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Abstract

Recently several authors have established a remarkable property of
the variational measures associated with a function. Expressed in clas-
sical language, this property asserts that if a function is ACG∗ on all
sets of Lebesgue measure zero then the function must be globally ACG∗.
This article is an exposition of some ideas related to this property with
the intention of bringing it to the attention of a wider audience than
these original papers might attract.

Recent years have seen continued interest in the variational measures as-
sociated with a function, e.g., [1], [2], [3], [4], [7], [8], [9], [12], [13], [14], [15],
[17], [18], [20], and [21].

In the simplest setting a function f : [a, b]→ R is given and one constructs a
measure µf that carries the variational information about f . If f is of bounded
variation then µf is the usual Lebesgue-Stieltjes measure associated with the
total variation function of f . In general a measure µf can be constructed for
arbitrary functions and which has considerable power to express properties
of f . Perhaps the nicest elementary uses of this measure would be in the
following assertions.

If f : [a, b] → R then a necessary and sufficient condition for the
identity f(x) − f(a) =

∫ x
a
f ′(t) dt in the sense of the Lebesgue

integral is that µf is finite and absolutely continuous with respect
to Lebesgue measure on [a, b].

If f : [a, b] → R then a necessary and sufficient condition for the
identity f(x)−f(a) =

∫ x
a
f ′(t) dt in the sense of the Denjoy-Perron

integral is that µf is σ–finite and absolutely continuous with respect
to Lebesgue measure on [a, b].
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W. F. Pfeffer, with characteristic insight, conjectured in 1994 that in the
latter assertion the assumption that µf is σ–finite may be dropped, in fact
that the property that µf is absolutely continuous with respect to Lebesgue
measure on [a, b] is already enough to deduce that it is also σ–finite. This
remarkable property of the variational measure has since been proved, both
on the real line ([2], [3], [13]) and in various higher dimensional versions ([4],
[7], [8]). It is this property that we propose to study in this short article.

The property can be expressed directly, too, in the more classical language
familiar to most real analysts. Roughly it asserts that to test that a function is
ACG∗ on a set E it would be enough to test that it is ACG∗ on measure zero
subsets of E (cf. Ene [12, p. 58]). To better appreciate the surprising feature
of this observation we should note that it was entirely overlooked by Denjoy
and Saks who, most of us surely felt, had exhausted the study of the VBG∗
and ACG∗ classes of functions. Since the proof does not require techniques
with which they were unfamiliar it was only that this property did not occur
to them.

It is, by no means, the case that all Borel measures on the interval [a, b]
would have the Pfeffer property. For example, simply take µ(B) = 0 for all
Borel sets of measure zero and µ(B) =∞ for the remaining Borel sets.

What is there about the variational measures that allows this feature, that
the behavior on the measure zero Borel sets imposes some global behavior?
Since the proof in [2] uses the language of ACG∗ functions and that in [14]
uses the language of VBG∗ functions it may not be immediately clear that this
is a feature of the method used to construct the measures and not a property
merely of functions. The measure arguments in [4], [8] and [9] require different
techniques since they address the problem in higher dimensions. The simple
technique used here is adapted from [3].

§1. Let us begin by recalling the method (sometimes known as Method III)
defining the measure associated with any nonnegative interval function τ on
[a, b]. Let E ⊂ [a, b], let δ be a gauge on E (i.e., δ is a positive function defined
on E) and write

V (τ, E, δ) = sup
{∑

τ(ai, bi)
}
,

where the supremum is taken over all disjoint collections {(ai, bi)} of open
subintervals of (a, b) for which there is a point ξi ∈ E ∩ (ai, bi) satisfying
bi − ai < δ(ξi). Then write

µ∗τ (E) = inf {V (τ, E, δ) : δ is a gauge on E} .

It can be verified that µ∗τ is a metric outer measure on [a, b]. Since it is
a metric outer measure its restriction to the Borel sets is a measure µτ ; we
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call µτ the Method III measure associated with the interval function τ . If f
is continuous and monotonic and τ(a, b) = |f(b) − f(a)| then µτ is precisely
the Lebesgue-Stieltjes measure generated by f . If f is continuous and has
bounded variation then µτ is the Lebesgue-Stieltjes measure associated with
the total variation function for f . (Accounts of metric outer measures can be
found in numerous texts, for example in Bruckner et al. [6] and Edgar [10]
or [11] where also this method of construction is discussed.)

We show that all measures constructed in this manner have the Pfeffer
property, in fact that if µτ (B) is σ–finite for all Lebesgue measure zero closed
sets F ⊂ E where E is closed then µτ is σ–finite on E. In particular it follows
that if µτ vanishes on all Lebesgue measure zero subsets of E then µτ is σ–
finite on E. The method of proof uses a standard Baire category argument
and a clever construction of a measure zero Cantor set in E; it is adapted
from [2] where it is used in the setting of ACG∗ functions (cf. also Pfeffer [17,
pp. 7-8]).

Theorem 1. Let µτ be a measure constructed from an interval function τ and
let E ⊂ [a, b] be closed. If µτ is σ–finite on all closed subsets of E that have
zero Lebesgue measure, then µτ is σ–finite on E.

Proof. Let P be the set of all points x ∈ E for which µτ is non σ–finite on
E ∩ (c, d) for every interval (c, d) containing x. We claim that P is empty. If
so the theorem is easy to prove. Associated with every point x in the compact
set E is an open interval Ix so that µτ is σ–finite on E ∩ Ix. A compactness
argument reduces this open cover to a finite subcover and shows that ντ is
σ–finite on E.

Let us show that P is empty by obtaining a contradiction from the as-
sumption that P 6= ∅.

If P is nonempty then it is a perfect subset of [a, b]. Clearly P is closed.
We claim that it has no isolated points. To see this suppose that x0 is, if
possible, an isolated point of P . Then, since {x0}∩E is measure zero trivially,
µτ is σ–finite on {x0} ∩ E (i.e., it is finite). Because x0 is an isolated point
of P it follows that µτ is also σ–finite on [ai, ai+1] ∩ E for some sequence of
points ai ↗ a and it is σ–finite on [bi+1, bi] ∩ E for some sequence of points
bi ↘ a. It follows, then that µτ is σ–finite on [a1, b1] ∩ E which means that
x0 could not have been a point of P .

Continuing to assume that P 6= ∅, we choose a finite, disjoint collection

I11, I12, I13, . . .

of open subintervals of (a, b) (at least three such intervals in any case) so that
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each contains a point of P and so that∑
j

|I1j | < 1/2

(here |I| is used to denote the length of an interval I) and∑
j

τ(I1j) > 2.

The reason we can do this is that if J is any interval containing a point of P
then V (τ, P ∩ J, δ) = ∞ for any δ. For if not then µτ (P ∩ J) < ∞ and µτ
is σ–finite on each set E ∩ (ci, di) where {(ci, di)} is the sequence of intervals
complementary to P in J . But

E ∩ J = (P ∩ J) ∪
⋃
i

(E ∩ (ci, di))

and it would follow that µτ is σ–finite on E ∩ J which is not possible if J
contains a point of P .

Since V (τ, P ∩ J, δ) = ∞ for any δ, a disjoint sequence of subintervals I1,
I2, I3, . . . of J each containing a point of P can be selected with∑

k

τ(Ik)

as large as we please.
Thus, since P is perfect we can begin by selecting three disjoint intervals

J , J ′, and J ′′ each containing a point of P , and each with length less than
1/6, and find inside them enough further open subintervals to provide the
sequence I11, I12, I13, . . . containing at least three members and with the
desired properties. Now inside each interval I11, I12, I13, . . . we can apply the
same argument to find still smaller intervals.

Let us set I01 = (a, b) and proceed inductively using the same argument
at each stage. We construct disjoint intervals

Ii1, Ii2, Ii3, . . .

so that

a. each Iij is an open subinterval of some previous level interval I(i−1)k,

b. each interval contains a point of P ,
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c. each such interval I(i−1)k contains at the next level at least three such
intervals Iij and

d. for any i = 1, 2, 3, . . . ∑
j

|Iij | < 2−i

and, finally

e. for any i = 1, 2, 3, . . . and if there is an interval I(i−1)k then∑
j

{τ(Iij) : Iij ⊂ I(i−1)k} > 2i.

Define now the set
N = E ∩

⋂
i

⋃
j

Iij .

This set N is closed. Compactness of the sets ensures that it is nonempty. It
is of Lebesgue measure zero because of the requirement (e) in the construction
of the intervals.

Since N is a closed, measure zero subset of E the measure µτ must be, by
hypothesis, σ–finite on N . Let N1, N2, N3, be a sequence of disjoint Borel
subsets of N on each of which µτ is finite and whose union is all of N . Choose
a gauge δ on N so that

V (τ,Np, δ) <∞

for each p = 1, 2, 3, . . . . Let

Em = {x ∈ N : δ(x) > 1/m}

for each m = 1, 2, 3, . . . . Note that Em ↗ N . Thus the sets {Em ∩ Np} for
m = 1, 2, 3, . . . and p = 1, 2, 3, . . . form a countable cover of N . By the Baire
category theorem there is an open interval I and a member Np ∩ Em of the
cover so that Np ∩Em is dense in the nonempty portion N ∩ I. By passing to
a subinterval if necessary, we can assume that |I| < 1/m.

On the one hand, we have from the way in which we constructed the gauge

V (τ, Em ∩Np, δ) ≤ V (τ,Np, δ) <∞. (1)

But, on the other hand, since I contains points of N there must be for all
sufficiently large i some k so that I(i−1)k ⊂ I. Each interval

Iij ⊂ I(i−1)k



850 Brian S. Thomson

must contain a point of N ; since Np ∩ Em is dense in the portion N ∩ I each
such interval also contains a point ξ of Np ∩ Em. But the length of such an
interval would be smaller than I which is smaller than 1/m which is smaller
than δ(ξ). Consequently from the requirement (e)

2i <
∑
j

{τ(Iij) : Iij ⊂ I(i−1)k} ≤ V (τ, Em ∩Np, δ).

This would be valid for all sufficiently large i and that is impossible because
of (1). Thus we have reached a contradiction and completed the proof.

To express our theorem in another way we could observe that if µτ is non
σ–finite on a closed set E then µτ is non σ–finite on many closed null subsets
of E. How many? Can one say anything about the subsets of E of Hausdorff
dimension smaller than 1? For answers to these questions (and others) in Rn
for any dimension n see the interesting papers of B. Bongiorno et al. [4] and
Z. Buczolich and W. F. Pfeffer [7].

§2. We can take another perspective on the result in Section 1. Implicit in this
method of constructing a measure is a differentiation basis and the derivates
of the interval function τ play an important role in studying the measure µτ .
(For a deeper account of this role see [20].)

Define for any x ∈ (a, b), the upper derivate of τ at the point x, Dτ(x), to
be

inf
δ>0

sup
{
τ(I)
|I|

: I an open subinterval of (a, b) with x ∈ I and |I| < δ

}
.

The lemma shows that the σ–finiteness of the measure µτ , which was our
concern in the preceding section, has a great deal to do with this derivate.

Lemma. Let τ be an arbitrary nonnegative interval function and µτ the mea-
sure generated by it, let E be a Borel subset of the interval [a, b], and write

E∞ = {x ∈ E : Dτ(x) =∞}.

Then E∞ is a Borel subset of E and µτ is σ–finite on E \ E∞. If, moreover,
µτ is σ–finite on E then E∞ has Lebesgue measure zero.

Proof. The set E \ E∞ is the union of the sequence of sets

En = {x ∈ E : Dτ(x) < n}
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As easy estimate shows that µτ (En) ≤ n(b − a) and this shows that µτ is
σ–finite on E \E∞. Standard arguments suffice to show that all sets here are
Borel (cf. [20, §4.2]).

Suppose now that K is any closed subset of E∞ for which µτ (K) <∞ and
let c > 0. We may choose a gauge δ on K so that

V (τ,K, δ) ≤ µτ (K) + 1.

The collection C of all open subintervals I of (a, b) with the property that
τ(I) > c|I| and, for some x ∈ I, |I| < δ(x) is a Vitali cover of K. Thus there
must exist a disjoint sequence {Ii} ⊂ C so that

|K| ≤
∑
i

|Ii|

(here |K| denotes the Lebesgue measure of the set K). This gives us that

c|K| ≤
∑
i

c|Ii| ≤
∑
i

τ(Ii) ≤ V (τ,K, δ) ≤ µτ (K) + 1.

The inequality
c|K| ≤ µτ (K) + 1

can be valid for all c > 0 only if |K| = 0. Thus there can be no closed subsets
of E∞ of positive Lebesgue measure that have finite µτ measure. This proves
the second assertion of the lemma.

Using this lemma and Theorem 1 we can prove the following theorem
asserting a very weak condition under which a.e. finiteness of the derivate
Dτ(x) can be concluded. Prior to the conjecture of Pfeffer this condition might
have seemed impossibly weak. Higher dimensional variants of this theorem
may be found in B. Bongiorno et al. [4] and Buczolich and Pfeffer [9].

Theorem 2. Let µτ be a measure constructed from an interval function τ and
let E ⊂ [a, b] be Lebesgue measurable. If µτ is σ–finite on all closed subsets of
E that have zero Lebesgue measure, then the set

E∞ = {x ∈ E : Dτ(x) =∞}

has Lebesgue measure zero.

Proof. The set E∞ is measurable if E is and so, to prove that it has Lebesgue
measure zero, it is enough to show that every closed subset has Lebesgue
measure zero. This follows immediately from Theorem 1 and the Lemma.
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