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Abstract

The paper is closely related to an earlier paper of two authors of this
paper (cf. [4]). In the paper radii of convergence of power series are
investigated as values of a function defined on the Fréchet’s space using
the well–known formula of Cauchy and Hadamard.

Introduction

This paper is closely related to the paper [4]. In [4] radii of convergence of
power series

∑∞
n=0 anx

n as functions of sequences (an)∞n=0 are investigated.
The sequences (an)∞n=0 are considered as points of the Fréchet metric space s
of all sequences of real numbers with the metric

d(y, z) =

∞∑
k=0

2−k
|yk − zk|

1 + |yk − zk|
, y = (yk)∞0 ∈ s, z = (zk)∞0 ∈ s.

For a = (ak)∞0 ∈ s we put (in agreement with [4])

σ(a) = σ(a0, a1, . . . ) = lim sup
n→∞

n
√
|an|, r(a) = r(a0, a1, . . . ) =

1

σ(a)
.

(We put 1
∞ = 0 and 1

0 =∞ in the last equality.)
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In [4] the sets

Ht = {x = (xk)∞0 ∈ s : σ(x) = t},
H∗t = {x = (xk)∞0 ∈ s : r(x) = t},
Pt = {x = (xk)∞0 ∈ s : σ(x) < t}

(t ∈ [0,∞]) were introduced. It is shown in [4] 1 that Pt is an Fσ - set (for
each t ∈ [0,∞]) in s. Further the set H∞ = H∗0 is a residual set in s. Hence
the set P∞ = {x = (xk)∞0 ∈ s : σ(x) <∞} = {x = (xk)∞0 ∈ s : r(x) > 0} = B
is a set of the first Baire category.

In the first part of this paper we shall strengthen this result by more
detailed study of the structure of the set B using the concept of porosity for
sets in metric spaces.

Let
∑∞
n=0 anx

n be a fixed power series, an ∈ R (n = 0, 1, 2, . . . ), x ∈ R.
If (εn)∞0 is a sequence of 0’s and 1’s with an infinite number of 1’s, then the
series

∑∞
n=0 εnanx

n is said to be a subseries of the series
∑∞
n=0 anx

n. Using the
above notation we have obviously σ(ε0a0, ε1a1, . . . ) ≤ σ(a0, a1, . . . ). Denote

by S = S(a0, a1, . . . ) the set of all (εn)∞0 such that the subseries
∞∑
n=0

εnanx
n

has the same radius of convergence as the power series
∑∞
n=0 anx

n, i.e.

r(ε0a0, ε1a1, . . . ) = r(a0, a1, . . . ).

Denote by W = W (a0, a1, . . . ) the set U \ S. Hence W = U \ S, where U
denotes the set of all sequences (εn)∞0 of 0’s and 1’s with an infinite number
of 1’s. To each (εn)∞0 ∈ U there corresponds a number

ρ(ε0, ε1, . . . ) =

∞∑
k=0

εk
2k+1

∈ (0, 1].

Then ρ is a one-to-one mapping of U onto (0, 1] (cf. [1], p. 17-18). For
T ⊆ U we put ρ(T ) = {ρ(ε0, ε1, . . . ) : (εn)∞0 ∈ T}. The set ρ(T ) is a tool
for measuring the size of the set T . It is proved in [4] that λ(ρ(S)) = 1 (λ
denotes Lebesgue measure). Since ρ(W ) = (0, 1] \ ρ(S), we get λ(ρ(W )) = 0.
Hence it seems to be natural to investigate the Hausdorff dimension of the
set ρ(W ). This will be done in the second part of the paper. This section is
the result of collaboration arising between the first two authors at the Real
Analysis Conference in Liptovský Ján Slovakia, 1996.

1See Lemma 2.3 in [4]. In the proof of this lemma the restriction to t ∈ (0,∞) is
superfluous.
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Notation and Definitions

In what follows we denote by dimM (M ⊆ R) the Hausdorff dimension of
the set M (cf. [2]). We now give definitions and notation from the theory of
porosity of sets (cf. [5]-[7]). Let (Y, ρ) be a metric space. If y ∈ Y and r > 0,
then denote by K(y, r) the ball with center y and radius r, i.e.

K(y, r) = {x ∈ Y : ρ(x, y) < r}.

Let M ⊆ Y . Put

γ(y, r,M) = sup{t > 0 :→
z∈Y
∃ [K(z, t) ⊆ K(y, r)] ∧ [K(z, t) ∩M = ∅]}.

Define the numbers:

p(y,M) = lim sup
r→0+

γ(y, r,M)

r
, p(y,M) = lim inf

r→0+

γ(y, r,M)

r

and if p(y,M) = p(y,M), then we set

p(y,M) = p(y,M) = p(y,M) = lim
r→0+

γ(y, r,M)

r
.

Obviously the numbers p(y,M), p(y,M), p(y,M) belong to the interval [0, 1].

A set M ⊆ Y is said to be porous (c-porous) at y ∈ Y provided that
p(y,M) > 0 (p(y,M) ≥ c > 0). A set M ⊆ Y is said to be σ-porous (σ-c-
porous) at y ∈ Y if M =

⋃∞
n=1Mn and each of the sets Mn(n = 1, 2, . . . ) is

porous (c-porous) at y.

Let Y0 ⊆ Y . A set M ⊆ Y is said to be porous, c-porous, σ-porous and
σ-c-porous in Y0 if it is porous, c-porous, σ-porous and σ-c-porous at each
point y ∈ Y0, respectively.

If M is c-porous and σ-c-porous at y, then it is porous and σ-porous at y,
respectively.

Every set M ⊆ Y which is porous in Y is non-dense in Y . Therefore every
set M ⊆ Y which is σ-porous in Y , is a set of the first category in Y . The
converse is not true even in R (cf. [5]).

According to the definition of p(y,M), p(y,M) we immediately get the
following.

Theorem. If M1 ⊆ M2 ⊆ Y , then for each y ∈ Y we have p(y,M1) ≥
p(y,M2), p(y,M1) ≥ p(y,M2).
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A set M ⊆ Y is said to be very porous at y ∈ Y if p(y,M) > 0 and very
strongly porous at y ∈ Y if p(y,M) = 1 (cf. [7], p. 327). A set M is said
to be very (strongly) porous in Y0 ⊆ Y if it is very (strongly) porous at each
y ∈ Y0.

Obviously, if M is very porous at y, it is porous at y, as well. Analogously,
if M is very strongly porous at y, it is 1-porous at y.

Further, a set M ⊆ Y is said to be uniformly very porous in Y0 ⊆ Y
provided that there is a c > 0 such that for each y ∈ Y0 we have p(y,M) ≥ c
(cf. [7], p. 327). In agreement with the previous terminology and in analogy
with the notion of σ-porosity, we introduce the following notions.

Definition. a; A set M ⊆ Y is said to be uniformly σ-very porous in
Y0 ⊆ Y provided that M =

⋃∞
n=1Mn and there is a c > 0 such that for

each y ∈ Y0 and each n = 1, 2, . . . we have p(y,Mn) ≥ c.

b; A set M ⊆ Y is said to be uniformly σ-very strongly porous in Y0
provided that M =

⋃∞
n=1Mn and for each y ∈ Y0 and each n = 1, 2, . . .

we have p(y,Mn) = 1.

1 Porosity Character of the Set B

We shall try to improve a result from [4] (Theorem 1.3 (iv)) where it was
shown that the set

B = {x ∈ s : σ(x) <∞} = {x ∈ s : r(x) > 0}

is a set of the first Baire category in s. Note that this set is obviously dense in
s. We shall investigate the porosity of this set in s. This investigation is very
easy at points of the set s \ B. The following simple auxiliary result enables
us to prove a result in this direction (see the following Theorem 1.1).

Lemma 1.1. Let (Y, ρ) be a metric space. Let M ⊆ Y , M be an Fσ-set in Y .
Then M is uniformly σ-very strongly porous in Y \M .

Proof. By the assumption M =
⋃∞
n=1Mn, where Mn (n=1,2,. . . ) are closed

in Y . Let y ∈ Y \M , n ∈ N. Then y /∈Mn, thus by the closedness of Mn there
exists a δ0 > 0 such that K(y, δ0) ∩Mn = ∅. But then for each δ, 0 < δ ≤ δ0
we get K(y, δ) ∩Mn = ∅ and so p(y,Mn) = 1 (for each n ∈ N).

Theorem 1.1. The set B is uniformly σ-very strongly porous in s \B.

Proof. The set B = P∞ is an Fσ-set in s (cf. Lemma 2.3 in [4]). Hence the
theorem follows from Lemma 1.1.

The following theorem describes the kind of porosity of the set B globally
in whole space s.
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Theorem 1.2. The set B is uniformly σ-very porous in the space s.

Proof. Evidently B =
⋃∞
n=1Bn, where Bn = {x ∈ s :→

k≥1
∀ k
√
|xk| ≤ n}. We

shall prove precisely that at each y ∈ s we have p(y, Bn) ≥ 1
4 (n = 1, 2, . . . ).

Let y = (yk)∞0 ∈ s, r > 0, n ∈ N. Construct the ball K(y, r). Suppose
already that 0 < r < 1

2 . Then there is an m ∈ N such that 2−m−1 ≤ r < 2−m.
Construct the sequence z = (zj)

∞
j=0 as follows.

zj = yj if j 6= m+ 2 and

zm+2 = (n+ η + 1)m+2 (η > 0 will be chosen later)

Then we get
d(z,y) < 2−m−2. (1)

We show that there is a δ > 0 such that

a; K(z, δ) ⊆ K(y, 2−m−1),

b; K(z, δ) ∩Bn = ∅.

Consider the function h(t) = t
1

m+2 , t > 0. By the mean value theorem we
have

h(v1)− h(v2) = (v1 − v2)v
1

m+2−1
0

1

m+ 2
, v1, v2 > 1

(and v0 is a number between v1, v2; hence v0 > 1). Then we get

|h(v1)− h(v2)| ≤ |v1 − v2|. (2)

Put
δ = 2−m−2

η

1 + η
. (1’)

If x ∈ K(z, δ), then by (1) and (1’) using the triangle inequality we get

d(x,y) ≤ d(x, z) + d(z,y) < 2−m−2 + 2−m−2 = 2−m−1.

Hence K(z, δ) ⊆ K(y, 2−m−1) (a; holds).
Further if t = (tj)

∞
j=0 ∈ K(z, δ), then by definition of the metric d we get

2−m−2
|zm+2 − tm+2|

1 + |zm+2 − tm+2|
< 2−m−2

η

1 + η
. (3)

Consider that the function g(t) = t
1+t , t > 0, is increasing. Therefore (3)

yields
|zm+2 − tm+2| < η. (3’)
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Choosing v1 = zm+2, v2 = tm+2 in (2) we get by (3’)

|z
1

m+2

m+2 − t
1

m+2

m+2| ≤ |zm+2 − tm+2| < η. (4)

But then by (4) we have t
1

m+2

m+2 > z
1

m+2

m+2 − η = n + η + 1 − η > n. Thus
Bn ∩K(z, δ) = ∅ (b; holds). So we get

γ(y, r, Bn)

r
≥ δ

r
≥ 2−m−2

η

1 + η
2m =

1

4

η

1 + η
.

Hence p(y, Bn) ≥ 1
4

η
1+η . This holds for each η > 0. If η → ∞, we obtain

p(y, Bn) ≥ 1
4 .

2 Hausdorff Dimension of the Set ρ(W )

Let
∞∑
n=0

anx
n (5)

be a fixed power series, an ∈ R (n = 0, 1, 2, . . . ), x ∈ R. As proved in [4] we
have λ(ρ(W )) = 0, where W = U \ S, S = S(a0, a1, . . . ) being the set of all
sequences (εn)∞0 ∈ U such that r(ε0a0, ε1a1, . . . ) = r(a0, a1, . . . ).

It is easy to see that dim ρ(W ) will depend on the sequence (an)∞n=0. We
illustrate the dependence of dim ρ(W ) on (an)∞0 by two examples.

Example 2.1. Define an = 1 (n = 0, 1, . . . ), i.e. we deal with the power

series
∞∑
n=0

xn. Then obviously S = S(1, 1, . . . ) = U . Hence W = ∅ and so

dim ρ(W ) = 0.

Example 2.2. Define a = (an)∞0 by an = 2n for n 6= k2 (k = 0, 1, 2, . . . ) and

ak2 = 3k
2

for k = 1, 2, . . . . Then σ(a) = 3, r(a) = 1
3 .

Denote by T0 the set of all sequences (εn)∞0 ∈ U such that εk2 = 0 (k =
0, 1, . . . ) and εn = 0 or 1 for n 6= k2 (k = 1, 2, . . . ). If (εn)∞0 ∈ T0, then for the
subseries

∑∞
n=0 εnanx

n of
∑∞
n=0 anx

n we get r(ε0a0, ε1a1, . . . ) = 1
2 > r(a) =

1
3 . Therefore

ρ(W ) ⊇ ρ(T0). (6)
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Remember that if M ⊆ N = {1, 2, . . . }, then we let

M(n) =
∑

a≤n,a∈A

1,

d(M) = lim inf
n→∞

M(n)

n
and

d(M) = lim sup
n→∞

M(n)

n
,

and if d(M) = d(M) = limn→∞
M(n)
n then we put d(M) = limn→∞

M(n)
n . The

numbers d(M), d(M) and d(M) are called the lover, upper asymptotic density
and asymptotic density of M (cf. [1], p. 71).

For the determination of dim ρ(T0) we shall use the following result of [3]
(Theorem 2.7) which in case qk = 2 (k = 1, 2, . . . ) gives this theorem.

Theorem. Let A ⊆ N and ε0k be a given number for each k ∈ A (ε0k = 0 or 1).
Denote by Z(A; (ε0k), k ∈ A) the set of all t =

∑∞
j=0

εj
2j+1 ∈ (0, 1] such that

εj = ε0j if j ∈ A and εj is arbitrary (equal to 0 or 1) for each j ∈ N \A. Then
we have

dimZ(A; (ε0k), k ∈ A) = lim inf
n→∞

log
∏

j≤n,j∈N\A
2

n log 2
= d(N\A). (6’)

This result will be used very often in what follows.
Putting A = {12, 22, . . . }, εk2 = 0 (k = 1, 2, . . . ) in (6’) we have ρ(T0) =

Z(A; (ε0k), k ∈ A). Further d(A) = 0, thus d(N\A) = 1. So we get dim ρ(T0) =
d(N\A) = 1 and by (6) we obtain dim ρ(W ) = 1.

We shall now prove the following general result which shows that the num-
bers dim ρ(W (a0, a1, . . . )) fill up the whole interval [0, 1] when (an)∞0 runs
over all sequences of real numbers.

Theorem 2.1. For each α ∈ [0, 1] there exists a power series
∑∞
n=0 anx

n such
that dim ρ(W (a0, a1, . . . )) = α.

Proof. On account of examples 2.1, 2.2 we can assume that α ∈ (0, 1). Put
for brevity t = 1− α and construct the set

A =

{[
1

t

]
,

[
2

t

]
, . . . ,

[n
t

]
, . . .

}
([u] denotes the integer part of u). Construct the series

∑∞
n=0 bnx

n, where
bk = 1 if k /∈ A and bk = vk if k ∈ A, where v is a fixed number, 0 < v < 1.
Obviously the radius of convergence of this power series is equal to 1.
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Let V0 be the set of all sequences (εj)
∞
0 ∈ U such that εk = 0 for all k ∈ A

with exception of a finite number of k’s from A and εn is arbitrary (equal to 0
or 1) for other k’s. Construct the subseries

∑∞
k=0 εkbkx

k of
∑∞
k=0 bkx

k. Then
the radius of convergence of

∑∞
k=0 εkbkx

k is equal to v−1 > 1 and conversely, if
the radius of convergence of a subseries

∑∞
n=0 ε

′
nbnx

n of
∑∞
n=0 bnx

n is greater
than 1, then ε′n = 0 for all k’s from A with the exception of only a finite
number. Therefore we have

V0 = W. (7)

Let V ∗0 be the set of all such (εn)∞0 ∈ V0 that εn = 0 for each n ∈ A. Then
it is easy to see that

dim ρ(V ∗0 ) = dim ρ(V0). (7’)

Using the notation of Theorem 2.7 of [3] we get ρ(V ∗0 ) = Z(A; (ε0k), k ∈ A),
where ε0k = 0 for each k ∈ A. According to this theorem we get

dim ρ(V ∗0 ) = lim inf
n→∞

log
∏

j≤n,j∈N\A
2

n log 2
= d(N\A). (8)

But d(A) = t. Hence d(N\A) = 1− d(A) = 1− t = α. From (7), (7’) and (8)
we have dim ρ(W ) = α.

First of all we note that W is the set of (εn) for which

lim sup
n→∞

n
√
εnan < σ(a). (9)

Obviously (9) holds if and only if there are k,m ∈ N such that

n
√
εnan ≤ σ(a)− 1

k

for all n ≥ m.
Put

H(k) =

{
n ∈ N : n

√
|an| > σ(a)− 1

k

}
(k = 1, 2, . . . ) (10)

H(k,m) = H(k) ∩ {m,m+ 1, . . . } (k = 1, 2, . . . ) (10’)

From (10), (10’) we see that

H(1) ⊇ H(2) ⊇ · · · ⊇ H(k) ⊇ . . . , (11)

H(k, 1) ⊇ H(k, 2) ⊇ · · · ⊇ H(k,m) ⊇ . . . for every k = 1, 2, . . . .
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Further denote by W (k,m) the class of all (εj)
∞
j=0 ∈ U such that εn = 0

for each n ∈ H(k,m). Put

W (k) =

∞⋃
m=1

W (k,m) (k = 1, 2, . . . ). (12)

Note that

W (k, 1) ⊆W (k, 2) ⊆ · · · ⊆W (k,m) ⊆ . . . , (13)

W (1) ⊆W (2) ⊆ · · · ⊆W (k) ⊆ . . . . (14)

It is easy to see that

W = W (a0, a1, . . . ) =

∞⋃
k=1

W (k). (15)

If B ⊆ N, then we put for brevity C B = N\B.

Theorem 2.2. We have

dim ρ(W ) = →
k=1,2,...

supd(C H(k)) = lim
k→∞

d(C H(k)).

Proof. First of all we determine the Hausdorff dimension of the set ρ(W (k,m))
where k and m are fixed positive integers. For this we use (6’) with A =
H(k,m), ε0j = 0 for each j ∈ A. Then we get

dim ρ(W (k,m)) = lim inf
n→∞

log
∏

j≤n,j∈N\A
2

n log 2
= d(C A).

By de Morgan’s rule we have (see (10’)) C A = C H(k,m) = C H(k) ∪
C {m,m + 1, . . . }. Since the second “summand” on the right-hand-side is a
finite set, we get d(C A) = d(C H(k)) and so

dim ρ(W (k,m)) = d(C H(k)) for every m = 1, 2, . . . . (16)

If M =
⋃∞
k=1Mk, M ⊆ R, then dimM = →

k=1,2,...
sup dimMk. Using (16)

and (12) we get

dim ρ(W ) ≤ →
k=1,2,...

sup dim ρ(W (k)) ≤ →
k=1,2,...

supd(C H(k)). (17)

Conversely, by (12), (15), (16) we have

dim ρ(W (k)) ≥ dim ρ(W (k,m)) = d(C H(k)) (18)
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for every k = 1, 2, . . . . Further by (15) we have

dim ρ(W ) ≥ dim ρ(W (k)) (k = 1, 2, . . . ). (19)

Hence, by (18) and (19),

dim ρ(W ) ≥ →
k=1,2,...

supd(C H(k)). (20)

The inequalities (17) and (20) yield

dim ρ(W ) = →
k=1,2,...

supd(C H(k)). (21)

By (11), the sequence (d(C H(k))∞k=1 is nondecreasing. Therefore

→
k=1,2,...

supd(C H(k)) = lim
k→∞

d(C H(k)).

From this and (21) the theorem follows.

Example 2.3. Put D =
⋃∞
k=0Dk, where

Dk =
{

2k+1 + 1, 2k+1 + 2, . . . , 2k+1 + 2k−1
}

(k = 1, 2, . . . ).

It can be easily calculated that d(D) = 1
4 , d(D) = 2

5 . Define a = (an)∞n=0 by

a0 = a1 = a2 = 1

an =

(
1, 5 +

1

n

)n
for n > 2, n ∈ D and

an =

(
2, 4− 1

n

)n
for n > 2, n ∈ C D.

Obviously σ(a) = 2, 4. Observe that C H(k) = {n ∈ N : n
√
|an| ≤ 2, 4 −

1/k} and n
√
|an| = 2, 4 − 1/n for n ∈ C D, n > 2 and an = 1, 5 + 1/n for

n ∈ D, n > 2. It is clear that for k ≥ 2 the set C H(k) contains all but
a finite number of elements of D and it contains at most a finite number of
elements of C D. Thus d(C H(k)) = d(D) = 1

4 and by Theorem 2.2 we have
dim ρ(W ) = 1

4 .

Theorem 2.3. If limn→∞
n
√
|an| = σ(a) > 0, then W is empty, so

dimρ(W ) = 0.

Proof. For any (εn) ∈ U , let (ni) be the sequence for which εni
= 1; then

lim sup
n→∞

n
√
|εnan| ≥ lim sup

i→∞

ni

√
|εni

ani
| = lim sup

i→∞

ni

√
|ani
| = σ(a).
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