paper g is a measurable function on a bounded measurable set E of
real numbers. We let m denote Lebesgue measure and m. denote Lebesgue
exterior measure. From [K] or [SV] we deduce that if g is differentiable almost
everywhere on F and if m(g(F)) = 0, then ¢’ = 0 almost everywhere on E.
Moreover, if g is an N-function (this means g maps subsets of E of measure zero
to sets of measure zero) and if g has zero derivative almost everywhere on E,
then m(g(E)) = 0. These results have application, for example, to variations
on the chain rule of differentiation and the change of variables formula of
integration (consult [F] and [SV]).

Approximate differentiation [S, chapters VII and IX] is important in real
analysis. In section 2, we prove that these results hold when derivatives are
replaced by approximate derivatives. We offer (See also [F, Lemma K] and
[El, page 489] the following theorem.

Theorem 2.1. Let g be approximately differentiable almost everywhere on E.
We have:

(1) if m(g(E)) =0, then g, = 0 almost everywhere on E,
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(2) if g is an N-function on E, and if g, = 0 almost everywhere on E, then
m(g(E)) = 0.

We say that a point z, € E is a knot point of g if DT g(z,) = D™ g(z,) = o0
and D, g(z,) = D_g(z,) = —oo where D%g denotes the upper right Dini
derivative of g relative to F, etc.

We deduce from [S, Theorem 10.1, chapter IX] that for almost every x €
E, either = is a knot point of g or g is approximately differentiable at x.
Immediately from Theorem 2.1 we obtain:

Corollary 2.2. Let m(g(E)) = 0. Then almost every x € E is either a knot
point of g or gg,(z) = 0.

Corollary 2.3. Let g;p # 0 almost everywhere on E, and let g be a one-to-one
function on E. Then g~ is an N-function on g(E).

When we use derived numbers [N, chapter VIII, p. 207] relative to E, we
can delete the differentiation hypothesis altogether. In section 3, we offer:

Theorem 3.1. Let m(g(E)) = 0. Then 0 is a derived number of g at almost
every x € E.

An immediate consequence of this is:

Corollary 3.2. Let g be one-to-one on E, and let all the derived numbers of
g be nonzero at almost every x € E. Then g1 is an N-function on g(E).

Apparently neither Theorem 2.1(1) nor Theorem 3.1 implies the other,
although they each imply part of the result cited in [SV].

In section 4 we try to link zero derivatives with m.(g(E)) when g is mea-
surable. The obvious problem is that g need not be differentiable, so we use
derivatives of a function closely associated with g. For each real number y, let
H(y) =m({t € E : g(t) < y}). Then H(y) is a nondecreasing function of y
mapping R into the interval [0, m(E)]. We offer:

Theorem 4.1. We have:
(1) if m(g(E)) =0, then H =0 almost everywhere on R;

(2) if H = 0 almost everywhere on R, and if g is an N-function on E, then
m(g(E)) = 0.
We also find use for infinite derivatives. Put
T= {t €E :m(g ' (gt)) = 0} .
We offer:
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Theorem 4.2. We have:
(1) if m(g(E)) =0, then H'(g(t)) = oo for almost every t € T;

(2) if H (g(t)) = oo for almost every t € T, and if g is an N-function on E,
then m(g(E)) = 0.

Now for t € E, put

K(t)= hnrlisoup?“(H(g(t) +r) — H(g(t))) o .

We offer:

Theorem 4.3. Let g be an N-function on E. Then K is a measurable ex-
tended real valued function that is finite almost everywhere on E. Moreover,

m(g(E)) = /E K(t)dt. ()

Thus we found a function K closely associated with g for which equation
(*) holds.

2

To prove Theorem 2.1, let g be approximately differentiable almost everywhere
on E. Say A = {& € FE : g is approximately differentiable at xz} where
m(E\ A) = 0. From [S, Theorem 10.8, chapter VII] we deduce that there is a
sequence of sets Ay, Ay, As, ... where A = U, A,, and g is of bounded variation
on each A,. Fix n and let f denote the restriction of g to A4,,. It follows that
[, () = gop(x) at any point of density = of A,, and thus f), = g, almost
everywhere on A,,.

To prove part (1) assume m(g(E)) = 0. Then m(f(A,)) = 0 and by [SV]

we have f) = 0 almost everywhere on A,. It follows that g;, = 0 almost
everywhere on A,. But n was arbitrary, so g’ap = 0 almost everywhere on A
and on E. a

To prove part (2) assume g is an N-function on £ and g, = 0 almost
everywhere on F. Let f and A,, be as in the preceding paragraph. Then f is
an N-function on A, and f) = 0 almost everywhere on A,,. By [SV] we have
m(f(Ay,)) = 0 and hence m(g(A,)) = 0. But n is arbitrary, so m(g(4)) = 0.
Finally, m(E \ A) = m(g(E \ A)) = 0 because g is an N-function on E. Tt
follows that m(g(E)) = 0. O
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The proof of Corollary 2.2 was essentially given in section 1, so we omit it
here.

To prove Corollary 2.3, let B be a subset of g(F) with m(B) = 0. There
is a set C' that is the intersection of countably many open sets in R such
that B C C and m(C) = 0. Then g~'(C) is measurable because g is a
measurable function on E. By Theorem 2.1, g, = 0 almost everywhere on

g~ !(C) and from the hypothesis we deduce that m(g~*(C)) =0. But B C C
som(g~!(B)) =0. O

3

We begin this section with a lemma that may be of some interest in its own
right.

Lemmal. Letp > 1 and let m(E) > p?>me(g(E)). Then there is a measurable
subset A of E such that m(A) > (1 — p~Y)ym(E) and for each x € A there is
au € E (depending on x) with |g(x) — g(u)| < 2p~ |z — ul.

PROOF. Let I4,15,1I3,... be a sequence of mutually disjoint open intervals
covering g(E) such that Y m(l,) < p~?m(E). Let Ji,Js,Js,... be those
intervals I,, for which m(g=*(1,)) > p- m(l,), and let K, K», K3, ... be the
remaining I,,. Now ¢ is measurable, so

m(Us g7 (K))) = Y mlg™ () <p- o m(K)

by the choice of the K;. But >-, m(K;) <3, m(I,) < p~*m(E), so
m(y 97 (7)) <~ m(E). (M)
Also by (1),
m(B) =m(Un g7 (1)) = m (05971 (5) +m(U; 97 (K;)) <

< m<Uj g’l(Jj)) +p'm(E),
N m(Uj g‘l(Jj)) > (1 -p ")m(E). (2)

It remains to prove that U;g~'(J;) suffices for A. Let € U;g~*(J;). Say
r € g~ Y(Jy) and g(x) € Jy. Recall that by the choice of Jy,

m(g~ (Jn)) >p-m(E). 3)
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There are points u,v € g~!(Jy) such that
fu—v] > p-m(Jy).- (4)
Moreover, g(u), g(v) g(x) € Jy and because Jy is an open interval,
9(z) = g(w)| <m(Jn) and [g(z) — g(v)| < m(Jn). ()
Now by (4), |z —u|+|z—v| > Ju—v| > p-m(Jn), so either |z —u| > p-m(Jn)/2
or |t —v| > p-m(Jy)/2. Then by (5), either |x — u| > plg(x) — g(u)|/2 or
|z —v| > plg(x) — g(v)|/2. O
To prove Theorem 3.1, for each positive integer i partition F into finitely
many mutually disjoint measurable sets FE;i, Ej2, F;3, ..., each of diameter
< 27" By hypothesis, m(g(E;;)) = 0 for all i and j. We deduce from Lemma I,
there is measurable set A;; C E;; such that m(E;; \ A;;) < 27" 7/m(E;;) and
for each @ € A;; there is a u € F;; with |g(z) — g(u)| < 27|z — u|. We leave
the proof that 0 is a derived number of g at each point in B = N2, U, U; A
and m(E \ B) =0. O
The proof of Corollary 3.2 is analogous to the proof of Corollary 2.3, so we
leave it.

4

We begin with a lemma to dispose of certain details.

Lemma II. If S C T, and m(H(g(S))) = 0, then m(S) = 0. Moreover, if
at each x € S either H' (g(x)) = 0 or H does not have a finite or infinite
derivative at g(x), then m(S) = 0.

PrOOF. Let m(H(g(S))) = 0. Choose ¢ > 0. Let (a1,b1), (az,bs), (as,bs), ...
be a sequence of open intervals covering H(g(S)) with ».(b; — a;) < €. Thus

For each index 4, put S; = {s € S : H(g(s)) € (a;,b;)}. Let uj,us € S; for
some index i, where H(g(u1)) < H(g(uz)). Then a; < H(g(u1)) < H(g(uz)) <
bi- So

a;<m{teE : g(t)<glu)} <m{teE : g(t) < gluz)} <b;.
Because g is measurable,

m{t € E : g(uy) < g(t) < g(uz)}
=m{te€ E : g(t) < gluz)} —m{t € E : g(t) < g(w)}.
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So
{teE: glur) <gt) <glu2)} <bi —a;. (2)

But uz € T, so m{t € E : g(t) = g(uz)} =0, and by (2)
m{t € E : g(u1) < g(t) < g(ua)} <bi —a;. (3)
It is not difficult to see that
m(S;) < (b — ai) . (4)

(Just let g(uy) tend to inf g(S;) and g(us) tend to sup g(S;), etc.)
It follows from (1) and (4) that

m(S) < Zm(Si) < Z(bl —a;) <e. (5)

Finally, € is arbitrary, so m(S) = 0. Put
S ={s€8: Hgls) =0},
S" ={s €S : H has no finite or infinite derivative at g(s)}.

Then m(H(g(S”))) = 0. By de la Vallée Poussin’s Theorem (see for example
[S, Theorem (9.1), chapter IV]), we see that m(H(g(S"))) = 0.

To prove the second statement in Lemma II, assume S = S’ U S”. Hence
m(H(g(S))) < m(H(g(S"))) +m(H(g(S"))) = 0. Som(H(g(S))) = 0. By the
previous part, m(S) = 0. O

We turn now to the theorems in section 4.

PROOF OF THEOREM 4.1(1). Let m(g(E)) = 0. Let € > 0. Let I, 2, I3,...
be mutually disjoint open intervals covering g(£) such that > m(l;) < e.
Select an index N so that 3272 v\ m(g~'(I;)) < €*. Then

m(U2yi g7 (1)) < €. (6)
Let [a1,b1], [az,ba], [as, 3], ... be mutually disjoint closed intervals, each dis-

joint from Ué\]:llj. By (6) and the definition of H, we have }_, (H(b;) —
H(a;)) < €. By [HS, Theorem (18.14), chapter V],

bj
Z/ 1) de < S0 (H ()~ Hlay) < . M)
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Let D = {z : H'(z) > ¢}. We deduce from (7) that
m(D N (Ujlay, bj])) <e. (8)
From (8) we deduce that m(D \ (U;V:lfj)) <e. But m(Ué-V:le) < €, 80
m(D) < 2e¢. (9)

Because € is arbitrary, we conclude that m{z : H'(z) > 0} = 0. O

PROOF OF THEOREM 4.1(2). Let H' = 0 almost everywhere, and let g be
an N-function on E. Let S = {s € T : H'(¢(s)) = 0}. By Lemma II,
m(S) = 0. Because g is an N-function on E, m(g(S)) = 0. Now H =0
almost everywhere, so m(g(T \ S)) = 0, and hence m(g(T)) = 0.

Moreover, g~ *(y) can have positive measure for at most countably many
y, so g(E'\ T) is countable. Finally, m(g(F)) = 0. O

PROOF OF THEOREM 4.2(1). Let m(g(F)) = 0. Put
Ty = {t € T : H has no finite or infinite derivative at g(¢)},
Ty ={t € T : H has a finite derivative at g(t)}.

By Lemma II, m(7Ty) = 0. We deduce from [S, Theorem (4.5), chapter IX]
and m(g(Tz)) = 0 that m(H(g(T2)) = 0. By Lemma II, m(T) = 0. So
m(Ty UTz) =0, and t € T\ (T} UT5) implies H'(g(t)) = oc. O

PROOF OF THEOREM 4.2(2). Let H'(g(t)) = oo for almost every ¢t € T and
let g be an N-function on E. Put Ty = {t € T : H'(¢(t)) = oo}. Then
m(g(Tp)) = 0 by [S, Theorem (4.4), chapter IX]. But m(T \ Tp) = 0 by
hypothesis and hence m(g(T \ TO)) = 0 because g is an N-function on E.
It follows that m(g(T)) = 0. We recall that g(E \ T) is a countable set, so
m(g(E)) = 0. O

For our last result, we need more lemmas.

Lemma III. Let g be an N-function on E. Then there exists a measurable
set P C T such that

(i) K(t) =0 for almost everyt € E\ P,
(i) m(g(E\ P)) =0,
(iii) 0 < K(t) =1/H'(g(t)) < oo for everyt € P.
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Proor. If t € E\ T, it follows that

H(g(t) +h) — H(g(t)) = m(g~ " (9(t))) >0

for any h > 0, and it follows from the definition of K that K (¢) = 0. We recall
that g(F \ T) is countable, so m(g(E \ T')) = 0. Now put

T3 ={t € T : H has no finite or infinite derivative at g(t)},
Ty={teT : H(g(t)) = 0},
Ts={teT : H'(g(t)) = 0}.

By Lemma II, m(73) = m(Ty) = 0, and because g is an N-function on F,
m(g(Ts)) = m(g(Ty)) = 0. For t € T\ (T3 UTy) it follows that H has a
positive finite or infinite derivative at g(¢), and it follows from the definition
of K that K(t) = 1/H'(g(t)) (here 0 = 1/00). But H(g(t)) and H (g(t) + h)
are measurable functions of ¢ because g is measurable and H is monotonic.
We deduce that K is measurable on T\ (T5 U Ty). Then T5 is a measurable
set. By [S, Theorem (4.4), chapter IX], m(g(T5)) = 0. By the definition of K,
K(t) =0 for any t € T5.

Put P =T\ (T3UTyUT}s). Then P is measurable because T and the T; are
measurable. Finally, (i), (ii) and (iii) follow from the preceding paragraph. [

It is well-known that if g is a measurable N-function on E, then g(F) is
measurable. It follows that g(P) is measurable in Lemma III.

Lemma IV. Let g be an N-function on E. Let ¢, d, u be real numbers such

that u > 0 and 0 < ¢ < d. Let L be a closed set such that for every x € L and

y satisfying x < y < x+u, we have c(y —x) < H(y) — H(z) < d(y—=x). Then
c-m(L) <m(g " (L)) <d-m(L).

PROOF. Let n be an integer with n=! < u. Cover L with countably many

mutually disjoint half open intervals [a1, D), [az, b2), [as, b3), . . . so that b;—a; <

n~!and a; € L for each i. Let U,, = U;[a;, b;). It follows that

c(b; —a;) < H(b;) — H(a;) < d(b; —a;) for each i,
and hence
C(bz - ai) S m(gil[(li, bl)) S d(bZ — ai) . (10)
It follows that

¢y (bi—a;) < Zm(g—l([% b)) <d- Z(bi —a;)

i
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and
c-m(Uy,) <m(g~"(Un)) < d-m(Uy,). (11)
By inductive construction, we choose U, so that U,, C U,_; foralln > 14+u~".

The distance from the closed set L to any point in U, cannot exceed n~!.
Hence N,U,, = L. From (11) we deduce c-m(L) < m(g~*(L)) <d-m(L). O

Lemma V. Let g be an N-function on E. Let ¢, d, u be real numbers such
that u > 0 and 0 < ¢ < d. Let Ly = {z € g(P) : for any y such that
x<y<z+u wehave c(y—x) < H(y) — H(x) <d(y—x)}. Then

c-m(Ly) <m(g~"(L1)) <d-m(Ly).

PrOOF. If x € g(P) and z is in the closure of Ly and if H is continuous at x,
it is easy to see that z € L1. So we leave the proof that L; is measurable. Say
Li=MyUM{UMsUM3U... Wherem(MO) =0, My C My C Mg C..., and
each M; (i > 0) is closed. Now My C g(P) and because H is differentiable at
each point of My, we have m(H (My)) = 0. Then by Lemma II, m(g~(My)) =
0. By Lemma IV, ¢- m(M;) < m(g~1(M;)) < d-m(M;) for each i > 0. It
follows that

c-m(MyUM UMy U...) <m(g~ " (MoUM; UMy U...)) <
<d -m(MyUMyUMU...),
or in other words ¢-m(L1) < m(g~*(L1)) < d-m(L1). O
In the next lemma, we can see the proof of Theorem 4.3 emerging.

Lemma VI. Let g be an N-function on E. Let ¢, d be real numbers such that
O0<c<dandletV={xecg(P):c<H((x)<d}. Then

c-m(V)<m(g~'(V)) <d-m(V).

ProoOF. For indices i, j, put V;; = {& € V : for any y such that z < y <
z+i~!, we have (c+j7")(y —2) < H(y) — H(z) < (d—j ')(y —2)}. By
Lemma V, we have for each ¢ and 7,

(c+371)-m(Vig) <m(g~(Vig)) < (d=357") m(Vig). (12)
For each j, Vi; C Vo; C V3, C ... and we deduce from (12) that for each j,
(c+771) - m(UiVig) <m(g~H(UiVig)) < (d—3571) - m(UiVyy). (13)

Moreover U;V;1 C U;Via C U;Vis C U... and we deduce from (13) that
e m(U; Uy Vig) < m(g™(U; Uy Vig)) < d-m(U; U; Vi)
Finally, U; Uj ‘/ij =V. O
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PRrROOF OF THEOREM 4.3. Let g be an N-function on E. Choose € > 0. Let

Yo, Y1, Y—1, Y2, Y—2, Y2, Y—3, . . . be positive numbers such that 0 < y; —y;,—1 < €,
m({t € P : K(t) =y;}) = 0 for each index 4, and

lim y; =0, lim y;, = 0.
17— —00 1—00

Let P, = {t € P : y;i_y < K(t) < y;} for each i. By Lemma III, y; ' <
H'(g(t)) < y; !, for t € Pi. By Lemma VI and the definition of P;, we have
Pi =g '(g(P;)) and

g om(g(Py)) <m(Py) <y im(g(P)) .

This can be rewritten

But also
yi1-m(P,) < / K(t)dt < y; - m(P;)
P;

and we combine these inequalities to obtain
m(g(P)) ~ [ K@) < (= vi)-m(P) < c-mp). (19
P;

We sum to obtain

o0 o0

> (mla(p) —/P‘ K(t)dt)‘ <e Y mP)=cm(P).  (15)

i=—00 1=—00

It follows from (15) that |m(g(P)) — [, K(t) dt‘ <e-m(P) if m(g(P)) < oo,
and [}, K(t)dt = oo if m(g(P)) = co. Because € is arbitrary we conclude that
in any case

m(a(P) = [ K6 ft. (16)

In view of Lemma III, equation (x) follows from (16). O
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