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CONTINUITY AND DIFFERENTIABILITY
ASPECTS OF METRIC PRESERVING

FUNCTIONS

Abstract

A function f is metric preserving if for every metric space (M,ρ) we
have that f ◦ ρ is still a metric on M . In this article we look at the be-
havior of such functions with respect to continuity and differentiability.
We include several pathological examples and some open questions.

1 Introduction and Definitions

It is well known (and can be found in many texts as a homework exercise)
that any metric d on any space X can be turned into a bounded metric by
composing d with

f(x) =
x

1 + x
.

This idea of retaining a metric under composition with some function f is the
motivation behind metric preserving functions.

Definition 1.1. Let R+ = [0,∞). We call f : R+ → R+ a metric preserving
function if and only if f ◦ ρ : M ×M → R+ is a metric for every metric ρ
where (M,ρ) is an arbitrary metric space. Viewing these functions together
as a set we let M denote the collection of metric preserving functions.

Obviously, any function of the form

f(x) =
{
c x > 0
0 x = 0

with c > 0 will preserve metrics. There are also many interesting and non-
trivial metric preserving functions to study. In [7] J. Doboš shows that the
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Cantor function is subadditive. Since a function which is subadditive, is zero
at the origin, and is nondecreasing preserves metrics, the Cantor function is
metric preserving.

The study of metric preserving functions goes at least as far back as [28] and
preserving metrics has even appeared as a textbook exercise in [15]. The first
in-depth discussion of M is in [21]. In this paper, we will mostly concentrate
on these functions in terms of differentiability and continuity. We will also
look at applications of these functions, and a few open questions. Proofs will
not be emphasized. The interested reader will be referred to the appropriate
source in the bibliography. However, we will provide most of the details on
the construction of interesting and pathological examples.

Although we will restrict ourselves to functions from R+ to R+ we do note
that there are papers on metric preserving functions of several variables ([19],
[2], [3], [10] and [23]). They are defined on product spaces as follows: Let
T 6= ∅ be a set of indices, and let {(Mt, dt)}t∈T be a collection of metric
spaces. We define d : (Πt∈TMt)2 → (R+)T by

d((xt)t∈T , (yt)t∈T ) = (d(xt, yt))t∈T .

Lastly we say f : (R+)T → R+ is metric preserving if for every indexed
collection of metric spaces {(Mt, dt)}t∈T , f ◦ d is a metric on (Πt∈TMt).

2 Some Basic Constructions and Properties

We begin with some of the primary ways to create metric preserving functions.
It is obvious that we must have f(0) = 0 and there is no need to check for
symmetry for f ◦ ρ. Thus the only condition we must check is the triangle
inequality. The following introductory constructions can be found in sources
such as [1], [3] and [9].

Constructions Let f : R+ → R+.

1. If f(a) = 0 ⇔ a = 0, and f is concave (down), then f ∈M.

2. If f(0) = 0 and there exists an a > 0 such that a ≤ f(x) ≤ 2a for all
positive x, then f ∈M.

The latter is an especially effective means for creating examples. Given
any function F we can create the metric preserving f via

f(x) =
{

0 x = 0
2
π arctan(F (x)) + 1 x > 0 .
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We note here that this function is discontinuous at the origin although the
original function F (x) need not be, so some niceties can be lost using this
idea.

Now that we have some established metric preserving functions, the fol-
lowing constructions allow us to create more. Methods 2 and 3 below are
especially helpful in creating our later examples.

Constructions Let f , g, and the sequence (fn) be metric preserving func-
tions.

1. The functions f + g, max{f, g}, f ◦ g, and c · f (c > 0) are in M.

2. If
∑
fn converges to f , then f ∈M.

3. Let ∅ 6= L ⊆M. Suppose Lx = {f(x) : f ∈ L} is a bounded set for
all x > 0. Define F by F (x) = supLx for all x ∈ R+. Then F ∈M.

Instead of creating a function in M, we also need to be able to see if a
given function is metric preserving. This can be accomplished via the following
analytic criteria.

Theorem 2.1. Let f : R+ → R+. Then f ∈M if and only if

1. f−1(0) = {0}, and

2. for all a, b, c ≥ 0, |a− b| ≤ c ≤ a+ b implies f(a) ≤ f(b) + f(c).

A statement of this is found in [1], and a statement and proof can be found
in [16] and [4].

As a consequence of meeting the triangle inequality f must be subadditive
(i.e. f(a + b) ≤ f(a) + f(b)). However, as the following example shows,
subadditivity is not enough.

Example 1. Define f : R+ → R+ by

f(x) =
{
x 0 ≤ x ≤ 1
1/2 1 < x

.

This f is subadditive, but not metric preserving.

Below are some of the properties for functions in M some of which are
consequences of being metric preserving and subadditive.

Theorem 2.2. Let f be a metric preserving function. Then

a. if a ≤ 2b then f(a) ≤ 2f(b),
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b. for all a ≥ 0 and n ∈ N, 2−nf(a) ≤ f(2−na),

c. if a ≥ b then f(a)/a ≤ 2 · f(b)/b,

d. for all a, b ∈ R+, |f(a)− f(b)| ≤ f(|a− b|).

We wish to end this section with some properties of functions in M. The
proofs for these are shown by using what we call triangle triplets. Triangle
triplets first appeared in the literature in [23]. These triplets give a geometric
description of metric preserving functions.

Definition 2.3. The triplet (a, b, c) of real numbers is called a triangle triplet
if and only if

a ≤ b+ c, b ≤ a+ c, and c ≤ a+ b.

Construction The function f is in M if and only if f vanishes exactly at
zero and

(f(a), f(b), f(c))

is a triangle triplet whenever (a, b, c) is one.

Once we have a collection of metric preserving functions, we can consider a
sequence in M and whether or not this sequence converges (which, of course,
depends on the metric for the set of functions). Even if we apply the supre-
mum norm to the space of all functions than a convergent sequence of metric
preserving functions need not be metric preserving. Just let

fn(x) =
{

1/n x > 0
0 x = 0 .

So we ask the question when does a sequence in M converge in this norm to
an element of M?

Theorem 2.4. Let {fn} be a sequence of functions using the sup norm on
the space of functions. If f = limn→∞ fn is positive for x positive then f is
metric preserving.

Proof. Let ε > 0 be arbitrary and (a, b, c) be a triangle triplet. For this ε
there exists an N such that ‖fn − f‖ ≤ ε for all n > N . Then

f(a) ≤ fn(a) + ε ≤ fn(b) + fn(c) + ε.

If we let n approach infinity we have f(a) ≤ f(b) + f(c) + ε and since ε is
arbitrary (and the other cases are handled similarly) (f(a), f(b), f(c)) is a
triangle triplet. Obviously f(0) = 0 if and only if x = 0, hence f ∈ M.
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Note: With only slight changes in the proof we can relax to fn converging to
f pointwise.

Consider the following metric preserving f :

f(x) =
{

3/4 x > 0
0 x = 0 .

We wish to look at functions near f . However, we cannot use the open balls
generated by the supremum norm to define “near” since it is obvious that not
all g in such a ball would be zero at the origin. But, if g is a function from
R+ into R+ and g(0) = 0 then

sup
x>0
|f(x)− g(x)| < 1/4

guarantees g is also metric preserving. Keeping this in mind we give

Definition 2.5. Let f : R+ → R+ be metric preserving. We define the open
truncated ball of radius ε around f by

B̂(f, ε) =
{
g : R+ → R+ s.t. g(0) = 0 and sup

x>0
|f(x)− g(x)| < ε

}
.

Finally, we arrive at the question we wish to answer. Given the metric
preserving f under what condition on f can we be assured there exists an
ε > 0 such that B̂(f, ε) ⊂M?

In order to answer this we must come up with a strengthening of the idea
of a triangle triplet.

Definition 2.6. We say f induces a sharp triangle triplet if there exists an
η > 0 such that for all triangle triplets (a, b, c) with a, b, c distinct we have

f(a) + η ≤ f(b) + f(c)
f(b) + η ≤ f(a) + f(c)
f(c) + η ≤ f(a) + f(b)

The sharp triangle triplets are equivalent to saying there exists an α > 0
so that f(x) > α for all positive x. Now we have what we need to answer the
question of functions near a metric preserving f .

Theorem 2.7. If f ∈M induces a sharp triangle triplet then there exists an
ε > 0 such that B̂(f, ε) ⊂M.
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Proof. Let ε = η/3 where η comes from the definition of a sharp triangle
triplet and let g ∈ B̂(f, ε). Consider any triangle triplet (a, b, c) . Then

g(a) < f(a) + ε ≤ f(b) + f(c)− 2ε < g(b) + g(c).

Since the other cases are handled in a similar fashion we are done.
We wish to point out here that in these instances where such an ε exists,

the function f cannot be continuous at the origin as then no such η could be
found to satisfy the sharp triangle triplet. Also we point out that this theorem
is exact.

Example 2. If f ∈M, but does not induce a sharp triangle triplet then there
is no ε such that B̂(f, ε) ⊂M.

Proof. Since f does not induce a sharp triplet, for the radius ε/2 there exists
a triangle triplet (a, b, c) such that

f(a) +
ε

2
> f(b) + f(c).

Pick a function g ∈ B̂(f, ε) such that g(a) = f(a) + ε/2, g(b) = f(b) and
g(c) = f(c). This g cannot be a metric preserving function.

3 Continuity and Differentiability

For a metric preserving function, the property of being continuous everywhere
is a direct consequence of the function being continuous at the origin. From
the fact that the image of (h, x, x+ h) is a triangle triplet we arrive at

|f(x+ h)− f(x)| ≤ f(h) = f(h)− f(0).

Thus we conclude

Theorem 3.1. Let f ∈M. Then the following are equivalent:

1. f is continuous,

2. f is continuous at the origin,

3. for every ε > 0 there exists an x > 0 such that f(x) < ε.

Previously we have seen metric preserving functions that are continuous
everywhere but x = 0. The theorem above makes creating examples which are
continuous a matter of making sure the example has continuity at the origin.
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There are many generalizations of continuity in the literature. We wish to
point out that for many of these having this type of continuity at the origin
will satisfy condition 3 above. Thus a metric preserving function having this
generalized continuity at the origin would have ordinary continuity on R+.
An example of this would be quasi-continuity. Other generalization (such as
cliquishness) do not look directly at the point in question, but only “nearby.”
It is possible for a metric preserving function to be cliquish at the origin, but
not continuous everywhere.

Let us insert here an interesting example of how badly some of the gen-
eralizations of continuity can be destroyed while creating a metric preserving
function. This example comes from [6].

Example 3. Let A and B be sets which are disjoint while both are dense in
(0,∞). Define f by

f(x) =

 2 x ∈ A
1 x ∈ B
0 x = 0

.

This function is metric preserving, but has bounded variation at no point.

However, P. Corazza in [19] used the notion of bounded gradient to relate
metric preserving and bounded variation. For r > 0 a metric preserving f is
of r–bounded gradient at 0 if there is a positive h such that for all x ∈ [0, h]
we have f(x) ≤ rx. We can than say the f is of bounded gradient at 0 is for
some positive r we know f is of r–bounded gradient.

Theorem 3.2. If f is a metric preserving function that is of bounded gradient
at 0, then f is of bounded variation.

Topologically, we have the following theorem concerning equivalent spaces.
Proof of this can be found in [4].

Theorem 3.3. Let (M,d) be a metric space. Let f be a continuous metric
preserving function. If (M,d) is not discrete (not uniformly discrete), then
the metrics d and f ◦ d are equivalent (uniformly equivalent).

Moving on to differentiability, we see that once again behavior is tied to
the behavior at the origin.

Theorem 3.4. Let f ∈M. Then f ′(0) exists (even if f ′(0) is not finite) and

f ′(0) = inf{k > 0 : f(x) ≤ kx for all x ∈ R+}.

The proof of this can be found in [1]. We can obtain even more if we know
the derivative at zero is finite. Then we have
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Theorem 3.5. Let f ∈M and f ′(0) <∞. Then

1. for all x ∈ R+, f(x) < kx, and

2. for all x, y ∈ R+, |f(x)− f(y)| ≤ f ′(0)|x− y|.

We can rephrase the second part to say f is Lipschitz with constant f ′(0).
Note that from Part 1 we have f ′(0) <∞ equivalent to the bounded gradient.
Also, we arrive at a corollary dealing with differentiability at points other than
the origin.

Corollary 3.6. Let f ∈ M be differentiable. Then |f ′(x)| ≤ f ′(0) for each
x ∈ R+.

Interesting examples concerning metric preserving functions and differen-
tiation are already known (see [11], [25], and [9]). We present a few of these
here, but we start with two more ways to create functions inM. The triangle
triplets defined in the previous section are used in proofs that the following
constructions do indeed lead to functions in M.

Construction Let f ∈ M. Let d, k > 0 such that g(x) = kx for x ∈ [0, d)
and g(x) = f(x) on [d,∞). Then g ∈M if and only if

1. f(d) = kd, and

2. for all x, y ∈ [d,∞)

|f(x)− f(y)| ≤ k|x− y|.

Using this we come up with (see [11])

Example 4. There exists a metric preserving function which is continuous
and nowhere differentiable.

Proof. We now start with the metric preserving g where g(x) is given by

g(x) =
{

0 x = 0
1
2 + |x− [x] + 1

2 | x > 0

with [x] being the integer part of x. Then the function f given by

f(x) =
{
x 0 ≤ x ≤ 1
g(x) 1 < x
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is metric preserving using the construction above. Finally, we have the metric
preserving

F (x) =
∑

2−nf(2nx)

which is continuous and nowhere differentiable.
The idea used above was then modified by Doboš and Z. Piotrowski in [11]

to the next construction. This will be used to construct a function where the
derivative exists everywhere and is infinite at certain points.

Construction Let g, h ∈ M. Let d > 0 such that g(d) = h(d). Define
w : R+ → R+ by

w(x) =
{
g(x) 0 ≤ x < d
h(x) d ≤ x <∞ .

Suppose g is nondecreasing and concave and satisfies

for all x, y ∈ [d,∞) with |x− y| ≤ d, |h(x)− h(y)| ≤ g(|x− y|).

Then w ∈M.

Example 5. There exists a continuous metric preserving function f which is
everywhere differentiable (in the extended sense) and f ′(x) = ∞ for all x of
the form 2−n, n ∈ N.

Proof. Now we start with the function g(x) where

g(x) =
{ √

2x− x2 0 ≤ x ≤ 1
1 1 < x

.

It is easy to see that this is inM because g is concave down and nondecreasing.
Next, we use g to define h by

h(x) =


0 x = 0
1 0 < x < 1
1
2 (3− g(2− x)) 1 ≤ x < 2
1
2 (3 + g(x− 2)) 2 ≤ x

.

For x 6= 0, 1 ≤ h(x) ≤ 2, hence h preserves metrics. Putting g and h together
using the last construction we arrive at the metric preserving w : R+ → R+

given by

w(x) =
{
g(x) 0 ≤ x < 1
h(x) 1 ≤ x <∞ .
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This w has the following properties:

w is continuous and nondecreasing
w is bounded
w′(x) exists (in the extended sense) for all x ≥ 0
w′(2) =∞.

Finally, let
f(x) =

∑
2−nw(2nx).

After this result, Doboš and Piotrowski asked if characterizing {x : f ′(x) =
∞} was possible. Since

|f ′(x)| ≤ f ′(0),

if the set in question is nonempty, it must contain the origin. A partial answer
to this was given in [25].

Example 6. Let Z be a measure zero G δ set. There exists a continuous
metric preserving function whose derivative exists everywhere and is infinite
precisely on Z ∪ {0}.

Proof. As noted in Lemma 1.2, Chapter 2 of [5] given this set Z there exists
an absolutely continuous G(x) such that

G′(x) =∞ for x ∈ Z and G′(x) exists and is finite for x /∈ Z.

Define Ĝ(x) = 2
π arctan(G(x)) + 1. This Ĝ(x) is clearly uniformly continuous.

Let s(x) be a continuous increasing differentiable concave function that
maps R+ onto R+ such that s(0) = 0 and for all h ∈ (0, 2)

s(h) ≥ 2 sup
{∣∣∣Ĝ(x+ h)− Ĝ(x)

∣∣∣ : x ∈ R+
}
.

Using this s we can put together a sequence of continuous, differentiable metric
preserving functions fm.

Start with {am}, a sequence of points in (0, 1)\Z converging monotonically
to zero. For each m find the point bm such that s(bm) = Ĝ(am) . Since for all
but finitely many m the condition bm > 1

2am must be true we require that it
is true for all m in our sequence. Define

fm(x) =


s((2bmx)/am) x ∈ [0, am/2]
t(x) x ∈ [am/2, am]
Ĝ(x) x ∈ [am,∞)

where t(x)
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1. is a differentiable function with 1 ≤ t(x) ≤ 2,

2. meets t(am/2) = s(bm), t(am) = Ĝ(am), and t connects s and Ĝ smoothly,
and

3. satisfies |t(x)− t(y)| ≤ 1
2s
(

2bm

am
|x− y|

)
for |x− y| ≤ am/2.

Now s((2bmx)/am) is metric preserving since it’s increasing, concave and
s(0) = 0 and the function

y =


0 x = 0
t(am/2) x ∈ (0, am/2]
t(x) x ∈ [am/2, am]
Ĝ(x) x ∈ [am,∞)

is metric preserving since 1 ≤ y ≤ 2 for x > 0. Putting s and y together shows
fm is metric preserving. Note that f ′m(x) = ∞ on ([am,∞) ∩ Z) ∪ {0} and
elsewhere f ′m exists and is finite. Lastly, let

f(x) =
∑

2−mfm(x).

As previously stated, f−1(0) = {0} and f concave will ensure f is metric
preserving. It is easy to see that if f is strictly convex on some interval [0, s]
that it cannot be in M. As the following example shows, this does not mean
f cannot be convex in many intervals near 0.

Example 7. [1] There is a function f ∈M such that

1. f is differentiable,

2. f ′ is continuous on (0,∞),

3. f is not increasing on any neighborhood of 0,

4. each neighborhood of zero contains an interval on which f is strictly convex.

Proof. For each natural number n, let rn = (2n−1)(n+1)
(2n+1)n2 and let

gn(x) =

 0 x = 0
anx

3 + bnx
2 + cnx+ dn x ∈ [rn, 1/n)

(2− 1
n ) 1

n otherwise
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where

an = (16n7 + 24n6 + 8n5 − 2n4 − n3)(n+ 1)−1,

bn = (−48n6 − 72n5 − 12n4 + 18n3 + 2n2 − 2n)(n+ 1)−1,

cn = (48n6 + 72n5 − 30n3 + n2 + 5n− 1)(n2 + 1)−1,

dn = (−16n4 − 8n3 + 12n2 + 2n− 2)n−1.

For each gn there exists a positive constant kn so that kn ≤ gn(x) ≤ 2kn for
x > 0. Hence each gn is metric preserving. Next, let

fn(x) =

{ (
2− 1

n+1

)
x x ∈ [0, rn)

gn(x) x ∈ [rn,∞)

and define f0(x) = x. Each fn is metric preserving and the function we seek is

F (x) = sup
n
{fn(x)}.

If f is differentiable, then convexity can be thought of as having f ′ increase.
F. Terpe, in [23], shows any increase in f ′ cannot continue without bound.

Theorem 3.7. If f : R+ → R+ is differentiable on some neighborhood of ∞
and limx→∞ f ′(x) =∞, then f is not metric preserving.

As this last example shows, if we replace lim with lim sup in the theorem
above then we can reach a different conclusion.

Example 8. [1] There is a function f ∈M such that

1. f is continuous,

2. f ′(0) =∞,

3. f is differentiable on (0,∞),

4. lim supx→∞ f ′(x) =∞

Proof. For each i ∈ N, let ai = 1−
√

1− 2−2i. Define hi by

hi(x) =


0 x = 0
2−i−1 x ∈ (0, ai+1)
2−i−2

(
3 + sin π(2x−ai−ai+1)

2(ai−ai+1)

)
x ∈ [ai+1, ai)

2−i x ∈ (ai,∞)

.
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Each hi is metric preserving since x > 0 implies 2−i−1 ≤ h(x) ≤ 2−i. Now let

gi(x) =
{

(2i+1ai+1)−1x x ∈ [0, ai)
hi(x) x ∈ [ai,∞) .

Because |h′i(x)| ≤ (2i+1ai+1)−1 we have gi ∈M. Define the metric preserving
function tn by

tn(x) = sup
i≥n

gi(x).

Now for each i let

ri(x) =


0 x = 0
2−i−1

(
3 + cos 2(x−i−1)

ai

)
x ∈ [i+ 1− π

4 ai, 1 + i+ π
4 ai]

2−i otherwise

.

Each ri is metric preserving since for nonzero x, 2−i ≤ ri(x) ≤ 2−i+1. If we
let

si(x) =
{

(2iai)−1x x ∈ [0, ai)
ri(x) x ∈ (ai,∞)

then si ∈M because |s′i(x)| ≤ (2iai)−1. Lastly, define

f0(x) =
{ √

2x− x2 x ∈ [0, 1)
1 x ∈ [1,∞)

and for each n let fn(x) = max{tn(x), sn(x)}. All fn are metric preserving
and now the example we want is

∑
fn.

4 Applications for Functions in M

As previously stated, metric preserving functions can be used to guarantee
a space is bounded. M. J̊uza, in 1956 in [14], gave the first application for
nonmonotone metric preserving functions. He was dealing with the following
situation: If P is a complete metric space, it is known that given Kn a sequence
of closed balls such that Kn+1 ⊆ Kn and the radii of the balls is converging
to zero then ∩Kn 6= ∅. The example below shows this is not true if we leave
out the requirement that the radii converge to zero.

Example 9. Let P = N, the set of natural numbers with metric ρ(m,m) = 0
and if m 6= n

ρ(m,n) = 1 +
1

min{m,n}
.

Then letting Kn be the closed ball about b of radius 1 + 1/n will suffice.
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J̊uza, however, considered this insufficient since the space in the example
consists of isolated points. In his paper he constructs a metric on R so that the
space contains a sequence of closed balls with empty intersection. To begin
with, he shows that with the function given by

f(x) =
{
x x ≤ 2
1 + 1

x−1 x > 2

f(|x− y|) is a metric on R and that R is complete with this. Lastly induction
is used to define the Kn.

The proof of J̊uza’s result is based on ensuring the property that for all
compact sets K there exists a closed set S and a compact set L such that

K ⊆ R− S ⊆ L (J)

In [12] Doboš and Piotrowski looked more closely at this condition. They
developed the next theorem while searching for conditions than ensure (J).

Theorem 4.1. Let f ∈ M and g, h : R → R such that g and h are nonin-
creasing and nonconstant in each neighborhood of ∞ and

g(x) ≤ f(x) ≤ h(x)

in some neighborhood of∞ and limx→∞ g(x) = limx→∞ h(x). Then (R, f ◦|·|)
has (J).

However, as the next example shows, in order for a function to satisfy (J)
it need not satisfy the condition of Doboš and Piotrowski’s theorem. The
f below satisfies the condition while being monotone in no neighborhood of
infinity.

Example 10. [12] Define f : R+ → R+ as

f(x) =

{
x 0 ≤ x < 1
1+x+sin2(x−1)

2x 1 ≤ x
.

It remains an open question to characterize the metric preserving functions
f such that (R, f ◦ | · |) is a complete metric space containing a monotone
sequence of closed balls with empty intersection.

Let us note here that satisfying (J) is not necessary to have a monotone
sequence with empty intersection. This example also comes from [12].
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Example 11. Define f : R+ → R+ by the following: On [0, 1] we have
f(x) = x. On (3n− 2, 3n+ 1], n = 1, 2, 3, . . . let

f(x) =
1
2

(
x− 3n+ 1− |x− 3n+ 1|+

∣∣∣∣x− 3n+
n+ 4

2(n+ 2)

∣∣∣∣
+
∣∣∣∣x− 3n− n+ 4

2(n+ 2)

∣∣∣∣
)

This f satisfies the sequence of closed balls condition without satisfying (J).

Another application of metric preserving functions was remarked upon by
S. Watson in [27]. We know that nondecreasing subadditive functions are
metric preserving. The scalings used in statistics are nondecreasing and thus
we have “a complete description of scaling functions which work for any set
of distance data.”

5 Subsets of Metric Preserving Functions

Along with the collection of metric preserving functions, subsets of the setM
have been studied in papers (see [26] and [20]). The first dealt with differen-
tiation and metric preserving functions. The second paper looked at periodic
functions in M.

Definition 5.1. Let f ∈M be differentiable with finite derivative on (0,∞).
Define g(x) as

g(x) =
{
f ′(x) x > 0
0 x = 0 .

We say f ∈ D if and only if g ∈M.

Some of the results from this paper include

Theorem 5.2. If f is differentiable on [0,∞) and metric preserving then f ′

is not a metric preserving function.

Theorem 5.3. If f ∈ D, then f is nondecreasing.

Theorem 5.4. Let f(x) = xk. Then f ∈ D if and only if k = 1.

Finally, this paper gives a way to construct functions in D.
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Construction Let g : R+ → R+ be a function satisfying

∀a > 0
∫ a

0

g(x)dx ≥
∫ c

b

g(x)dx where c− b = a.

Let N and M be real numbers. If there exists an A > 0 such that

A ≤ N +Mg(x) ≤ 2A,

then both G(x) =
{
N +Mg(x) x > 0
0 x = 0 and F (x) =

∫ x
0
G(t)dt are in

M.

This leads to another, new, way to create function in M.

Construction Let g : R+ → R+ be an integrable function satisfying for all
a > 0

a∫
0

g dλ ≥
c∫
b

g dλ

where c− b = a and λ denotes Lebesgue measure. Then
∫ x
0
g dλ ∈M.

This last construction is similar to one in [23]. There the author stated
that if g : R+ → R+ is decreasing, continuous and positive-valued then

f(x) =
∫ x

0

g(x)dx

is metric preserving.
The second subset we wish to look at was investigated by I. Pokorný in

[20]. He concerned himself with functions in M which are related to periodic
functions. Obviously, no metric preserving function can be periodic (since
f(x) = 0 if and only if x = 0). Instead we will look at the set of f ∈M where
f(x) = x+ g(x) and g is periodic. Two examples of these functions are

f(x) = x+ | sinx|

and
F (x) = [x] +

√
x− [x]

where [·] is the greatest integer function. In his paper, Pokorný gave the
following characterization of these functions.

Theorem 5.5. Let f(x) = x + g(x) where g is nonconstant and periodic.
Then f ∈M if and only if the following conditions hold:
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• ∀a ∈ R+, f(a) = 0 if and only if a = 0,

• f is subadditive, and

• f is nondecreasing.

6 Preserving the Euclidean Metric

Recently some work has been done on preserving not all metric spaces (M,ρ),
but just the real line with the Euclidean metric ([8] and [16]). Obviously,M is
a subset of this collection. As we shall see, it is a proper subset and this larger
set contains some very interesting examples. The test to determine whether or
not a function preserves the Euclidean metric can again be based on triangle
triplets.

Construction The function f : R+ → R+ preserves the Euclidean metric on
R if and only if f(0) = 0 and f maps (a, b, a+ b) into a triangle triplet.

Denote the space of all function which preserve (R, | · |) asM∗. Obviously
M ⊂ M∗. An example that shows the inclusion is proper is the following
from [16]:

f(x) =
{
x x is rational
1 + x x is not rational .

A continuous example in M∗, but not M, was given by Doboš in [8] as

g(x) = | sinx|+
∣∣∣sin√2x

∣∣∣.
Note how different this is from metric preserving functions. In this example
lim infx→∞ g(x) = 0. For f ∈M it is known that for all a, b ≥ 0

a ≤ 2b implies f(a) ≤ 2f(b).

Hence as x approaches infinity there is some c > 0 which the function cannot
go below.

In [8] there is a construction which shows how to create a function which
preserves the Euclidean metric, but where lim infx→∞ f(x) = 0. We begin with
some lemmas.

Lemma. Let f be a metric preserving function. For each natural number n
define fn : R+ → R+ by

fn(x) =

 f(x) x ∈ [0, 2n−1]
f(2n − x) x ∈ (2n−1, 2n]
fn(x− k · 2n) x ∈ (k · 2n, (k + 1)2n], k ∈ N.
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Then f ◦ | · | is a pseudometric on R.

Construction Let f be a metric preserving function. Suppose that f(x) = 1
for x ≥ 1. Define f0:R+ → R+ by

f0(x) = sup
n∈N
{2−n · fn(x)}.

Then f ◦ | · | is a metric on the real line and f0(2n) = 2−n for each n ∈ N.

Doboš goes even further. He constructs a function which preserves the
Euclidean metric, has lim infx→∞ f(x) = 0, and is differentiable.

Example 12. For all natural numbers, define the values an and kn by

an =
n+ 1
n · 2n

and kn =
21−n

an
.

Let f : R+ → R+ have

a. f(0) = 0,

b. f is nondecreasing,

c. f is differentiable on [0,∞),

d. f(an) = 21−n,

e. f ′(an) = 0,

f. f(x) = 1 for x ≥ 1,

g. f(x) ≥ knx for each x ∈ (an+1, an), and

h. f ′(x) ≤ kn+1 for each x ∈ (an+1, an).

Then f is metric preserving since f(x) = supn gn(x) where

gn(x) =

 kn+1x x ∈ [0, an+1)
f(x) x ∈ [an+1, an]
21−n x ∈ (an,∞)

.

Using the above construction we can create f0(x) which meets all of our goals.

It’s then stated that if the f is continuous then f0 is almost periodic. The
question is then asked

Is every continuous f ∈M∗ with lim inf
x→∞

f(x) = 0 almost periodic?

This question has recently been answered in the negative by this author [24].
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Časopis SAV, VI, 3(1956), 143–148 (Czech).

[15] Kelley, J.L., General Topology, Van Nostrand, New York, 1955.



868 Robert W. Vallin

[16] Law, M., “Absolutely” metric preserving functions: functions that pre-
serve the absolute value metric, Master’s Project, the University of North
Dakota, 1995.

[17] Piotrowski, Z., On integer-valued metrics, School of Math., Phys. Chem.
Wroclaw Univ. (Poland), 1974 (Polish).
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