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Abstract

Two characterizations of Darboux Baire 1 functions are given: one in
terms of pointwise limits of certain continuous functions, and the other
in terms of intersections of sequences of open sets of a particular type.

1 Introduction

The main purpose of this article is to characterize Darboux Baire 1 functions
from a closed interval into the reals as the pointwise limit of a sequence of
polygonal functions, all having their vertices on the graph and such that the
distances between consecutive vertices tend to zero (Theorem 3.1, below). In
the process of doing this we obtain another characterization of a Darboux
Baire 1 function in terms of its graph being the intersection of open strips
(Theorem 2.4). These results answer questions posed in the survey paper [2].
Finally, if in Theorem 3.1 we drop the requirement that the distances between
consecutive vertices tend to zero, we obtain a characterization of the Baire
1 functions (Theorem 4.1 below). In the originally submitted version of this
paper, Theorem 4.1 was stated as a conjecture. We presented proofs that the
condition was, indeed, necessary for several standard subclasses of the class
of Baire 1 functions. The referee pointed out that both Theorem 4.1 and
Theorem 3.1 can easily be obtained from a rather deep result in [3] concerning
first return continuity. The referee’s proofs are presented in Section 4. Our
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technique for proving Theorem 3.1 is basically self-contained and, hopefully,
will be found useful and insightful.

The procedure is to find a certain sequence of neighborhoods of f (we do
not distinguish f from its graph) and in each such neighborhood we care-
fully construct a polygonal function whose vertices lie on f and such that
the distance between consecutive vertices is “small.” Moreover, the sequence
of neighborhoods has to be constructed so as to force the inserted polygo-
nal functions to actually converge to f . By a polygonal function we mean a
continuous function which is a union of finitely many line segments.

2 Preliminaries

Throughout this paper a fixed interval I = [a, b] will be the domain of all the
functions, unless otherwise noted. A set G open relative to I × R is called an
open strip provided domG = I and each vertical cross-section of G is an open
interval.

A Darboux function is one which maps intervals into intervals. A real-
valued function f on a metric space is Baire 1 iff f−1(G) is an Fσ-set whenever
G is open, iff f is the pointwise limit of a sequence of continuous functions. A
function f is upper semicontinuous iff the associated sets [f < α] are open for
every α ∈ R, iff f is the pointwise limit of a monotonically decreasing sequence
of continuous functions. (Lower semicontinuous (lsc) is defined as expected.)
We denote by D, B1, usc, and C, respectively, the classes of Darboux, Baire
1, upper semicontinuous, and continuous functions from I into R.

We say that f is bilaterally dense in itself iff each open box having a point
of f in the interior of one of its vertical sides contains a point of f . Among
Baire 1 functions, f is Darboux iff f is bilaterally dense in itself.

If G is an open strip, we denote by G(x) the intersection of G with the
vertical line through x. We say that a sequence {Gn}∞n=1 of open strips is
bilaterally dense in itself iff the set of vertical segments {Gn(x) : x ∈ I, n =
1, 2, . . . } is bilaterally dense in itself, defined by replacing points by these
segments in the definition of a bilaterally dense in itself function. The reader
is referred to [2] for further facts about the class DB1.

First we point out that an arbitrary open neighborhood of a given Darboux
Baire 1 function f need not contain a subneighborhood of f which is an open
strip. In fact if f is not continuous, then f has an open neighborhood not
containing any open strips. To see this, suppose λ is a cluster value of f at
x0 different from f(x0). Supposing f(x0) < λ choose 2α = λ + f(x0). Pick
a sequence {xk}∞k=1 so that (xk, f(xk)) → (x0, λ) with f(xk) > α for each k.
Then (I × R) \ {(xk, α) : k = 0, 1, 2, . . . } is an open neighborhood of f which
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contains no open strip about f .
Although any open neighborhood of a Darboux Baire 1 function contains

a continuous function (see [1]) and therefore by easy consequence a polygonal
function, arbitrary open neighborhoods are too difficult to manage and we
need to work with open strips instead.

To begin, the following result, although well-known and easy to prove, is
presented here because our proof of Theorem 3.1 is a delicate elaboration of
the basic theme of its proof, which we will only sketch.

Lemma 2.1. Each open strip is connected and contains a polygonal function
with domain I.

Proof. Let E consist of all x ∈ I such that there exists a polygonal function
p from a fixed point (a, c) in the open strip G to some point (x, y) such that
p ⊆ G. It is easy to see that E 6= ∅. Let λ = supE. Next, show that
λ ∈ E using the openness of G and the fact that vertical cross-sections of G
are intervals. Finally, show that λ = b using the openness. (It is clear from
the construction that one can construct a polygonal function p in the strip to
end at any prescribed point (b, d).) Since G is the union of p with a set of
vertical line segments, each intersecting p, G is connected.

In the proof of Theorem 3.1 we will show how we can control the selection
of the vertices in the above construction. We now proceed to construct an
appropriate sequence of open strips which will squeeze down to a given Baire
1 function.

Although a Baire 1 function is a Gδ-set, not even a connected Gδ-set need
be Baire 1 (see [4]). However, Baire 1 functions can be characterized by Gδ-
sets of a certain type, as shown by the next result which is an extension of a
result of Thomas [6] who proved it only for bounded functions. Our proof is
more general and much simpler and is used specifically in Theorem 2.3.

Theorem 2.2. Let f be a real-valued function on a metric space X. Then f
is Baire 1 if and only if f is the intersection of a sequence of open strips.

Proof. (⇒) Let {fn}∞n=1 be a sequence of continuous functions converging
to f . Since [h < g] is an Fσ-set whenever h, g ∈ B1, we can write[

fn +
1

k
> f

]
=

∞⋃
i=1

A(n, k, i)

[
fn −

1

k
< f

]
=

∞⋃
i=1

B(n, k, i)
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where each of the sets A(n, k, i), B(n, k, i) is closed. For all positive integers
n, k, and i define the sets

H[A(n, k, i)] =

{
(x, y) : x ∈ A(n, k, i) and y ≥ fn(x) +

1

k

}
,

and

H[B(n, k, i)] =

{
(x, y) : x ∈ B(n, k, i) and y ≤ fn(x)− 1

k

}
.

It is easily checked that these sets are closed. Enumerate the set of all possible
H[A(n, k, i)] and H[B(n, k, i)] as {Hj}∞j=1. For each n define Gn = (X ×R) \⋃n
j=1Hj . Then each Gn is an open strip containing f . Given x ∈ I and ε > 0

we can find n1, k1, n2, and k2 such that

f(x)− ε < fn2
(x)− 1

k2
< f(x) < fn1

(x) +
1

k1
< f(x) + ε.

Let Hs = H[A(n1, k1, i1)], where x ∈ A(n1, k1, i1), and Ht = H[B(n2, k2, i2)]
where x ∈ B(n2, k2, i2). Then taking j = max{s, t} we have rng(Gm(x)) ⊆
(f(x)− ε, f(x) + ε) whenever m ≥ j. Hence,

⋂∞
n=1Gn = f .

(⇐) Let f =
⋂∞
n=1Gn where each Gn is an open strip. If X = I we

can apply Lemma 2.1, to pick pn to be a polygonal function in Gn with
dom(pn) = I. Using the fact that the sets Gm(x) are intervals it is easy to
show that pn → f so that f ∈ B1. In the general case we can verify that for
any open subset V of R the set {x : (rngGn(x))∩V 6= 0} is open and therefore
by Michael’s Selection Theorem [5] there exists a continuous function fn in
Gn with domain X.

Can we characterize important subclasses of B1 by means of strips so that
the characterization is not simply a disguised version of the definition of the
class? The answer is yes for C, usc, and DB1. First, as a reformulation of the
fact that uniform limits of continuous functions are continuous, we have: f is
continuous iff f is the intersection of a sequence of open strips whose vertical
diameters tend to zero iff f is the intersection of a sequence of open strips
whose top and bottom boundaries are continuous functions. Here, the vertical
diameter of a strip G is sup{length G(x) : x ∈ I}.

We say that an open strip G is upper semicontinuous iff for each λ ∈ R the
set {x : rng(G(x)) ⊆ (−∞, λ)} is open, i.e., the strip G behaves as though it
were a usc function.

Theorem 2.3. A function f is usc

if and only if f is the intersection of a sequence of upper semicontinuous open
strips,
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if and only if f is the intersection of a sequence of open strips each of whose
upper boundary is a continuous function.

Proof. Suppose f is usc. Then there exists a sequence of continuous functions
{fn}∞n=1 such that fn ↓ f . Proceed as in the proof of Theorem 2.2. Taking
H1 = H[A(1, 1, 1)] we see that each Gn has a continuous function as its upper
boundary and hence each Gn is usc. The rest of the proof is easy.

Of course, there is a similar characterization for lower semicontinuous func-
tions.

Theorem 2.4. A function f is Darboux Baire 1 if and only if f is the inter-
section of a bilaterally dense in itself sequence of open strips.

Proof. (⇒) Let {Wn}∞n=1 be a sequence of open strips, as constructed in the
proof of Theorem 2.2, such that f =

⋂∞
n=1Wn. Choose {(xk, f(xk))}∞k=1 to

be a sequence dense in f . Define

Gn = Wn \
n⋃
k=1

{(xk, y) : |y − f(xk)| ≥ 1/k} .

Then each Gn is an open strip and f =
⋂∞
n=1Gn. It remains to show that

{Gn}∞n=1 is bilaterally dense in itself. Let B be any open square having some
Gn(x) in its left side. Choose k such that Gk(x) ⊆ Gn(x). The set B ∩
(I ×Gk(x)) contains infinitely many points (xki , f(xki)), i = 1, 2, 3, . . . . Since
Gki(xki) has length less than 1/ki, it follows that some Gkm(xm) ⊆ B. If B
has some Gm(x) in its right side, the proof is analogous.

(⇐) This part of the proof is simple and straightforward.

It is unknown whether in the proof of Theorem 2.4 one can replace the
bilaterally dense in itself sequence of open strips by a sequence {Gn}∞n=1

of open strips having the property that for each positive integer n, the set
{Gn(x) : x ∈ I} is bilaterally dense in itself.

Although Theorems 2.3 and 2.4 are proven for a closed interval I it is clear
that their proofs can be adjusted to hold for any interval.

3 The Main Result

For a polygonal function p we define mesh (p) to be the length of the longest
line segment of p and V (p) to be the set of vertices of p.

Theorem 3.1. A function f is Darboux Baire 1 if and only if there is a
sequence {pn}∞n=1 of polygonal functions having their vertices on f such that
mesh (pn)→ 0 and pn → f .
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Proof. (⇐) See the proof of Theorem 3.3, part (⇐).
(⇒) Let {Gn}∞n=1 be a sequence of open strips such that f =

⋂∞
n=1Gn, as in

Theorem 2.2. Fix n, and for any closed interval [c, d] define P[c, d] to be the set
of all polygonal functions p on [c, d] such that V (p) ⊆ f |[c, d] (i.e., f restricted
to [c, d]) and p ⊆ Gn and mesh (p) < 1/n. Let E = {x ∈ I : P[a, x] 6= ∅}.

First of all, E 6= ∅. To see this, pick an open disk O centered at (a, f(a))
such that O ⊆ Gn. Since f ∈ D there is a point (z, f(z)) of f in O with z > a.
Let p be the line segment joining (a, f(a)) and (z, f(z)). Then p ∈ P[a, z], so
z ∈ E. Now we need:

Lemma 3.2. Suppose that T is a quadrilateral in Gn with vertices (z, f(w)),
(w, f(w)), (w, σ) and (z, f(z)), where z < w and f(w) < σ ≤ f(z), and
assume that the non-vertical sides of T have length less than 1/n. Then there
exists p in P[z, w] such that p ⊆ T and mesh (p) < 1/n.

Proof. Let L be the top side of T . Subdivide the right-hand side of T into
line segments of equal length by means of the points (w, f(w)) = (w, µk),
(w, µk−1), . . . , (w, µ1) = (w, σ). Through each of these construct a line seg-
ment between the vertical sides of T and parallel to L; select k large enough
that the parallelograms so formed have diameter less than 1/n. Let L1 be the
bottom edge of the topmost parallelogram. Since f ∈ DB1, f is connected so
f must meet L1; select (x1, f(x1)) ∈ L1 ∩ f .

Next, consider the portion of the next-lower parallelogram lying to the
right of the line x = x1. Arguing as above, f meets the bottom, L2, of this
parallelogram. Pick (x2, f(x2)) ∈ L2 ∩ f . Proceeding, we get a sequence
{(xi, f(xi)}ki=0, where (x0, f(x0)) = (z, f(z)) and (xk, f(xk)) = (w, f(w)),
such that (xi, f(xi)), i ≥ 1 is on the bottom side of the i’th parallelogram and
xi < xi+1 for all i. By construction the distance between successive points is
less than 1/n. Let q be the polygonal function joining these points, in order.
Then q ∈ P[z, w] and mesh (q) < 1/n.

We return now to the proof of Theorem 3.1. In the sequel, the notation
S(u, v) will denote the line segment joining (u, f(u)) and (v, f(v)).

We shall show that λ = supE belongs to E. Pick an open square S ⊆ Gn
of diagonal length less than 1/n having (λ, f(λ)) as an interior point of its
right side. Let x = d be the equation of the left side of S. Pick a sequence
{(xn, f(xn))}∞n=1 with xn ∈ E such that xn → λ. Without loss of generality we
may assume that there exists an extended real number ξ such that f(xn)→ ξ.
If ξ belongs to the interior of the right side of S then we apply Lemma 3.2 to
get λ ∈ E. So we may assume that ∞ ≥ ξ ≥ β, where the top side of S is
on the line y = β; further, suppose that no (xn, f(xn)) ∈ S. Pick xk ∈ (d, λ)
such that f(xk) > β. Since f ∈ D there is a point w in (xk, λ) such that
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f(w) = β. Choose xm ∈ (w, λ) with f(xm) > β, and take p in P[a, xm].
Let L be the segment of p which lies above (w, f(w)); denote by (c, f(c)) the
left-hand endpoint of L. Then we have three cases.

Case 1 c ∈ [d,w).

Pick p ∈ P[a, c] and let q = p ∪ S(c, w) ∪ S(w, λ). Then q ∈ P[a, λ] and
mesh V (q) < 1/n.

Case 2 c < d and (xk, f(xk)) lies on or above L.

Since f ∈ D, f hits L over (xk, w) at some point (u, f(u)). Apply Lemma
3.2 to the trapezoid determined by the lines x = u, x = w, y = f(w),
and with top side the lower of y = f(u) and L restricted to [u,w] to get
p ∈ P[u,w]. Choose q ∈ P[a, u]. Then h = q ∪ p ∪ S(w, λ) belongs to
P[a, λ] and mesh (h) < 1/n.

Case 3 c < d and (xk, f(xk)) lies below L.

Consider the figure T formed by the lines x = xk, x = w, y = f(w), and
with top side the lower of y = f(xk) and the line through (xk, f(xk))
parallel to L. If this last side meets y = β at a point between xk and
w, then T is a triangle and S(xk, w) has length less than 1/n. Take
p ∈ P[a, xk]; then h = p ∪ S(xk, w) ∪ S(w, λ) is the desired polygonal
function. If, on the other hand, the lower side does not meet y = β
between xk and w, then T is a trapezoid and we can apply Lemma 3.2
to get p ∈ P[xk, w]. Pick q ∈ P[a, xk]. Then h = p∪ q ∪ S(w, λ) belongs
to P[a, λ] and mesh (h) < 1/n.

Finally, to show that λ = b, assume that λ < b and apply the argument
used to show that E 6= ∅ to get a contradiction.

The proof of Theorem 3.1 with its heavy reliance on strips, suggests a
more general problem: given any open neighborhood G of an almost continu-
ous function f , does there exist a polygonal function p of arbitrarily small mesh
whose vertices lie on f? (A function is almost continuous iff each open neigh-
borhood of it contains a continuous function.) A Darboux Baire 1 function
is almost continuous; moreover, an almost continuous function is connected.
But neither of the reverse implications holds (see [1]). In particular an al-
most continuous function is not necessarily Baire 1 so an affirmative answer to
the above question does not imply that there is a sequence of such polygonal
functions approaching f pointwise.

We can obtain a more general version of Therorem 3.1 by replacing the
polygonal functions by suitable continuous functions. Roughly speaking, this
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version says that each pn gets sufficiently close to f on an appropriately spaced
finite set. More precisely:

Theorem 3.3. The function f is Darboux Baire 1 if and only if there exists
a sequence of continuous functions {fn}∞n=1 such that fn → f and for each n
there exists a non-empty finite subset Fn of fn such that rn = max{diam fn|J :
J an interval, (fn|J) ∩ Fn 6= ∅} and sn = max{|fn(x)− f(x)| : x ∈ domFn}
both tend to zero as n→∞.

Proof. (⇒) This part of the proof is provided by Theorem 3.1 with Fn =
V (pn).

(⇐) It suffices to show that f is bilaterally dense in itself. Take ε > 0
and z < b so that ε < b − z, and consider the box B = {(x, y) : 0 < x − z <
ε and |y − f(z)| < ε}. Pick n so that |fn(z)− f(z)| < ε/4 and both r and s
are less than ε/4. Let

c = min{z +
ε

2
, inf{x : 0 < x− z < ε

2
and |fn(x)− f(z)| < ε

2
}}.

Then diam fn|(z, c) ≥ ε/4, so Fn ∩ (fn|(z, c)) 6= ∅. Take (u, fn(u)) ∈ Fn with
z < u < c. Then |fn(u)− f(z)| < ε/2 and |fn(u)− f(u)| < ε/4. It follows
that |f(z)− f(u)| < ε so that (u, f(u)) belongs to B. Hence, f is bilaterally
dense in itself, and the proof is complete.

We note that replacing the condition of Theorem 3.3 by saying that the
Hausforff distance between fn and f tends to zero, does not work. This can be
seen by considering the non-Darboux function f , where f(x) = sin 1

x , −1 ≤
x < 0, f(0) = 0, f(x) = 1, 0 < x ≤ 1.

We have been unable to find any applications of Theorems 3.1 and 3.3. One
of the problems here is the lack of freedom in choosing the points in domV (pn)
in Theorem 3.1, which renders the convergence in the sense of Theorem 3.1
deficient in many ways. For example, the convergence is not “additive”: if
fn → f and gn → g in the sense of Theorem 3.1, then it is not necessarily true
that fn + gn → f + g. This follows from the fact that the sum of two DB1
functions can fail to be Darboux.

4 The General Baire 1 Case

One interesting question is whether or not other important subclasses of B1
have similar characterizations involving convergent sequences of polygonal
functions. In case of C the answer is affirmative because continuity can be
characterized by the condition of Theorem 3.1 with pointwise convergence re-
placed by uniform convergence. Here, the uniform convergence follows directly
from V (pn) ⊆ f and mesh(pn)→ 0.
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The answer is also affirmative for the entire class B1, namely: each B1
function is a pointwise limit of a sequence of polygonal functions whose ver-
tices lie on the function. (Theorem 4.1 below.) Note that this is just the
characterizing condition of Theorem 3.1 without the mesh requirement.

In an earlier version of this paper we only were able to prove this result
for some specific subclasses of B1 (e.g. usc and B∗1). One difficulty is that
our technique of inserting polygonal functions into open strips breaks down in
general. In fact one can easily construct a Baire 1 function f with a 3 point
range and an open strip containing f which admits no polygonal function
inside having vertices on f . So, if the insertion were to work it would at least
require a delicate crafting of descending open strips.

Fortunately the referee came up with an easy proof based upon a deeper
result involving first return continuity as follows:

Theorem 4.1. A function f is Baire 1 if and only if there is a sequence of
polygonal functions having their vertices on f which converges to f pointwise.

Proof. We need only show (⇒). By Lemma 1 of Evans and O’Malley [3] if
f is Baire 1 then there exists a trajectory {xk}∞k=0 with respect to which f is
first return continuous at each point of [0, 1] \ {xk : k = 0, 1, 2, . . . }. (See [3]
for the definitions of first return notions.) For each n let pn be the polygonal
function with vertices (0, f(0)), (1, f(1)), (x0, f(x0)), . . . , (xn, f(xn)). Let us
show pn(z) → f(z) for each z. If z = xk for some k the result is obvious.
For any other z let Sn be that segment in pn with z ∈ domSn = [an, bn]. It
is clear that an (resp. bn) belongs to the left (resp. right) return path to z.
Therefore the end points of Sn approach (z, f(z)). Since (z, pn(z)) belongs to
Sn it follows that pn(z)→ f(z), completing the proof.

In conclusion, we present the referee’s alternative proof of Theorem 3.1,
which picks up where the proof of Theorem 4.1 left off:

Alternative Proof of Theorem 3.1. For the proof of the (⇒) direction
of Theorem 3.1 we continue, assuming further that f is Darboux. All we need
do is replace the polygonal sequence {pn} by another polygonal sequence {qn}
which still converges to f pointwise and for which mesh qn → 0. Since {xk} is
a trajectory it is clear that the maximal horizontal distance between adjacent
vertices of pn tends to zero as n → ∞. We shall simply add finitely many
vertices to each pn, forming qn in such a way to guarantee that the maximal
vertical distance between adjacent vertices of qn tends to zero as n → ∞ as
well, thus assuring that mesh qn → 0.

To this end, fix an n and let (ak, f(ak)) and (bk, f(bk)) denote adjacent
vertices of pn. We may use the Darboux property of f to select a finite set
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Dk of points in [ak, bk] so that if y and w are adjacent points in the set
Dk ∪ {ak, bk}, we have both that f(y) and f(w) are between f(ak) and f(bk)
and that |f(y) − f(w)| < 1/n. We do this for each adjacent pair of vertices
(ak, f(ak)) and (bk, f(bk)) in pn and form the polygonal function qn by using
all the vertices of pn and all the newly selected vertices (y, f(y)) where y ∈ Dk

for some k. Clearly, mesh qn → 0.
Finally, if z ∈ [0, 1] \ {xk : k = 0, 1, 2, . . . }, using the notation of the first

paragraph of this proof, we know that the end points of Sn approach (z, f(z)),
keeping in mind that Sn is determined by pn. But now, if we let Tn be that
segment in qn with z ∈ domTn = [cn, dn], we have that [cn, dn] ⊆ [an, bn] and
that f(cn) and f(dn) each lie between f(an) and f(bn). Consequently, the
end points of Tn approach (z, f(z)) as n→∞, completing the proof.
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