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KMS STATES, ENTROPY, AND A
VARIATIONAL PRINCIPLE FOR

PRESSURE

Abstract

We relate the concepts of entropy and pressure to that of KMS states
for C∗-algebras. Several different definitions of entropy are known in our
days: the one we present here is quite natural, extending the usual one
for Dynamical Systems in Thermodynamic Formalism Theory, being
basically obtained from transfer operators (also called Ruelle operators)
and having the advantage of being very easily introduced. We also
present a concept of pressure as a min-max principle.

Later on, we consider the concept of a KMS state as an equilibrium
state for a potential, in the context of C∗-algebras, and we show that
there is a relation between equilibrium measures and KMS states for
certain algebras arising from a continuous transformation.

1 Introduction and Main Result.

We want to relate equilibrium measures from the theory of Thermodynamic
Formalism with KMS states, their analogues in the C∗-algebras theory. Nowa-
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days, several different definitions of entropy are known (see [19]). The defini-
tion we present here is quite natural and extends the usual one for Dynamical
Systems in Thermodynamic Formalism Theory (see [14]), being basically ob-
tained from transfer operators, and having the advantage of being very easily
introduced. Later on (Section 3), we interpret the concepts of entropy and
pressure in the setting of commutative C∗-algebras.

Finally, we consider the concept of a KMS state as an equilibrium state
for a potential (in the context of C∗-algebras) and show that they are related
to the equilibrium measures of the Thermodynamic Formalism Theory. This
problem, in a similar context, was also considered in [22], and [11].

In the next section we describe briefly the main prerequisites for the state-
ment of our main result, which is stated and proved in the last section.

2 Review of Thermodynamic Formalism
and C∗-algebras.

First we present the main concepts of the theory of Thermodynamic Formal-
ism, a mathematical theory initially developed by D. Ruelle and Y. Sinai and
inspired by problems borrowed from Statistical Mechanics.

We denote by C(X) the space of continuous real functions of X, where
(X, d) is a compact metric space and consider the Borel sigma-algebra over
X. Given a continuous transformation T : X → X, we denote by M(T ) the
set of invariant probabilities ν for T, that is, those probabilities satisfying∫
f ◦ T dν =

∫
f dν, for every f ∈ C(X).

From now on, suppose that T is an expanding map (see definition in [26]).
We refer the reader to [24], [26], and [25] for general definitions and properties
of Thermodynamic Formalism, as well as expanding maps; for these maps
there are many nice results (see [26]).

Typical examples of such expanding maps are the shift transformation T
of the Bernoulli space Ω = {1, 2, . . . , d}N, as well as the C1+α-transformations
of the unit circle satisfying |T ′(x)| > c > 1, for some constant c, where | · |
denotes the usual norm (associating the unit circle to the interval [0, 1) in a
standard way).

Our results also apply to the following type of expanding maps (see [1],
and [16]): the geodesic flow of a compact constant negative curvature surface
induces a Markov transformation G of the boundary of the Poincaré disk such
that, for some n, the iterate Gn = T is a continuous expanding transformation
acting on the unit circle.

For each ν ∈ M(T ), let h(ν) denote the Shannon-Kolmogorov entropy of
ν (see [20]). This entropy measures the dynamic complexity of the action of
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the transformation T on sets of measure one. One interesting problem is to
consider the maximal entropy among invariant probabilities, that is, h(T ) =
sup{h(ν) | ν ∈M(T )}, called the topological entropy of T . A probability that
attains such a supremum value is called a measure of maximal entropy.

This way, we are looking for the probability with the largest complexity.
In the case of the Bernoulli space Ω = {1, 2, . . . , d}N, the maximal value of the
entropy of invariant probabilities is log d, and there is a unique probability µ
that attains such a value. In this case, the maximal entropy measure µ is the
independent probability with weights 1/d.

One of the main principles of physics is that nature maximizes entropy. In
statistical mechanics, the maximal entropy measure µ corresponds to what is to
be expected at infinite temperature (see [24], and [26]). When the temperature
is finite, nature maximizes pressure. A probability that maximizes pressure
is called a Gibbs probability (or state). In fact, there exists an external po-
tential A : Ω → R which describes the interaction A(w) = A(w0, w1, w2, . . .),
with w = (w0, w1, w2, . . .) ∈ Ω, around neighborhoods in the lattice Ω =
{1, 2, . . . , d}N.

The simplest case occurs with this potential being a function A(w) which
depends only on a finite number of coordinates; for example, on two coordi-
nates, A(w) = A(w0, w1), when we get a finite range iteration potential. These
types of potentials are more easily dealt with, but the more important poten-
tials, for mathematical applications, are those that depend on entire sequences
w = (w0, w1, w2, . . .) ∈ {1, 2, . . . , d}N.

A common example in statistical mechanics occurs with d = 2, when we
associate 1 to the spin + and 2 to the spin −. An element w in this Bernoulli
space could be, for instance, w = (+ − − + − + − + + . . .), that is, an
element with spin up or down in different positions of a lattice over the set
N. The Gibbs probability for A describes the probabilities of the Borel sets of
the space {+,−}N that are determined by the interactions given by A.

As in statistical mechanics, we may also consider an extra real parameter
β = 1/τ, where τ represents the temperature.

Definition 2.1. Given a potential A, the pressure of A at temperature τ =
1/β is given by

P (β A) = sup
{
h(ν) + β

∫
Adν

∣∣∣∣ ν ∈M(T )
}
.

A measure µ = µA satisfying such a supremum is called a Gibbs state for A
at temperature τ . This probability µA, also called an equilibrium state for A,
describes what is physically observable, in probabilistic terms (see [24]). When
β = 1, we simply write P (A). When β = 0, which corresponds to A = 0, we
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get the case of infinite temperature, and the Gibbs state is the independent
probability mentioned earlier.

If the potential A is Hölder, which corresponds to a fast decay of interaction
between neighborhoods, the Gibbs state µA is unique (see [25], and [20]).

For a differentiable transformation T : S1 → S1 of the unit circle S1 (or
an interval), a very important potential to consider is A(x) = − log T ′(x),
when −

∫
log T ′(x) dµ(x) measures the µ-mean sensibility with respect to ini-

tial conditions. In this case, the measure µ that maximizes pressure is called
the Bowen-Ruelle-Sinai probability (see [18]).

For more general transformations of the unit circle we may consider an
extra parameter β (which now has nothing to do with temperature) and
the potentials β(− log T ′). A special value of β, namely the one for which
P (−β log T ′) = 0, is associated to the Hausdorff dimension of sets that are
important for the dynamical viewpoint (see [26], and [17]).

Applications to geometry, the dimension of fractals, zeta functions, as well
as others, may be found in [3], [1], [17], [20], and [16].

The main tool for obtaining the Gibbs probability is the Ruelle operator,
which is called the transfer operator in statistical physics. Let us consider the
general setting.

Definition 2.2. Given a potential A : X → R, the Ruelle operator, or transfer
operator, LA : C(X)→ C(X) is given by

LA(f)(x) =
∑

T (z)=x

eA(z) f(z),

for each continuous f : X → R, and any x ∈ X.

We may also consider the dual Ruelle operator L∗A, acting on measures over
the Borel sigma-algebra of X. When A is such that LA(1) = 1, we say that
the potential A is normalized; in this case, if ν is a probability, L∗A(ν) is also
a probability. If A is Hölder, then the Ruelle operator also acts on the space
H = Hα of α-Hölder functions taking complex values (with fixed 0 < α ≤ 1).

We will now state a main result of this theory in the particular setting of
Bernoulli spaces (see [25], and [20]), which is a more advanced version of the
Perron Theorem for positive matrices.

Theorem 2.1 (Ruelle). If A : {1, 2, . . . , d}N → R is Hölder, then there exist a
maximal eigenvalue λ and an associated Hölder eigenfunction φ for LA, that is,
LA(φ) = λφ. Moreover, λ is isolated in the spectrum of the operator LA, and
there exists an eigen-probability ν such that L∗A(ν) = λ ν. Finally, the Gibbs
state probability µA for A is given by µA = φ ν (after suitable normalization).
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We point out that when A depends only on two coordinates, Ruelle’s The-
orem is a consequence of Perron’s Theorem for positive matrices (see [20]).

There is a different way to compute the entropy, via the Perron operator
acting on different potentials.

Theorem 2.2 ([14]). Let B+ denote the set of Borel positive functions of Ω.
Given µ ∈M(T ) and a Hölder potential A, the entropy of µ is given by

h(µ) = inf
f∈B+

∫
log
(
PAf

A f

)
dµ.

This result shows that we may avoid the dynamical viewpoint of entropy
(considering partitions of the Bernoulli space, refinements of the partition by
iterations, and so on) and address all the computations to the action of the
Ruelle operator. This turns out to be quite useful for the generalization to C∗-
algebras, where there is no natural dynamics involved, and where a dynamics
based definition would be quite complicated.

There is also a different way to compute pressure, via a min-max principle.

Theorem 2.3 ([14]). Let B+ denote the set of Borel positive functions on Ω.
Given a Hölder potential A, the topological pressure is given by

P (A) = sup
µ∈M(T )

inf
f∈B+

∫
log
(
PA f

f

)
dµ.

Now we briefly describe some basic results concerning the theory of C∗-
algebras, which was initially developed by I. M. Gelfand and J. von Neumann,
and is presented, quite elegantly, in [21], and [2]. We refer the reader to [12],
[23], [6], [7], [9], [8] and [10] for a more thorough description of the relation
between Thermodynamic Formalism and C∗-algebras.

The role that KMS states play in quantum statistical mechanics is very
important, being, as we will see, that of equilibrium states in C∗-algebras. In
quantum mechanics, the potential A : X → C, also called an observable, is
replaced by an operator acting on the complex Hilbert space L2(µ). Thus, the
commutative algebra of functions (with the usual complex product structure)
gives place to the non-commutative algebra of bounded operators B of L2(µ)
(where the product structure is the composition of operators). The norm of
the algebra is the operator norm and, for the operation ∗ of the algebra, we
consider the adjoint operator B∗ of each operator B.

We refer the reader to [2] for more detailed definitions and the main prop-
erties of C∗-algebras (see therein, for instance, Definition 2.1.1 and Example
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2.1.2). Here we will only recall some terminology. Firstly, a C∗-algebra is a
complete normed algebra A over C with an involution operation ∗ satisfying

‖a a∗‖ = ‖a‖2,

for all a ∈ A. We say that an element a ∈ A is positive, if it is given by
a = b b∗, for some element b ∈ A.

A state of a C∗-algebra A with unit 1 is a linear functional φ : A → C
such that φ(1) = 1 and φ(a) is a positive real number, whenever a is a positive
element of A. The states φ of a C∗-algebra play the role of the probabilities ν
in Thermodynamic Formalism.

A one-parameter group of automorphisms in a C∗-algebra A is a strongly
continuous group homomorphism σ : R → Aut(A), which we interpret as a
dynamic temporal evolution in the C∗-algebra. We write σt for the automor-
phism σ(t) and we say that an element a ∈ A is analytic for σ if σt(a) has an
analytic extension from t ∈ R to all z ∈ C. We remark that the set of analytic
elements is always dense in A.

Definition 2.3. Let σ be a one-parameter group of automorphisms of A and
let β ∈ R be given. We say that a state φ of A is a (σ, β)-KMS state if

φ(a b) = φ(b σβi(a)),

for any a, b ∈ A, with a analytic.

From now on, C(X) denotes the space of continuous functions defined on
the compact metric space X and taking values in C. Also, T is an expanding
map of X and µ is a Gibbs measure for a fixed potential Ã. For the Bernoulli
space Ω = {1, 2, . . . , d}N (our main case of interest), this potential may be
taken as the constant potential − log d; it follows that µ is the independent
probability, with weights 1/d, over {1, 2, . . . , d}N and the dual of Ruelle oper-
ator of Ã, acting on probabilities, satisfies L∗

Ã
(µ) = µ (see [9], and [20]).

An important class of linear operators of L2(µ) is obtained as follows: for
any fixed f ∈ C(X), the operator Mf : L2(µ) → L2(µ), sometimes denoted
simply by f, is defined by

Mf (η)(x) = f(x)η(x),

for any η in L2(µ), x ∈ X. The product operation satisfies Mf ◦Mg = Mf ·g,
for f, g ∈ C(X), where the dot · denotes the complex multiplication, and the
involution operation ∗ is given by M∗f = Mf , where z denotes the complex
conjugate of z ∈ C. Thus, Mf is the adjoint operator of Mf over L2(µ).
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In Thermodynamic Formalism it is usual to consider the Koopman opera-
tor S acting on L2(µ), that is, the bounded linear operator S : L2(µ)→ L2(µ)
given by (Sη)(x) = η(T (x)), for any η ∈ L2(µ), x ∈ X. It is well known that
its adjoint S∗ over L2(µ) is the operator LÃ, acting on L2(µ) (which is well
defined, as can be seen in [20]). The main point for our choice of µ is precisely
the assertion LÃ = S∗.

Now we have all elements to define our two C∗-subalgebras U and V of the
C∗-algebra of bounded operators B : L2(µ)→ L2(µ).

Let V = V(T , µ) denote the C∗-subalgebra generated by S and Mf , for
all f ∈ C(X), and U = U(T, µ) the C∗-subalgebra generated by the elements
MfS

n(S∗)nMg, for all n ∈ N and f, g ∈ C(X).
The algebra U is a C∗-subalgebra of V. In fact, it suffices to observe that

each element of V is the limit of finite sums
∑
iMfiS

ni(S∗)miMgi , whereas an
element of U is the limit of finite sums

∑
iMfiS

ni(S∗)niMgi , with identical
exponents for S and S∗.

We now consider certain dynamical evolutions in the C∗-algebras U and
V. Given a strictly positive function H : X → R, we define an associated
one-parameter group of automorphisms σ : R → Aut(V) as follows: for each
fixed t ∈ R, σt is given by σt(Mf ) = Mf , for f ∈ C(X), and σt(S) = MHit ◦ S,
in the following sense:

(σt(S)(η))(x) = Hi t(x)η(T (x)) ∈ L2(µ),

for any η ∈ L2(µ), x ∈ X. Since σt(U) ⊂ U for each t ∈ R, we may restrict σ
to U .

In terms of C∗-dynamical systems formalism, the shift transformation T
here simply plays the role of spatial translation in the lattice, while the positive
function H defines the dynamics of the evolution with time t ∈ R, correspond-
ing to the potential A in Thermodynamic Formalism, via H = eA. If we
introduce a parameter β, we will have to consider the potential Hβ .

Given H and β, we let φH,β denote a KMS state, leaving the letter φ for
a general C∗-dynamical system state. The state φH,β is what is expected,
from the quantum statistical point of view, of a system governed by H, under
temperature τ = 1/β (see [2]).

Our purpose is to analyze these KMS states φH,β . Given a pair (H,β), it
is easy to see that the condition

φ(a · b) = φ(b · σβi(a)), for all a, b ∈ A

is equivalent to

φ(στ (a) · b) = φ(b · στ+βi(a)), for all a, b ∈ A and τ ∈ R.
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It follows (see Section 8.12 of [20]) that if φ is a KMS state for (H,β), then,
for any analytic a ∈ U , the extension of τ → φ(στ (a)) to z → φ(σz(a)) is a
bounded entire function, and therefore constant. In this sense, φ is stationary.

A natural question arises: for given β and H, when does the KMS state
φH,β exist, and when is it unique? This question is considered in [7], for the
C∗-algebra V, and in [9], for the C∗-algebra U . Another presentation of the
uniqueness part of this question appears in [10].

Notice that the action of the linear functional φ on the set of operators Mf

(with f ranging over all continuous functions) defines a measure ν over X, via
the Riesz Theorem, that is, we have φ(Mf ) =

∫
f dν, for each f ∈ C(X). In

fact, ν is a probability, by the hypotheses we imposed on the C∗-states φ.
One of the main points in [9] is that for the KMS state of U associated

to H and β, this measure ν is the eigen-measure νH,β for the dual Ruelle
operator L∗A, where A = −β logH. Thus, we associate, in a unique way, each
KMS state φH,β to an eigen-measure νH,β , establishing an interesting relation
between the Thermodynamic Formalism and C∗-algebras.

For the KMS states in V, there exists the extra condition that the pressure
of H−β is zero, therefore the KMS states exist for only one value of β ([8],
[6]).

3 Statement and Proof of our Results.

In this section we will present our results: a definition of entropy and pres-
sure for states in the C∗-algebra and a proof of the existence of a state with
maximum pressure.

Suppose that A is a commutative C∗-algebra with unit and that α : A → A
is an injective unit preserving endomorphism. We say that a state φ in A is
α-invariant if φ ◦ α = φ.

In the special case A = C(X), the Gelfand-Naimark Theorem yields a
continuous transformation T : X → X satisfying α(a) = a◦ T, for each a ∈ A.
In the general case, we say that a linear transformation L : A → A is a transfer
operator for α if

L
(
α(a)b

)
= aL(b),

for every a, b ∈ A. Moreover, we say that such a transfer operator is normalized
if L(1) = 1.

If A is a commutative algebra, the transfer operator takes the form of a
Ruelle operator (see [20], [5], [4], [12], and [6]).

Proposition 3.1 ([13]). If L is a transfer operator for α, then L(1) is a
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central positive element of A, and

L(aα(b)) = L(a) b,

for every a, b ∈ A.

Proposition 3.2 ([13]). If T is a local homeomorphism, then every transfer
operator L for α is of the form Lρ, given, for every a ∈ A, and x ∈ X, by

Lρ(a)(x) =
∑

T (y)=x

ρ(y) a(y),

where ρ : X → [0,∞) is some continuous function. Moreover, for any con-
tinuous function ρ : X → [0,∞), the sum on the right side defines a transfer
operator. (In the notation of the previous section, ρ = eA.)

From now on, we will assume that T is a local homeomorphism and we
will write A+ := {a ∈ A | σ(a) ∈ (0,∞)}.

Generalizing the viewpoint of [14], and [15], we now introduce a notion of
entropy for a state φ : A → C, using the transfer operator Lρ defined by ρ.

Definition 3.1. Given a state φ in A, we say that

h(φ) = inf
a∈A+

φ

[
log
(Lρ(a)

ρ a

)]
is the entropy of φ.

Our definition is independent of the choice of ρ. Indeed, if ρ′ : X → [0,∞)
is another continuous function, then a′ = a ρ (ρ′)−1 ∈ A+, for any a ∈ A+,
implying

Lρ′(a′)
ρ′a′

=
1
ρ a

∑
y=T (x)

ρ′(x)a(x)ρ(x)ρ′(x)−1 =
Lρ(a)
ρ a

and showing that the infimum is taken over the same set.

Definition 3.2. Given an element b ∈ A+, we say that

p(b) = sup
{
h(φ) + φ(log b) | α-invariant φ

}
is the topological pressure of b. We say that φ is a C∗-equilibrium state for b
if φ is an α-invariant state such that p(b) = h(φ) + φ(log b).

Proposition 3.3. If Lρ(1) = 1, there exists a state φ such that φ ◦ Lρ = φ.
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Proof. Let S denote the set of all states of A. From Lρ(1) = 1, it follows
that L∗ρ(S) ⊂ S. Now the Tychonoff-Schauder Theorem yields a fixed point
for L∗ρ

∣∣
S .

Proposition 3.4. If Lρ(1) = 1, then p(ρ) = 0. Moreover, every state φ that
satisfies φ ◦ Lρ = φ is an equilibrium state for ρ.

Proof. Using our definitions of entropy and pressure, we obtain

p(ρ) = sup
φ inv

inf
a∈A+

φ

[
log
(Lρ(a)

a

)]
and, therefore, a choice of a = 1 inside the infimum, guarantees that p(ρ) ≤ 0.

On the other hand, Lρ ◦α = Id, because Lρ is normalized, and φ ◦Lρ = φ
implies φ ◦ α = φ ◦ Lρ ◦ α = φ. Since log is concave, log(Lρ(a)) ≥ Lρ(log a)
and, therefore,

φ

[
log
(Lρ(a)

a

)]
= φ

(
log(Lρ(a))− log a

)
≥ φ

(
Lρ(log a)− log a

)
.

If φ ◦ Lρ = φ, the right hand side of this inequality equals zero, and

therefore, inf
{
φ
[

log
(Lρ(a)

a

)]
| a ∈ A+

}
= 0. It follows that p(ρ) ≥ 0 and,

therefore,

h(φ) + φ(ρ) = inf
a∈A+

φ

[
log
(Lρ(a)

a

)]
= 0 = p(ρ)

holds for eigen-states.

In the context of an algebra A, an injective unit preserving endomorphism
α, and a normalized transfer operator L, we may consider, among others, two
different C∗-algebras, namely, the cross-product endomorphism Aoα,L N and
the C∗-algebra given by approximately proper equivalence relations C∗(R, E)
(see [6], and [9]). The second algebra is related to the equivalence relation
x ∼ y ⇐⇒ there exists n ∈ N such that Tn(x) = Tn(y), and the first
considers the broader equivalence relation x ∼ y ⇐⇒ there exist n,m ∈ N
such that Tn(x) = Tm(y).

The algebra C∗(R, E) generalizes the algebra U of the previous section,
whereas A oα,L N generalizes the algebra V. In fact, in the context of the
previous section, for each Gibbs measure µ, we find representations of Aoα,LN
and C∗(R, E) in the Hilbert space L2(µ) with images V and U , respectively.

We want to relate the KMS states of A oα,L N and C∗(R, E) with the
equilibrium states (in A) of the potential h−β , where β, again, represents the
reciprocal of temperature.
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If the algebra A is commutative, we have unique conditional expectations
F : A oα,L N→A and G : C∗(R, E) → A. Moreover, if E := α ◦ L : A →
α(A), is a conditional expectation with finite index, then the KMS states ψ
of A oα,L N can be decomposed as ψ = φ ◦ F, where φ is a state of A which
satisfies

φ(a) = φ
(
L(Λ a)

)
, for all a ∈ A,

with Λ = h−β ind(E). The KMS state ψ of C∗(R, E) can be decomposed as
ψ = φ ◦G, where φ is a state of A which satisfies

φ(a) = φ
(
Λ−[n]En(Λ[n]a)

)
, for all a ∈ A and n ∈ N,

with En = αn ◦ Ln, and Λ[n] =
∏n−1
i=0 α

i
(
h−β ind(E)

)
.

Proposition 3.5. If ψ = φ ◦ F is an (h, β)-KMS state for A oα,L N, and
L(Λ1) = 1, then φ is an equilibrium state (in A) for the potential h−β .

Proof. The condition L(Λ1) = 1 implies that Lh−β is a normalized transfer
operator, and, therefore, p(h−β) = 0. Moreover, the KMS condition says that
φ(a) = φ(Lh−β (a)), which implies that φ(α(a)) = φ(a). By Proposition 3.4, it
follows that φ is an equilibrium state for h−β .

In the constructions of the algebras that interest us, the choice of the nor-
malized transfer operator is arbitrary, since two such operators define isomor-
phic algebras. If we suppose that Lρ(k) = λ k, for some λ > 0 and k ∈ A+, and
write ρ̃ = ρ k

λα(k) , it therefore follows that Leρ is a normalized transfer operator
for α, which can be used to construct C∗(R, E).

Theorem 3.1. Let ψ = φ◦G be an (h, β)-KMS state of C∗(R, E). Let ρ = h−β ,
suppose that Lρ(k) = λ k, for some λ > 0 and k ∈ A+, and denote ρ̃ = ρ k

λα(k) .

Finally, let φ̃ be the state of A given by φ̃(a) = φ(ka). If, for every a ∈ A,

lim
n→∞

∥∥Lneρ (a)− φ̃(a)
∥∥ = 0,

then φ̃ is an equilibrium state for ρ̃.

Proof. Without loss of generality, we may assume that C∗(R, E) has been
obtained from Leρ in such a way that ind(E) = ρ̃−1. Then,

Λ[1] =
(
ρρ̃−1

)
= ρ

λα(k)
ρ k

=
λα(k)
k

,
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and, more generally,

Λ[n] =
n−1∏
i=0

αi
(
ρρ̃−1

)
= λn

∏n−1
i=0 α

i+1(k)∏n−1
i=0 α

i(k)
=
λn αn(k)

k
.

The KMS condition implies that, for every n ∈ N,

φ(a) = φ
[ k

λnαn(k)
αnLneρ

(λnαn(k)
k

a
)]

= φ
[
k αnLneρ

(a
k

)]
,

and it follows that, for every n ∈ N,

φ̃(a) = φ(a k) = φ
[
k αnLneρ

(a
k
k
)]

= φ̃
[
αnLneρ (a)

]
.

Now,∣∣∣φ̃(Leρ(a)− a
)∣∣∣ =

∣∣∣φ̃[αn(Ln+1eρ (a)− Lneρ (a)
)]∣∣∣

≤ φ̃
(∥∥αn(Ln+1eρ (a)− Lneρ (a)

)∥∥)
≤ φ̃

(∥∥Ln+1eρ (a)− Lneρ (a)
∥∥)

≤ φ̃
(∥∥Ln+1eρ (a)− φ̃(a)

∥∥)− φ̃(∥∥φ̃(a)− Lneρ (a)
∥∥)−−−−→

n→∞
0,

and, therefore φ̃ ◦ Leρ = φ̃. The claim follows by Proposition 3.4.

Notice that our main hypothesis, namely, the convergence of Lneρ , is one of
the conclusions of the Ruelle-Perron-Frobenius Theorem (see [20], [9], and [4]),
which means that the classical setting satisfies the hypotheses of our result.

Acknowledgment. The authors wish to thank the referees for their con-
structive criticism of the first draft.
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