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Abstract

In the whole article, the function is understood as the real valued
function of real variables. It is well known that the construction of
semicontinuous functions is possible either as a limit (in the sense of
pointwise convergence) of the monotonous sequence of continuous func-
tions or with assistance of the certain system of associated sets. In the
first case a good understanding of the constructed function is obtained.
However in the second case the Darboux property of semicontinuous
function is assured when certain requirements on the system of associ-
ated sets are satisfied. Therefore the combination of both approaches
seems to be the optimal method when a semicontinuous function with
Darboux property is constructed. Such a combined method is used when
the main theorem of this paper is proven. Later, the validity of the main
theorem helps us to address the problem published by J. G. Ceder and
T. L. Pearson in [2].

Let the family of Baire 1 functions be denoted by B1, the family of func-
tions having the Darboux property be denoted by D and the family of lower
and upper semicontinuous functions be denoted by lsc and usc respectively.
Notation DB1 is used for D∩B1 and Dlsc for D∩ lsc. The set A is bilaterally
c-dense in the set B ( A ⊂c B ) iff for each x ∈ A the sets (x, x+ δ) ∩ B,
(x− δ, x) ∩B are nondenumerable for every δ > 0.
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Theorem 1. Let E be a set of type Fσ such that the interval I = [0, 1]
is bilaterally c-dense in E (for points 0 and 1 we require only unilateral c-
dense). Then for every function f ∈ lsc defined on [0, 1] there exists a function
g ∈ Dlsc such that

g < f on E

g = f on [0, 1] \ E.

In the proof of Theorem 1 the assertion of the following lemma is used.

Lemma 2. Let a Borel set E be bilaterally c-dense-in-itself and let X be a
closed subset of E. Then there exists a perfect set P such that X ⊂c P ⊂ E.

Proof. The proof of the lemma follows from the fact that each nondenumer-
able Borel set contains a nonempty perfect set [3].

Now we can proceed with the proof of Theorem 1.

Proof. E is a set of type Fσ and thus E =
∞⋃
i=1

Fi , where each Fi is a closed

sets. Without loss of generality it can be assumed that F1 ⊂ F2 ⊂ . . . If
the function f ∈ lsc then a sequence of continuous functions f1 ≤ f2 ≤ . . .
exists, such that it pointwise converges to the function f . Let’s construct an
increasing sequence of functions gn as

gn = fn −
1
n
, n = 1, 2, . . .

Evidently, the inequality gn < f holds and the sequence gn again converges to
the function f . Moreover, let εn, where n = 1, 2, . . . , be a sequence of positive
real numbers such that εn → 0. Functions gn are uniformly continuous on
[0, 1]. Thus the sequence εn determines a sequence of positive numbers δn
such that for every x1, x2 ∈ [0, 1]

|x1 − x2| < δn =⇒ |gn(x1)− gn(x2)| < εn. (?)

Following Lemma 1, let P1 be a perfect set, F1 ⊂c P1 ⊂ E and let P1 be
associated to the function g1. Similarly, let P2 be a perfect set, (F2 ∪ P1) ⊂c
P2 ⊂ E and let P2 be associated to g2 and continue inductively with Pi,
i = 3, 4, . . . Suppose Pi is already defined as a perfect set associated with the
function gi, then Pi satisfies the conditions

P1 ⊂c P2 ⊂c P3 ⊂c . . . , E =
∞⋃
i=1

Pi
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and a sequence of associated functions gi satisfies conditions

g1 < g2 < g3 < . . . < f, gi → f.

The set E is dense in [0, 1], and therefore Pi can be required to satisfy the
condition

dist(x, Pi) < δi for every x ∈ [0, 1] . (??)

If the perfect set Pi+1 is in the form

Pi+1 = [0, 1] \
∞⋃
k=1

(ai+1
k , bi+1

k ),

then evidently it is true that

Pi ⊂c [0, 1] \
∞⋃
k=1

[
ai+1
k , bi+1

k

]
⊂c Pi+1.

According to Lemma 2, there exists a perfect set Pi+ 1
2

such that

Pi ⊂c Pi+ 1
2
⊂c Pi+1.

Let the function
gi+ 1

2
= gi +

1
2

(gi+1 − gi)

be associated to the set Pi+ 1
2
. By continuing this way, perfect sets Pi+ m

2n
can

be found for every i, n,m (where i = 1, 2, . . . ;n = 1, 2, . . . ; 0 < m < 2n) such
that

Pi ⊂c Pi+ 1
2n
⊂c Pi+ 2

2n
⊂c . . . ⊂c Pi+ m

2n
⊂c Pi+m+1

2n
⊂c . . . ⊂c Pi+1,

and associated functions

gi+ m
2n

= gi +
m

2n
(gi+1 − gi) ,

for which following inequalities hold

gi < gi+ 1
2n
< gi+ 2

2n
< . . . < gi+ m

2n
< gi+m+1

2n
< . . . < gi+1.

Finally, for each real α ≥ 1, i ≤ α < i+ 1, the closed set Pα can be defined as

Pα =
⋂

α<i+ m
2n

Pi+ m
2n
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and associated function

gα = gi + (α− i) (gi+1 − gi) .

Thus for every α ≥ 1 there is a closed set Pα and associated continuous
function gα satisfying conditions

Pα1 ⊂c Pα2 , and
gα1 < gα2 , if α1 < α2.

This follows from the definitions of sets Pα1 , Pα2 and functions gα1 , gα2 . If
α1 < α2, then let i, n,m be chosen such that

α1 < i+
m

2n
< i+

m+ 1
2n

< α2.

Then
Pα1 ⊂ Pi+ m

2n
⊂c Pi+m+1

2n
⊂ Pα2

and therefore Pα1 ⊂c Pα2 . A similar argument proves that gα1 < gα2 . Finally,
let’s define function g as

g(x) = gα(x)(x), if x ∈ E, α(x) = min {α : x ∈ Pα} ,
g(x) = f(x), if x /∈ E

and show that g has following properties:

(1) g ∈ lsc

(2) g ∈ D

(3) g = f on [0, 1] \ E g < f on E.

and thus meets the assertion of Theorem 1.

(1) The function g is lsc iff for every x0 ∈ I and for arbitrary sequence
xn → x0, lim infxn→x0 g(xn) ≥ g(x0). Suppose that there exists a
sequence xn, where n = 1, 2, . . ., that converges to a point x0 in such a
way that the sequence g(xn)→ λ < g(x0). If x0 ∈ P1, then the definition
of the function g together with continuity of function g1 implies

g(xn) ≥ g1(xn)→ g1(x0) = g(x0).

However, it contradicts the assumption that

g(xn)→ λ < g(x0). (1)
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If x0 /∈ P1, then g1(x0) < λ < g(x0) and evidently λ < gα(x0) < g(x0)
for certain α > 1. With respect to the continuity of the function gα,
for sufficiently large n, n > n0, the inequality g(xn) < gα(xn) holds for
every n > n0, which implies xn ∈ Pα. Then, x0 ∈ Pα since the set Pα is
closed, and by the definition of the function g we have gα(x0) > g(x0).
However, this contradicts λ < gα(x0) < g(x0).

(2) Since the function g ∈ lsc ⊂ B1, it is sufficient to show [1] , that for each
x0 there exist sequences xn ↑ x0 and yn ↓ x0 (for points 0 and 1 we
require only one of these sequences) such that

g(x0) = lim
xn→x0

g(xn) = lim
yn→x0

g(yn).

Two cases can be assumed. Either x0 ∈ E or x0 /∈ E. If x0 ∈ E,
then there exists an integer i0 and a real number α0 ∈ [0; 1) such that
x0 ∈ Pi0+α0 and x0 /∈ Pα for α < i0 + α0. Hence g(x0) = gi0+α0

(x0).
Assume a sequence αn that satisfies

αn ↓ α0, i0 ≤ i0 + α0 < i0 + αn < i0 + 1, n = 1, 2, . . .

Since Pi0+α0 ⊂c Pi0+αn we may find sequences xn ↑ x0 and yn ↓ x0

where xn, yn ∈ Pi0+αn . The last implies g(xn) ≤ gi0+αn(xn) as well as
g(yn) ≤ gi0+αn(yn). The sequence of continuous functions gi0+αn , n =
1, 2, . . . uniformly converges to the continuous function gi0+α0

. Therefore

lim
xn→x0

g(xn) = lim
n→∞

g(xn) ≤ lim
n→∞

gi0+αn(xn) = g
i0+α0

(x0) = g(x0).

Since the function g ∈ lsc, the following holds

lim
xn→x0

g(xn) ≥ g(x0)

which implies limxn→x0 g(xn) = g(x0). The same is true for the sequence
yn. If the second case x0 /∈ E is assumed, then x0 /∈ Pi for every

i = 1, 2, . . . Let Pi = [0; 1] \
∞⋃
k=1

(
aik; bik

)
and let x0 ∈

(
aiki ; b

i
ki

)
. In

this case xi is chosen such that xi = aiki . Evidently xi ∈ Pi. However
xi /∈ Pα, α < i; that is gi(xi) = g(xi). According to (?) and (??), for
every i = 1, 2, . . .

|xi − x0| < δi,

|g(xi)− gi(x0)| = |gi(xi)− gi(x0)| < εi.



428 Robert Menkyna

Thence xi ↑ x0 and
lim
xi→x0

g(xi) = g(x0).

because gi(x0) −→ f(x0) = g(x0). If yi = biki is chosen, then by the
same arguments

yi ↓ x0, lim
yi→x0

g(yi) = g(x0).

(3) If x ∈ E then there exists i, such that x ∈ Fi ⊂c Pi. Consequently, by
definition of the function g, the inequality

g(x) ≤ gi(x) < f(x)

holds. If x /∈ E, then again by the definition of g, the equality f(x) =
g(x) holds.

In paper [4] Ibrahim Mustafa answers some of the questions posed by J.G.
Ceder and T.L. Pearson in [2] by the theorems stated below.

Theorem 3. If f is a bounded, lower semicontinuous function, then there ex-
ists a bounded, Darboux lower semicontinuous function g such that {x : f(x) 6= g(x)}
is a first category null subset of I and f(x) ≤ g(x) for all x ∈ I.

Theorem 4. Let g1 and g2 be two bounded, Darboux lower semicontinuous
functions such that g1 < g2 on I. Then there exists a bounded, Darboux lower
semicontinuous function g such that g1 < g < g2 on I.

However, these theorems are valid even though the assumption on bound-
edness of function is relaxed.

Theorem 5. If f ∈ lsc, then there exists a function g ∈ Dlsc such that
{x : f(x) 6= g(x)} is a first category null subset of I and f(x) ≤ g(x) for all
x ∈ I.

Proof. The proof is an immediate consequence of Theorem 1.

Theorem 6. Let g1 and g2 be two Dlsc functions such that g1 < g2 on I.
Then there exists a Dlsc function g such that g1 < g < g2 on I.

Proof. Since the function f = 1
2 (g1 + g2) ∈ lsc, then there exists a sequence

of continuous functions f1 ≤ f2 ≤ f3 ≤ . . . , fn ↑ f. A sequence of associated
sets can be defined as

Fn =
{
x ∈ I; g1(x) ≤ fn(x)− 1

n

}
, n = 1, 2, . . .
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It is true that g1 − fn ∈ lsc. Therefore the sets Fn are closed and moreover
it is possible to prove that Fn ⊂c Fn+1 for every n = 1, 2, . . . The function
g1 ∈ Dlsc ⊂ DB1, therefore for an arbitrary x0 ∈ Fn there exists a perfect
road of the function g1 at the point x0 (see [1]); i.e., a perfect set P such that
x0 is a bilateral point of accumulation of P and g1/P is continuous at x0.
Inequality g1(x0) ≤ fn(x0) − 1

n < fn+1(x0) − 1
n+1 implies the existence of a

neighborhood U(x0) such that g1(x) ≤ fn+1(x)− 1
n+1 for every x ∈ U(x0)∩P ,

hence Fn ⊂c Fn+1. It might be the case that the first elements of sequence
Fn are empty sets. However, empty sets are not taken into account and only
a subsequence of nonempty sets is assumed. Let sequences of positive real
numbers εn, δn, n = 1, 2, . . . be defined in the same way as in the proof of
Theorem 1, which for every x1, x2 ∈ [0, 1],

|x1 − x2| < δn =⇒ |fn(x1)− fn(x2)| < εn.

Now, a sequence of closed sets Pn, n = 1, 2, . . . is going to be constructed. Let
P1 be a closed null subset of F1 such that

dist(x, P1) < δ1 for every x ∈ F1.

In the next step let P2 be a perfect null subset of F2 such that

dist(x, P2) < δ2 for every x ∈ F2,

and let P1 ⊂c P2. By iteration of this process a sequence of perfect sets
Pn ⊂ Fn, n = 2, 3, . . .

P1 ⊂c P2 ⊂c P3 ⊂c P4 ⊂c . . .

dist(x, Pn) < δn for every x ∈ Fn,
and a sequence of associated continuous functions fn,

g1(x) < fn(x) for every x ∈ Pn,

is obtained. Similarly as in Theorem 1, we define for every real α ≥ 1 a closed
set Pα and associated continuous function fα and consequently a function g

g(x) = fα(x)(x), if x ∈
∞⋃
n=1

Pn, α(x) = min {α : x ∈ Pα} ,

g(x) = f(x), if x /∈
∞⋃
n=1

Pn.

For the function g defined in such a way, it may be shown that g ∈ Dlsc,
g1 < g ≤ f < g2. Moreover, because we choose null sets Pn that are nowhere
dense, then the functions g and f are identical except over the first category
null subset of I.
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