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FOURIER COEFFICIENTS AND
GENERALIZED LIPSCHITZ CLASSES IN

UNIFORM METRIC

Abstract

In this paper we give some equivalence relations between behavior
of Fourier coefficients of a special kind and smoothness of functions. A
necessary and sufficient condition for existence of Schwartz derivative is
also obtained.

1 Introduction.

Let {ck}k∈Z be a sequence of complex numbers such that∑
k∈Z
|ck| <∞. (1.1)

Then
f(x) :=

∑
k∈Z

cke
ikx (1.2)

is a continuous 2π-periodic function (f ∈ C2π) and series (1.2) is the Fourier
series of f . In the case {ck}k∈Z ⊂ R+ (that is for cosine series with nonneg-
ative coefficients) R.P.Boas [2, p.45] showed that f ∈ Lip(α) (0 < α < 1) if
and only if

∑∞
k=n ck = O(n−α) or, equivalently,

∑n
k=1 kck = O(n1−α). The

case α = 1 is more complicated. Similar results are obtained in [2] for sine
series. S.Yu.Tikhonov [6] proved Boas-type results for moduli of continuity of
an arbitrary order β > 0 in the case of sine and cosine series with positive
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coefficients. In his paper there are many references to other generalizations
of Boas’ result. F. Móricz [3] considered series (1.2) where kck ≥ 0 for all
k ∈ Z and established Boas-type results for Lip(α) and lip(α), 0 < α ≤ 1,
and Zygmund classes Λ∗(1) and λ∗(1) (see below). He also characterized the
differentiability of f at point under additional condition

∑
|k|>n |ck| = o(n−1),

n→∞. In another article [4] F. Móricz extended some results from [3] to the
case of the second modulus of continuity.

The aim of our paper is to generalize F. Móricz’s results for moduli of
continuity of natural orders and some special classes of complex coefficients
{ck}k∈Z. After this article had been completed the author found that F.
Móricz in [5] established Theorems 1 and 2 of the present article for ω(δ) = δα,
0 < α < m, and jmcj ≥ 0 in parts (ii), (iii). However, the methods of proof
in [5] and this article are different and our results are more general.

2 Definitions and Lemmas.

Let g ∈ C2π, ĝ(k) = (2π)−1
∫ 2π

0
g(t)e−ikt dt for k ∈ Z and Sn(g)(x) =∑

|k|≤n
ĝ(k)eikx for n ∈ Z+. For k ∈ N let introduce

∆k
hg(x) =

k∑
j=0

(−1)k−j
(
k

j

)
g(x+ (k − j)h)

and ωk(g, t) = sup
|h|≤t

‖∆k
hg(·)‖, where ‖g‖ = maxx∈[0,2π]|g(x)|. Denote by Φ

the set of continuous increasing on [0, 2π] functions ω such that ω(0) = 0,
ω(t) > 0 when t ∈ (0, 2π] and ω(2t) ≤ Cω(t), t ∈ [0, π]. If ω ∈ Φ and∑∞
k=n k

−1ω(k−1) = O(ω(n−1)) for all n ∈ N, then ω ∈ B. If ω ∈ Φ, m ∈
(0,∞) and

∑n
k=1 k

m−1ω(k−1) = O(nmω(n−1)), then ω ∈ Bm. The classes
B and Bm were introduced by N.K.Bari and S.B.Stechkin [1]. By definition
Hω,k = {f ∈ C2π : ωk(f, t) = O(ω(t))} and hω,k = {f ∈ C2π : ωk(f, t) =
o(ω(t)), t→ 0}. Spaces Hω,1 (hω,1) for ω(t) = tα, 0 < α ≤ 1, are called Lip(α)
(lip(α)) and Hω,2 (hω,2) for ω(t) = t are called Λ∗(1) (λ∗(1)). A function γ(t)
will be called almost increasing (almost decreasing) if there exists a constant
K := K(γ) ≥ 1 such that Kγ(t) ≥ γ(u) (Kγ(u) ≥ γ(t)) for 0 ≤ u ≤ t ≤ π.
We need some lemmas.

Lemma 1. (See [6]) If f ∈ C2π, k ∈ N and Vn(f) =
∑2n−1
k=n Sk(f)/n, then

n−k‖V (k)
n (f)‖ ≤ C(k)ωk(f, 1/n), n ∈ N,

where g(k) is the k-th derivative of g.
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Lemma 2. (See [1]). (i) Let ω ∈ Φ. Then ω ∈ B if and only if there exists
α ∈ (0, 1) such that t−αω(t) is almost increasing.

(ii) Let ω ∈ Φ. Then ω ∈ Bk, k ∈ N, if and only if there exists α ∈ (0, k)
such that tα−kω(t) is almost decreasing.

Lemma 3. Let ω ∈ Φ, {µj}∞j=1 be a nonnegative sequence and m ∈ N.
(i) If ω ∈ Bm, then condition

∞∑
j=n

µj = O(ω(1/n)) (2.1)

implies
n∑
j=1

jmµj = O(nmω(1/n)). (2.2)

(ii) If ω ∈ B, then (2.2) implies (2.1).

Lemma 3 is the corollary of Lemma 2 and Lemma 4.4 from [6].

Lemma 4. If the conditions of Lemma 3 are fulfilled then both statements of
Lemma 3 remain valid if O in (2.1) and (2.2) is replaced by o.

Proof. (i) Put sk :=
∑k
j=1 j

mµj and rk =
∑∞
j=k µj . For every ε > 0 there

exists k0 = k0(ε) such that rk < εω(1/k) whenever k > k0. This inequality,
condition ω ∈ Bm and summation by parts give

sn =
n∑
j=1

(jm − (j − 1)m)rj − nmrn+1 ≤ C1

n∑
j=1

jm−1rj ≤ C1r1

k0∑
j=1

jm−1+

+C1ε

n∑
j=1

jm−1ω(j−1) ≤ C2 + εC3n
mω(n−1)

for n > k0. But from Lemma 2 it follows that nm−αω(n−1) is almost increasing
sequence for some α ∈ (0,m) and lim

n→∞
nmω(n−1) = +∞. Therefore C2 =

o(nmω(n−1)) and sn = o(nmω(n−1)).
(ii) For every ε > 0 there exists k0 = k0(ε) such that sk ≤ εkmω(k−1)

whenever k > k0. Then for n > k0 we have by condition ω ∈ B

rn =
∞∑
k=n

k−m(sk − sk−1) =
∞∑
k=n

(k−m − (k + 1)−m)sk − n−msn−1 ≤

C4

∞∑
k=n

k−m−1εkmω(k−1) ≤ C5εω(n−1).

Lemma is proved.
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3 Main Results.

Theorem 1. (i) If {ck}k∈Z ⊂ C, m ∈ N, ω ∈ B and∑
|k|≤n

|kmck| = O(nmω(n−1)), (3.1)

then f ∈ Hω,m.
(ii) Let m ∈ N be even and {cj}j∈Z = {aj + bji}j∈Z be a sequence of

complex numbers such that all aj, j ∈ Z, are non-negative or non-positive and
the same is true for bj. Then f ∈ Hω,m implies (3.1).

(iii) Let m ∈ N be odd and {cj}j∈Z = {aj + bji}j∈Z be a sequence of
complex numbers such that all jaj, j ∈ Z, are non-negative or non-positive
and the same is true for jbj. Then f ∈ Hω,m implies (3.1).

Proof. Further we shall consider the symmetric m-th difference

∆̇m
h f(x) =

m∑
j=0

(−1)m−j
(
m

j

)
f(x+ (m− 2j)h/2).

If f has Fourier series (1.2), then in view of (1.1)

∆̇m
h f(x) =

∑
k∈Z

(2i)m(sin kh/2)mckeikx. (3.2)

We set n = [1/|h|] for h 6= 0. Using the inequality | sinx| ≤ |x| and Lemma
3(ii) we have

|∆̇m
h f(x)| ≤

∑
|k|≤n

|ck||2kh/2|m +
∞∑
|k|>n

|ck| = O(|h|m
n∑
|k|=1

|kmck|+ ω(n−1)) =

= O(|h|mnmω(n−1) + ω(n−1)) = O(ω(n−1)). (3.3)

Applying the standard procedure we obtain f ∈ Hω,m.
(ii) By definition we find for h ∈ (0, π) and n = [1/h] that

C1ω(h) ≥ |∆̇m
h f(0)| =

∣∣∣∣∣∑
k∈Z

ck(2 sin kh/2)m
∣∣∣∣∣ ≥∣∣∣∣∣∑

k∈Z
ak(2 sin kh/2)m

∣∣∣∣∣ ≥ C2

∑
|k|≤n

|ak||kh|m
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and ∑
|k|≤n

|kmak| = O(h−mω(h)) = O(nmω(n−1)). (3.4)

Similarly to (3.4), the relation∑
|k|≤n

|kmbk| = O(nmω(n−1)). (3.4′)

is valid. Combining (3.4) and (3.4′) gives
∑
|k|≤n |kmck| = O(nmω(n−1)).

This proves (ii).
(iii) Using the definition of Vn(f) we have

V (m)
n (f)(0) = im

∑
|k|≤n

km(ak + bki) +
2n−1∑
|k|=n+1

(2− |k|/n)km(ak + bki)

 .

Similarly to (3.4) and (3.4′) by Lemma 1 the following estimates hold:

C3ω(n−1) ≥ n−m‖V (m)
n (f)‖ ≥ n−m|V (m)

n (f)(0)| ≥ n−m
∑
|k|≤n

|kmak|, (3.5)

C3ω(n−1) ≥ n−m|V (m)
n (f)(0)| ≥ n−m

∑
|k|≤n

|kmbk|. (3.5′)

Combining (3.5) and (3.5′) gives
∑
|k|≤n |kmck| = O(nmω(n−1)). This proves

(iii).

Theorem 2. (i) If {ck}k∈Z ⊂ C, ω ∈ B, m ∈ N and∑
|k|≤n

|kmck| = o(nmω(n−1)), (3.6)

then f ∈ hω,m.
(ii) If m and {ck}k∈Z satisfy the conditions of either Theorem 1 (ii) or

Theorem 1 (iii), then f ∈ hω,m implies (3.6).

The proof of part (i) is similar to that of theorem 1 (i) with using Lemma
4 (ii) instead of Lemma 3 (ii).

Proof. of (ii). Let m be even and ωk(f, 1/n) < εω(n−1) for n > n0(ε). Then
we have for n > n0 (see (3.4))

εω(1/n) > |∆̇m
1/n| ≥

∣∣∣∣∣∑
k∈Z

ak(2 sin k/2n)m
∣∣∣∣∣ ≥ (2/π)m

∑
|k|≤n

|ak(k/n)m|
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and
∑
|k|≤n |kmak| = o(nmω(n−1)). Similarly, we find that

∑
|k|≤n |kmbk| =

o(nmω(n−1)) and
∑
|k|≤n |kmck| = o(nmω(n−1)). If m is odd, then we have

analogously to (3.5)

C1εω(n−1) ≥ n−m|V (m)
n (f)(0)| ≥ n−m

∑
|k|≤n

|kmak|

and εω(n−1) ≥ n−m
∑
|k|≤n |kmbk|. These two inequalities give

∑
|k|≤n |kmck| =

o(nmω(n−1). Theorem 2 is proved.

Corollary 1. Let {ck}k∈Z ⊂ C and m ∈ N satisfy the conditions of Theorem
1 (ii). If ω ∈ B ∩Bm, then statements f ∈ Hω,m and∑

|k|>n

|ck| = O(ω(n−1)) (3.7)

are equivalent.

Proof. The implication (3.7) ⇒ f ∈ Hω,m follows from (3.3) and Lemma 3
(i). Conversely, if f ∈ Hω,m, then by inequality ‖f −Vn(f)‖ ≤ C1ω(n−1) (see
[7, chapter III, Theorem (13.5)] and Jackson-Stechkin Theorem (D) in [1]) we
have

C1ω(n−1) ≥ |f(0)− Vn(f)(0)|

=

∣∣∣∣∣∣
2n−1∑
|k|=n+1

(|k|/n− 1)(ak + bki) +
∞∑

|k|=2n

(ak + bki)

∣∣∣∣∣∣
≥ 2−1/2

 ∞∑
|k|=2n

|ak|+
∞∑

|k|=2n

|bk|

 .

By the property ω(2t) ≤ Cω(t) we have
∑∞
|k|=n |ak| = O(ω(n−1)) and

∑∞
|k|=n |bk| =

O(ω(n−1)). These relations imply
∑∞
|k|=n |ck| = O(ω(n−1)).

Corollary 2. Let {ck}k∈Z ⊂ C and m ∈ N satisfy conditions of Theorem 1
(ii). If ω ∈ B ∩ Bm, then statements f ∈ hω,m and

∑
|k|>n |ck| = o(ω(n−1))

are equivalent.

The proof is similar to that of Corollary 1, but we use Lemma 4 (i) instead
of Lemma 3 (i).

For the last theorem we need the so called Schwartz derivative of order m
instead of the ordinary derivative. By definition, function f has the Schwartz
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derivative of order m ∈ N in point x and this derivative equals to A if there
exists lim

h→0
h−m∆̇m

h f(x) = A.

Theorem 3. If {ck}k∈Z ⊂ C, m ∈ N, and∑
|k|>n

|ck| = o(n−m), (3.8)

then Schwartz derivative of order m exists in point x and equals to A if and
only if the formally differentiated series∑

k∈Z
(ik)mckeikx

converges to A.

Proof. By (3.2) we have for n = [1/|h|], h 6= 0,

∆̇m
h f(x) =

∑
|k|≤n

(2i sin kh/2)mckeikx +
∑
|k|>n

(2i sin kh/2)mckeikx =: Ah +Bh.

In virtue of (3.8), we see that |Bh| ≤ 2m
∑
|k|>n |ck| = o(hm), h→ 0. Further

we use the estimate sin t = t+O(t3), t ∈ [0, 1], and find that

Ah =
∑
|k|≤n

(ik)mckeikxhm+
m∑
j=1

∑
|k|≤n

imcke
ikxO((kh)m−j(kh)3j) =: A(0)

h +
m∑
j=1

A
(j)
h

Since ω(t) = tm ∈ Bm+2j , j ∈ N (see [1]), then by lemma 4 (i) the relation∑
|k|>n |ck| = o(n−m) implies

∑
|k|≤n |km+2jck| = o(nm+2jn−m). Therefore

|A(j)
h | = o(n2j |h|2j+m) = o(|h|m) and lim

h→0
h−m∆̇m

h f(x) exists if and only if

there exists

lim
h→0

h−mA
(0)
h = lim

n→∞

∑
|k|≤n

(ik)mckeikx =
∑
k∈Z

(ik)meikx

Theorem is proved.

Remark 1. For m = 2 part ”if” of Theorem 3 follows from regularity of
Riemann’s method of summation (see [7, chapter IX, Theorem (2.4)]).
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[3] F. Móricz, Absolutely convergent Fourier series and function classes, J.
Math. Anal. Appl., 324 (2006), 1168–1177.
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[5] F. Móricz, Higher order Lipschitz classes of functions and absolute con-
vergence of Fourier series, Acta Math. Hungar., 120(4) (2008), 355–366.

[6] S. Tikhonov, Smoothness conditions and Fourier series, Math. Ineq.
Appl., 10 (2007), 229–242.

[7] A. Zygmund, Trigonometric series, Vol. 1, Cambridge University Press,
Cambridge, 1959.


