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CONSTRUCTION OF MEASURE BY MASS
DISTRIBUTION

Abstract

In this note we show that a measure can be constructed on an arbi-
trary set by iterated arbitrary mass distribution over arbitrary subsets
of the set.

A Borel outer measure on R™ is an outer measure p on R™ whose o-
algebra M of pu-measurable subsets of R™ contains the Borel o-algebra By« .
The restriction of a Borel outer measure 1 on R™ to the o-algebra M is then a
measure on this o-algebra which contains all the Borel sets in R™. K. Falconer
[3] describes a method of constructing a Borel outer measure on R™ by repeated
mass distributions. (What is called a measure in [3] is an outer measure in our
terminology.) The process of mass distribution may be described as follows.

Let E be a bounded Borel set in R™. Let & = {E}. For k =1,2,..., let
& be a collection of disjoint Borel subsets of E such that each member U of
& is contained in one of the members of £,_1 and contains a finite number
of members of &1 and the maximum diameter of the members of & tends
to 0 as k — oo. It is not required that a member of & is equal to the union
of the members of &1 it contains. Let us assign a mass u(F) € (0,00) to
the set E. Subdivide this mass between the members Uy,...,U,, of & in
such a way that > ;" u(U;) = p(E). For each set U in &, subdivide the
mass p(U) between the members Uy, ..., U, of & contained in U in such a
way that 337, u(Uj) = p(U). We repeat this subdivision of mass indefinitely.
Consider the sequence (& : k € Zy), where Z = {0,1,2,...}, of collections
of Borel subsets of E. For each k € Z,, let E}, be the union of the members of
Ek. Then (Ey : k € Z4) is a decreasing sequence and (R"\ Ej, : k € Z) is an
increasing sequence. We set u(R™\ Ey) = 0 for every k € Z;. The collection
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€ of all sets in & and R™\ Ej, for all k € Z is a covering class for R™ in the
sense that there exists a sequence in £ the union of whose members is equal
to R™. Let P(R™) be the collection of all subsets of R™. If we define a set
function p on P(R™) by setting for every A € P(R™)

p(A) =inf {3, pu(Us) : AC Ujen Ui and U; € €},

then p is a Borel outer measure on R™ and the support of the measure y on
the o-algebra M is contained in ﬂkez+ E.

A net N of subsets of R™ is a subcollection of P(R™) with the property
that if V4,Vo € A then either ViNVo =P orelse V; C Vo or Vo C V4. In
Falconer’s construction of a measure on Bgr by mass distribution described
above, the mass is distributed over a net of subsets of R”.

A covering class V of subsets of R” is a subcollection of P(R™) such that
0 € V and there exists {V; : i € N} C V such that |J, cy Vo = R™.

A premeasure v on R” is a nonnegative extended real-valued set function
on a covering class V of subsets of R™ such that () = 0. Given a premeasure
v defined on a covering class V of subsets of R", a set function p on P(R™)
defined by setting for every E € P(R"™)

u(E) =inf {3, cnv(Vi): (VizieN) CV,U;en Vi D E},

is an outer measure on R"™. Restriction of u to the o-algebra M of u-
measurable subsets of R™, that is, £ € P(R") satisfying the Carathéodory
condition

w(A) =p(ENA)=u(E°NA) forevery A € P(R"),

is the a measure generated by the premeasure . In general, the o-algebra M
may not contain the covering class V on which the premeasure  is based. If
the covering class V is a semialgebra of subsets of R™ and ~ is additive on V
then ¥V C M and if y is countably additive on the semialgebra V then we have
v =pon V.

A net measure is a measure generated by a premeasure whose covering class
is a net. Thus Falconer’s measure on Bg~ constructed by mass distribution is
a net measure on R™.

Net measures are a useful tool in the study of Hausdorff measures. A. S.
Besicovitch [1] constructed net measures comparable to a Hausdorff measure
H*® on R™ to show that any closed set of infinite H®-measure contains subsets
of positive and finite H*-measure. For a treatise of comparable net measures
we refer to K. Falconer [2].
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In this article we show that a measure can be constructed on an arbitrary
set X by mass distribution on a sequence (Dy, : k € Z;) of successive decom-
positions of X into arbitrary subsets. We show that the collection of subsets
of X resulting from the decompositions (D, : k € Z,) together with @) con-
stitute a semialgebra of subsets of X and an arbitrary mass distribution over
these sets is a countably additive set function on the semialgebra. This set
function is then extended to be a measure on the o-algebra generated by the
semialgebra.

A collection S of subsets of a set X is called a semialgebra if it satisfies
the following conditions:

1° 9,XeS,
2° ifE,FeS, then ENF €S,
3° if E €S, then E° is a finite disjoint union of members of S.

It follows that a finite union of members of S is always equal to a finite dis-
joint union of members of S. The collection of all finite unions of members
of a semialgebra S is equal to the algebra a(S) generated by S, that is, the
smallest algebra of subsets of X containing S.

Let u be a nonnegative extended real-valued set function on a semialgebra S
of subsets of a set X with p(@) = 0. We say that p is finitely additive on S
if for every finite disjoint collection {E1,..., E,} of members of S such that
U, Ei € S we have u(U!, Ei) = i, u(E;). We say that p is count-
ably additive on § if for every countable disjoint collection {F, : n € N} of
members of S such that |J,,cyy En € S we have pi( U, ey En) = 2 nen (En).

For A € «(S) given as a finite disjoint union of member Ei,..., E, of
S, let us define u(A) = Y1, pu(E;). Then p is finitely additive on «(S) if
and only if y is finitely additive on S and p is countably additive on «(S) if
and only if p is countably additive on S. According to the Hopf Extension
Theorem, if a nonnegative extended real-valued set function p on an algebra
A of subsets of a set X with p()) = 0 is countably additive on A then p is
extendible to a measure on the o-algebra o(A) generated by A, that is, the
smallest o-algebra of subsets of X containing .A. Moreover the extension of
to a measure on o(S) = o(a(S)) is unique when p is o-finite on S. For proofs
of these statements regarding an extension of a set function on a semialgebra
S to a measure on the o-algebra o(S) = o(a(S)) we refer to [4].

Definition 1. Let X be a non-empty set. Let (Dy : k € Zy) be a sequence of
decompositions of X into arbitrary subsets of X and let v be a set function on
Ukez, Pr- We call (UkeZ+ Dy,7) a mass distribution on X if (D : k € Z.)
and 7y satisfy the following conditions;
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1° For each k € Z4, Dy is a finite disjoint collection of non-empty subsets
of X whose union is equal to X.

2°  For each k € Zy, Diy1 is a refinement of Dy, that is, every member of
Dy, is a union of some members of Dy

3° Dy={X}.

4° ~(X) € (0,00).

57 y(E) €[0,00) for every E € Uyez, Di-

6°  y(E) = >F  v(E;) for every E € Dy such that E = \Ji_, E; where
{Ela teey Ep} C Dk—i—l'

Lemma 2. Let (Uk,€Z+ Dk,’y) be a mass distribution on a non-empty set X.
Let S = {0} UUyez, Dr and let (0) = 0. Then we have:

(a) S is a semialgebra of subsets of X.

(b) If E,F € S then either ENF =0 orelse ECF or FCE.

(¢) v is a countably additive set function on the semialgebra S.

Proof. 1. Let us show that S is a semialgebra of subsets of X. Clearly
0, X € S. Let us show that S is closed under intersections. Let E,F € S.
If at least one of the two sets is the empty set then their intersection is the
empty set which is a member of §. Suppose neither of the two sets £ and
I is the empty set. Then E, F ¢ UkeZ+ Dy so that £ € D, and F € D,
for some m,n € Z,. We may assume without loss of generality that m < n.
If m = n then E,F € D, so that either E = F sothat ENF =F € S
or ENF =0 € S. Now consider the case m < n. In this case F € D,, is
contained in a member of D,,. If our £ € D,, is the member of D,,, containing
F then ENF = F € §. If E does not contain F' then F' is contained in
another member of D,,, which is disjoint from E so that ENF =@ € S. This
shows proves that S is closed under intersections. We have shown also that if
E,F € S then either ENF =0orelse EC For FCE.

Let us show that for every E € S the complement E° is a finite disjoint
union of members of S. Let E € S. If E = () then E¢ = X € S so that E¢ is
trivially a finite disjoint union of members of S. If E # () then E € Ukez+ D
so that F € Dy, for some k € Z. Then since Dy, is a finite disjoint collection
of sets the union of all of which is equal to X, E° is equal to the union of
all the members of Dy other than E. Then E° is a finite disjoint union of
members of S. Thus we have verified (a) and (b).

2. Let us show that ~ is countably additive on S, that is, if (E, : n € N)
is a disjoint sequence in S such that .y En € S then Y (v(E,) =
Y(U,en En)- Since y(0) = 0, it suffices to consider the case (E, : n € N) C
Ukez, Dr- Now y(X) € (0,00). Let J = [0,7(X)), an interval in R with
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length ¢(J) = v(X). Let J be the collection of all left-closed and right-open
subintervals of J. We construct below that a mapping ¢ of UkeZ+ Dy, into J
satisfying the following conditions:

1° ¢ is one-to-one,
2° if Eq,FEs € Uk€Z+ Dy and E; D Ey then ¢(Eq) D ¢(Es),
3° if E17E2 € Uk6Z+ Dk and E1 N E2 = @ then (p(El) n QD(EQ) = @,

4° U(p(E)) =~(E) for E € Ukez, Dr-

Consider Dy = {E11,...,F1 p,}, a finite disjoint collection of non-empty
subsets of X such that JI2, By j = X and 7% | 7(Ey ;) = v(X). Decompose
J into po disjoint left-closed and right-open subintervals of J, {J11,...,J1 p, }
with £(J1 ;) = vy(E1,;) for j =1,...,po so that

Po Po

D UTy) = A(Ery) =y(X) = ().

j=1 j=1
We define a mapping ¢ of D; into J
@(El,j) = J17j for j = 1, ... P0-

Next consider Ds, a refinement of D;. Thus each E ; in D; is decomposed
into a subcollection {E1 ;1,..., E1;p, ,} of Da. By the definition of v we have
?1:11 Y(E145) = Y(Er)- Decompose Ji,; = ¢(E1;) into py,; disjoint left-
closed and right-open intervals {J1;1,...,J1ip,,} With £(J1,;) = v(E1)
for j =1,...,p1,;. Then we have

P1,i P1,i

Zé(Jl,i,j) = Z'Y(El,i,j) =y(E1:) = £(J1,4)-

We define we extend the definition of ¢ to Dy by setting
QD(ELi,j) = Jl,i,j for j = 1, <oy D1

We extend the definition of ¢ to D3 in the same manner and so on for Dy, for
k € Zy. The mapping ¢ thus defined on U,CeZ+ Dy, satisfies conditions 1° to
4°.

Let us show the countable additivity of the set function v on the semi-
algebra S. Let (E, : n € N) be a disjoint sequence in J;c;, Dy such that

Unen En € Ugez, Di- Then (p(E,) : n € N) is a disjoint sequence in J and
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©(Unen En) € J. Let (R, M, 11, ) be the Lebesgue measure space on R. By
the fact that J C M, and the fact that u, (J) = £(J) for J € J, we have

()Y e )
_ uL( U @(En)) => . (p(En))

neN neN
neN neN
This proves the countable additivity of « on the semialgebra S. O

Theorem 3. Let (UkEZ+ Dk,'y) be a mass distribution on a non-empty set
X. Let S = {0} UUyez, Dr and let v(0) = 0. Then there exists a measure
space (X,0(S), 1) such that p=-~ on S.

Proof. By Lemma 2, v is a nonnegative real-valued countably additive set
function on the semialgebra S of subsets of X with v(@)) = 0. Thus ~ has
a unique extension to a measure p on o(S). (See Theorem 21.10, [4] for
instance.) O

As an example of constructing a measure on an arbitrary set by mass
distributions let us consider the space of infinite sequences of finitely many
objects. Let A = {ay,...,an}. Let X be the collection of all infinite sequences
of elements of A given by

(an, :n €N) wheren; =1,...,m for n € N. (1)

For k € N consider the k-term sequences of elements of A given by

(anl,...,ank) where n; =1,..., mforn=1,... k. (2)
There are m”* such sequences. Let E[am, .. .,ank] be the collection of all
elements of X whose first k£ entries are (am et ,ank), that is,

Elan,, .. an, | ={(sn :n€N) € X : (s1,...,5) = (Anys-- - an, )} (3)
For k£ € N let

Dk:{E[am,...,ank];nj =1,....m forn:l,...,k} (4)
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and let

Do = {X}. (5)
Then for each k € Z,, D}, is a collection of m* disjoint non-empty subset of
X. Moreover every member F [anl e ,ank] of D;. is the union of m members

of Dy41, that is,
E[am,...,ank] :E[anl,...,ank,al} U---UE[anl,...,ank,am}. (6)

Thus our (Dy, : k € Z,) satisfies conditions 1°, 2° and 3° of Definition 1.

Let us define a set function  on the semialgebra S = {0} U Uz, D as
follows. Let p1,...,p, be arbitrary positive numbers satisfying the condition
S pi=1. Let 4(0) =0, v(X) = 1 and for E|an,,...,an,| € Dy let

’Y(E[anla"wank]) :pn1 pnk

Then for a decomposition of [anw ... ,ank_] into m members of Dy as given
by (6) we have

m m

’Y(E[a'nlv"wa'nk}) :p'rL1 prLk : sz = Z’Y(E[an17~-~7ank7ai})'
i=1 i=1

This shows that v satisfies conditions 4°, 5° and 6° of Definition 1. Thus by
Theorem 3 the set function v can be extended uniquely to be a measure p on
the o-algebra o(S) generated by the semialgebra & = {0} U U,€€Z+ Dy, with
n(X) =1.
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