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Abstract
It is shown that for Banach—space—valued functions the variational
Henstock integral is equivalent to the Henstock integral if and only if the
range space is of a finite dimension. The same is true for the equivalence
of the variational McShane integral and the McShane integral.

There are various ways to define the Henstock integral. The original Hens-
tock—Kurzweil definition is based on generalized Riemann sums (the H-in-
tegral). For real-valued functions this integral is known to be equivalent to
the variational Henstock integral (the V-integral, see [10]) and to the Den-
joy—Perron integral (the D,-integral, see [7]). The first of this equivalence is
a corollary of the so—called Saks—Henstock Lemma (see Lemma 1 below).

Here we are considering Henstock type integral for Banach—space-valued
functions. It was noticed by S. S. Cao in [2] that for such functions Saks—
Henstock Lemma might fail to be true. Because of that for some spaces the
V-integral is not equivalent to the H-integral. It is natural to ask what is a
characterization of those Banach spaces for which such equivalence holds.

We are showing here that for Banach—space-valued functions the V-integral
is equivalent to the H-integral if and only if the range space is of a finite
dimension. At the same time for any Banach space the V-integral is equivalent
to the Denjoy—Bochner integral.

Similar problems are considered for the variational McShane integral.

First we recall some notations and definitions. We denote by X a Banach
space with the norm || - ||, by R the real line, by [a,b] a closed interval on the
line, and by |E| Lebesgue measure of a set E.
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Let T be a collection of all closed intervals that are contained in [a,b].
A collection T of pairs (Ag, &) € Z x [a,b], i = 1,...,n, is called a partition
of the interval [a,b] if the intervals A; and A; are non-overlapping for i # j,
and UJ;_; Ax = [a,b].

Let § : [a,b] — (0, 00) be a positive function defined on [a, b]. A partition
T of [a,b] is called Henstock §-fine if every pair (A, ) € T satisfies

EeAcC(£-6(8).£+6(9)).

Definition 1. ([6]). A function f : [a,b] — X is called Henstock integrable
(H -integrable) on a closed interval [a, b] with integral value I € X if for every
g > 0 there exists a positive function ¢ : [a,b] — (0, 00) such that for every
Henstock d-fine partition T of [a, b]

|2 reonan 1)<
T

We denote I = (H) f:fdt.

A partition T of [a, ] is called McShane é-fine (§ being a positive function
on [a, b)) if every pair (A, €) € T satisfies

A C (§-0(8),€+6(8))

Definition 2. ([9]). A function f : [a,b] — X is called McShane integrable
(M -integrable) on a closed interval [a, b] with integral value I € X if for every
g > 0 there exists a positive function ¢ : [a,b] — (0, 00) such that for every
McShane d-fine partition T of [a, b]

|2 reonan - 1)<
T

We denote I = (M) f:fdt.

It is clear that M-integrability implies H-integrability. Since H-integ-
rability and M-integrability on [a,b] imply integrability on any subinterval
A C [a, b], we can define the indefinite H-integral and the indefinite M -integral
by putting F(A) = (H) [, fdt (F(A) = (M) [, fdt).

Let @ : Z X [a,b] — X be an interval- -point function. The Henstock and
the McShane variations of ® are defined as

Vi(®) = igfsngHQ(%AkH
T
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(sup is taken over all Henstock d—fine partitions T and inf is taken over all
positive functions § on [a, b]), and

Vo (®) = irgfsngH@(fk,AkH
T

(sup is taken over all McShane d—fine partitions 7' and inf is taken over all
positive functions § on [a, ]).

Note that any interval function ® : 7 — X can be considered as an
interval-point function dependent only on the first argument.

The following two definitions of variational integrals are natural extensions
of the definitions for the real-valued case (see [10]).

Functions ®1,®5 : Z x [a,b] — X are said to be Henstock variationally
equivalent if Vg (®1 — ®3) = 0.

Definition 3. A function f : [a,b] — X is called Henstock variationally
integrable (V-integrable) on [a,b] if there exists an additive interval function
F : 7 — X such that the interval-point function f(¢)|A| and F(A) are
Henstock variationally equivalent, F'(A) being the indefinite V -integral of f.

Functions ®1,®5 : Z X [a,b] — X are said to be McShane variationally
equivalent if V(&1 — &) = 0.

Definition 4. A function f : [a,b] — X is called McShane variationally
integrable (M'V -integrable) on [a, ] if there exists an additive interval function
F : 7 — X such that the interval-point function f(t)|A| and F(A) are
McShane variationally equivalent, F(A) being the indefinite MV -integral of f.

Definition 5. ([8]). A function F' : Z — X is said to be AC-function on a
set E C [a, b] if for every € > 0 there exists 6 > 0 such that for every collection
of non-overlapping closed intervals {A;}!" | with the end points belonging to
FE and with Y1 | [A;] < 6, we have Y. | [[F(A;)] <e.

Definition 6. ([8]). A function f : [a,b] — X is said to be Bochner integrable
(B-integrable) on [a,b], if there exists a function F' : T — X that is AC on
[a,b] and such that it is differentiable a. e. and F'(t) = f(¢) a. e. on [a,b],
F(A) being the indefinite B-integral of f.

Definition 7. ([1]). A function F : T — X is said to be AC*-function
on a set E C [a,b] if for every € > 0 there exists § > 0 such that for every
collection of non-overlapping closed intervals {A;}! ; with one of the end
points belonging to E and with Y7 | |A;| <&, we have Y7, [|[F(A;)| < e.

It is clear that for E = [a, b] the class of AC*-functions coincides with the
class of AC-functions.
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Definition 8. ([1]). A function F : 7 — X is said to be ACG*-function on
a set E C [a,b] if E can be represented as a union of a sequence of sets such
that F' is AC*-function on each of them.

Definition 9. ([1]). A function f : [a,b] — X is said to be Denjoy—Bochner
integrable (D.B-integrable) on [a,b], if there exists an ACG*-function F :
7 — X such that it is differentiable a. e. and F'(t) = f(t) a. e. on [a,b],
F(A) being the indefinite D, B-integral of f.

The Definitions 5 and 7 — 9 are extensions of the respective definitions for
the real-valued case (see [11]).
The following proposition is a direct corollary of the definitions.

Proposition 1. If f : [a,b] — X is V-integrable (MV -integrable) on [a,b]
then it is also H-integrable (M -integrable)on [a,b] and the indefinite integrals
coincide.

The following assertion is known as Saks—Henstock Lemma for real-valued
functions and is easily extended to the case of vector—valued functions with
range spaces being spaces of finite dimensions.

Lemma 1. ([3]). Let X be a Banach space of a finite dimension. If a function
f i [a,b] — X is H-integrable (M -integrable) with the indefinite integral
F :7 — X then for every € > 0 there exists a function ¢ : [a,b] — (0, 00)
such that for every Henstock (McShane) 0-fine partition T of [a, b]

S~ FAp)|< e

S. S. Cao (see [3]) introduced a definition of H L-integrability of a function
f :]a,b] — X which is a restriction of H-integrability by the requirement
that the assertion of Lemma 1 is valid for f. It is proved in [13] that the
H L-integral is equivalent to the D, B-integral. (The same equivalence was
stated in [1], but there was some gap in the proof which was overcome in [13].)
Since V-integrability of a function f : [a,b] — X is obviously equivalent to
the assertion of Saks—Henstock Lemma we get

Theorem 1. Let X be a Banach space. For functions taking values in X the
V-integral is equivalent to the D, B-integral.

Analogous fact for the MV-integral is the following one.

Theorem 2. Let X be a Banach space. For functions taking values in X the
MYV -integral is equivalent to the B-integral.
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The proof is the same as above. It is enough to use [4] instead of [13].
Proposition 1 and Theorems 1 and 2 imply

Proposition 2. If a function f : [a,b] — X is D, B-integrable (B-integrable)
it is also H-integrable (M -integrable) and the indefinite integrals coincide.

Now we consider the relation between the H-integral (the M-integral) and
the V-integral (the MV-integral). Our aim in the rest of the paper is to prove
the following theorem.

Theorem 3. Consider functions on [a, b] taking values in a fived Banach space
X. Then the V-integral (the MV -integral) is equivalent to the H-integral (the
M -integral) on this class of functions if and only if X is of a finite dimension.

PrOOF. The sufficiency follows easily from Lemma 1. The proof of the ne-
cessity is based on a geometric idea (see [12]) which in turn follows from the
construction by A. Dvoretzky and C. A. Rogers used in [5] to show that in
every infinite-dimensional Banach space there exists a series that is uncondi-
tionally but not absolutely convergent.

Lemma 2. ([5]). Let B be a body in R™ which is convex and has the origin
as a center and let r be an integer with 1 < r < n. Then there exist r vectors
Ay, Ag, ..., Ar € R™ on the boundary of B such that if A1, Ao, ..., A\ are any
r real numbers then

T o 1 T

> " Nid; € AB, where \* = <2+ W) Yoz
n

i=1 i=1

(AB s the set {\x, x € B}.)

Lemma 3. Let X be a Banach space of the infinite dimension. Then for
every natural number v there exist unit vectors x1,Ts,...,x, € X such that
for every numbers 01,05, ...,0, with |0;] <1,1<i<r,

s
HZ 0;x;
i=1

PrOOF. Since X is of the infinite dimension, for any n there exist linear
independent vectors z1, 22, ..., 2z, € X. Take n = r(r — 1). Consider the set of
vectors z = Y., j1;2;, where p1; are numbers such that ||z|| < 1. In Euclidean
space with the norm generated by vectors (u1, g2, - - ., ftn) they form a convex
body B having the origin as a center. According to Lemma 2 there exist

2
< 3r.
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vectors x1, s, ..., x, on the boundary of a set B with the following property:
for every numbers 01,65, ...,0, with |6;] <1,1<4i<r,
T T
Z@ixi € 0B, where 6% = 32 07 < 3r. (1)
i=1 1=1

Since for all 1 = 1,2,...,r vectors z; belong to the boundary of B they have
unit norm in X. Since ||z|| <1 for all z € B it follows from (1) that

r
HZ 0;x;
i=1

2
< 3r.

O
Now we can complete the proof of the necessity in Theorem 3. For sim-
plicity we suppose [a,b] = [0,1]. Let C' be the Cantor ternary set, (al,bl),
r > 0,1 <4< 2" being the intervals of rank r contiguous to C (we have
b —al =37""1) and d7 being the middle points of the intervals (af,b7).
Assume that X is of the infinite dimension. According to Lemma 3, for
every r we may construct vectors x7,z5, ..., zh. € X such that

1 .
||J):|| = or’ 1<i<2,

and for every numbers 07,65, ..., 05, with |07] < 1,1 <i<2",

2
<3
= o

or

T, T

HZ 0; x;
i=1

Define the function f : [0,1] — X in the following way

0,ifteCort=d;, r>0,1<i<2"
f@)=9 2-3"f,ift € (af,dj), r>0,1<i<2",
—2.3"27 if t € (dI, b)), r>0,1<i<?.

It is proved in [12] that this function is M-integrable (and consequently H-
integrable) and its indefinite integral F'(A) is not an ACG*-function. Hence
in view of the Proposition 2 function f is not D, B-integrable (and is not B-
integrable) and therefore Theorems 1 and 2 imply that f is not V-integrable
and is not M V-integrable. This completes the proof. O
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