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Abstract

Our purpose is to study a generalized Stieltjes integral defined on a
class of subsets of a closed number interval. We extend the results of
previous work by the first author. Among other results, we prove that

e If M C [a,b] and f and g are functions with domain M such that
f is g-integrable over M, and there exist left (right) extensions f*
and g* of f and g to [a,b], respectively, then f* is g*- integrable

on [a,b] and
b
[ g = [ rag
a M

e Suppose that F' and G are functions with domain including [a, b]

such that

(a) F is G-integrable on [a, b],

(b) M C [a,b], and a,b € M

(c) if z belongs to [a,b] — M and € is a positive number, then there
is an open interval s containing 2z such that
|F(x) — F(2)||G(v) — G(u)| < € where each of u, v, and =
isin sNJa,b], u < z<wv,and u <z < v.

Then F' is G-integrable on M, and fab FdG = [ FdG.
M
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418 CHARLES COPPIN AND PHILIP MUTH
1 Introduction.

The Riemann-Stieltjes integral remains a topic of significant interest. See,
for example, D’yachkov [8], Kats [12], Liu and Zhao [13], and Tseytlin [18].
Modifications of the Stieltjes integral abound. One only has to sample some
of the most recent papers. For some interesting results, see B. Bongiorno and
L. Di Piazza [1], A.G. Das and Gokul Sahu [7], Ch. S. Honig [11], Supriya
Pal, D.K. Ganguly and Lee Peng Yee [15], S. Schwabik, M. Tvrdy, and O.
Vejvoda [16], Swapan Kumar Ray and A.G. Das [17], and Ju Han Yoon and
Byung Moo Kim [22].

In this paper, we investigate a modified Stieltjes integral defined on arbi-
trary number sets. A special case of this integral was first defined by Coppin
[3] and Vance [21] where the integral was defined over dense subsets of an in-
terval containing the end points of that interval. Coppin and Vance [6] showed
necessary and sufficient conditions for f to be g-integrable on a dense subset
of [a,b] where f|M and g|M do not have common points of discontinuity.
Vance [21] gave a characterization of bounded linear functionals. He proved a
representation theorem for bounded linear functionals with domain being the
set of all real-valued, quasi-continuous functions defined on a closed interval.

Let A denote the set of all dense subsets of [a,b] which contain a and b.
Coppin [4] gave conditions where f is g-integrable on M’ in A provided f is
g-integrable on M in A and M C M’. He showed that if f is g-integrable on
some uncountable member of A, then f is g-integrable on uncountable many
members of A. In addition, he proved that if M is a countable member M of
A, then there are real-valued functions f and g with domain [a, ] such that
f is g-integrable on M and no other member of A. Coppin [5] added to the
results of [6] by showing that f is g-integrable on M in A and f|M and g|M
have no common points of discontinuity if and only if f is g-integrable on each
subset of M which is a member of A. Also, in [5], it is proved that if M € A,
f and g are functions defined on [a, b] which have no common discontinuities
from the left at z nor common discontinuities from the right at z and f is g-
integrable on M, then f is g-integrable on M U{z} and fMU{z} fdg = [, fdg.
In [5], it is shown that if f and g are functions with domain [a,b] and f and
g have no common discontinuities from the left nor common discontinuities
from the right, then the set { w : w = fM fdg for M € A} is connected.

In this paper, we study a Stieltjes integral defined over arbitrary number
sets not merely those of [3] and [21]. We compare this integral with the
partition-refinement Stieltjes integral.
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2 Preliminary Definitions.

We give the definitions and conventions used in this paper.

In general, an interval (or an interval of M) is a set [¢,d]p = [¢,d] N M
where ¢ and d belong to M and ¢ < d. Two intervals, A and B, are said
to be nonoverlapping if and only if A N B does not contain an interval. A
nonempty collection of intervals is said to be nonoverlapping if and only if
each two distinct members of the collection are nonoverlapping.

In this paper, all functions are bounded real-valued functions.

Definition 2.1. If M is a number set, then D is said to be a partition of M if
and only if D is a finite collection of non-overlapping subintervals of M. E(D)
denotes the set of end points of members of D.

Definition 2.2. If M is a number set and D is a partition of M, then D’
is said to be a refinement of D if and only if D’ is a partition of M and
E(D) C E(D’).

Definition 2.3. If D is a nonempty collection of intervals, then § is said to
be a choice function on D if and only if § is a function with domain D such
that 0(d) € d for each d in D.

Definition 2.4. If D is a partition of a number set M, ¢ is a choice function
on D, and f and g are functions with domain including UD, then

S(f,9.D,0) =Y f(6([p,alan)) - [9(q) — 9(p))-

[p,qla€D

Definition 2.5. Suppose that M is a number set and f and g are functions
with domain including M. Then f is said to be g-integrable on M if and only
if there exists a number W (called “an integral of f with respect to ¢g” and
denoted by fM fdg) such that for each ¢ > 0, there is a partition D of M such
that

|W7 E(fagvD/’(S)‘ <e

for each refinement D’ of D and each choice function § on D’.

We follow the style of [2] and call the integral of this paper Definition D.
Definition C will refer to the definition found on page 305 of [2], the usual
partition-refinement version of the Stieltjes integral.
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3 A Joint Cauchy Criterion for Limits.

Definition 3.1. Suppose M is a set of numbers. The statement that D
is a direction in M (or direction D, if ambiguity exists) means that D is a
nonempty collection of intervals of M such that for each two sets S; and S
in D there is a member S3 in D such that S3 is a subset of S1 NS5 .

Definition 3.2. Suppose f is a function with domain including a number set
M and D is a direction in M. Then the statement that f has a limit according
to D means that there is a number L (written limp f) such that if € > 0,
there is an S € D such that |L — f(z)| < € for each z € S.

From McCleod [14], we have the following theorem.

Theorem 3.1. (Cauchy Criterion for Limits). Suppose D is a direction in
M and f is a function with domain including M. Then limp f exists if and
only if for every e > 0 there is an S € D such that |f(u) — f(v)| < € for all u
and v in S.

We have our own generalization of Theorem 3.1 which, of course, we will
find useful later.

Theorem 3.2. (Joint Cauchy Criterion for Limits). Suppose D is a direction
in M, and f are g are bounded functions with domain including M. Then
limp f exists or limp g exists if and only if for each € > 0 there is an S € D
such that | f(u) — f(v)]|g(s) — g(r)| < € for each u,v,r and s in S.

PROOF. (=). Suppose that limp f or limp g exists. For the sake of argument,
we assume that limp f exists. Because g is bounded, we know there is A > 0
such that

lg(z)] < A (1)

for each x € M. Let € > 0. Because limp f exists, by Theorem 3.1, for
€/2A > 0, there is an S in D such that

€

)~ F0)] < o 2
for each w and v in S. From (1) above, we have
l9(s) —g(r)] <24 3)

for each r and s in M and, therefore, each r and s in S. From (2) and (3),
|f(u) = f(v)|lg(s) — g(r)| < € for each u,v,r, and s in S. O
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PROOF. («). Suppose that for each € > 0 there is some S in D such that

[f(u) = f(0)llg(s) — g(r)| <€ (4)

for each u,v,r, and s in S. For the sake of argument, assume that limp f does
not exist. Thus, by Definition 3.2, there is p > 0 such that for any S in D and
some v and v in §

[f(u) = f(v)] = p.

We will show that this assumption leads to the fact that limp g must exist.
Suppose € > 0. From (4), for pe > 0, there is some S in D such that

|f(u) = f(0)llg(s) = g(r)] < pe ()
for each u,v,r and s in S. However, there are u,v € S such that
|f(u) = f(0)] = p. (6)

Thus from (5) and (6) we obtain plg(s)—g(r)] < |f(u)— £ (0)]lg(s) —g(r)| < pe.
or |g(s) — g(r)] < e for each s,r in S. Therefore by Definition 3.2, we know
that limp g exists. [

Corollary 3.3. limp f exists or limp g exists if and only if for each € > 0
there is an S € D such that |f(u) — f(v)||g(s) — g(r)| < € for each u,v,r and
sin S wherer <u<sandr <wv<s.

PROOF. (=-). This follows immediately from Theorem 3.2.

PROOF. («<). Assume the hypothesis and that both limp f and limp g do not
exist,.

Then, by Definition 3.2, for some ¢; > 0 and each S € D there are u,v € S
such that |f(u) — f(v)| > €;. Likewise, for some €3 > 0 and each S € D there
are 7, s € S such that |g(s) — g(r)| > €.

For €€ > 0, by hypothesis, there is some S € D where

[f(w) = f(v)llg(s) = 9(r)] < ere2 (7)

for each u,v,r and s in S where r <u < sand r <wv < s.
Now, arbitrarily choose r, s € S. We can assume r < s. There are u,v € S
such that r <w,v < sand |f(u) — f(v)] > €. From (7), we have

lg(s) — g(r)ler < |f(u) = f(©)llg(s) — g(r)| < er€2
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or

lg(s) —g(r)] < ez

for each r,s in S. This is in direct contradiction to the third sentence of this
proof. [

4 Transformation from Definition D to Definition C.

Definition 4.1. Suppose M C [a,b]. Then a gap G in M (or gap G if no
ambiguity exists) is a maximal connected subset of (a,b) which contains no
points of M.

Definition 4.2. Suppose M is a set and G is a gap. In this definition, we
follow the style of Hewitt and Stromberg [9], page 54, for the meaning of
interval. We now define the following directions:

D¢ is the collection of all intervals containing a point of G, right end point
in M and left end point in M.

Dg is the collection of all intervals with left end point in M and right end
point in the gap G.

D¢, is the collection of all intervals with right end point in M and left end
point in the gap G.

Theorem 4.1. If f is a function with domain including a number set M, G
is a gap in M, and limp,, f exists, then 1ing f and limD5 f exist and

lim f = lim f = lim f.
ggf ]lgrgf Hglf

Proof. Suppose f is a function with domain including a number set M, G is
a gap in M, and limp, f exists, which we denote by L.

Let € > 0. Then since limp, f exists, there is an S € D¢ such that
|IL — f(z)| < € for each € S. Now, let ST be a member of D/, where
ST C S. Then |L — f(x)| < € for each 2z € ST. Thus by definition of lim - f,
we know that limD:5 f = L. Likewise we can prove that lim D f exists and
lim D f=1L.

Therefore limp,, f = ling f= limD& f.0O
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Theorem 4.2. If f and g are functions with domain M C [a,b] such that f
is g-integrable on M and G is a gap in M, then Hng f and ling f exist or
limDé g exists and ling g exist.

Proof. In the following argument, the direction D is D¢ for some gap G.
Suppose € > 0. Since f is g-integrable on M, there is a number W and a
partition P of M such that

W= 3" F@)lola) - 9)ll < 5 (®)

pep

for any refinement P’ of P and for all [p,¢]y in P’ and any z in [p, ¢]as.

Let [c,d]p be the member of P where G C [c,d]. Note that S = [c,d]m €
D. Let 7, s,u,v be arbitrary members of S. For the sake of argument, assume
r <sandr <wu,v <s. Let P’ be the refinement of P such that E(P’) =
E(P)u{r,s}.

Let T =Y f(z)[g(q) — g(p)] where x = p for each [p,q]m € P’ except in
the case when [p,¢]p = [, s]p we let @ = u. Let U be defined in the same
manner as T except in the case [p, ¢lp = [, s]ar we let x = v.

From (8), we have

W —T|< < and |W —U| < <.
2 2
Adding and applying the triangle inequality for absolute values, we obtain
U —-T|<e.
It can easily be shown that

U—-T=[f(v)— f(u)llg(s) —g(r)].
So
[f(v) = fu)][g(s) — g(r)]| <e.

In summary, for any € > 0 there is S € D containing G such that for any r
and s in M where [r,s] C D and any v and v in M where r < u < s and
r < v < s we have that

[ (w) = f(v)]lg(s) = g(r)]] <&

Thus by Corollary 3.3, limp f exists or limp g exists. By Theorem 4.1,
hng f and hng f exist or hmDa g exists and hng g exist. [
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Theorem 4.3. If f is a function with domain M C [a,b], z is a member
of la,b] — M which is a limit point of the domain of f|[a, z], then there is a
number ¢ such that (z,c) is a limit point of the graph of f|[a, z]. Similarly, if
z is a limit point of the domain of f|[z,b], then there is a number ¢ such that
(z,¢) is a limit point of the graph of f|[z,b].

PROOF. The proof is a straight forward application of the Heine-Borel The-
orem applied to the vertical interval {(z,t) : —B < t < B} where B is a
common positive bound for |f| and |g]. O

Definition 4.3. In Theorem 4.3 ¢ is said to be a quasi-end value.

Definition 4.4. Suppose f is a function with domain M C [a,b]. By f* we
mean a function such that

(a) f*(x) = f(x) for each x € M, and

(b) if x € [a,b] — M and G is a gap containing z, then f*(z) is equal to a
quasi-end value of f with respect to G. It is understood that when there
is more than one choice for f*(x) then only one choice is made and is
the same for each value in G.

f* will be known as an extension of f to [a,b]. If quasi-left end values are used
consistently for each gap, then f* is known as a left extension of f on [a,b)].
Right extensions are defined in a similar fashion.

Theorem 4.4. If f and g are functions with domain M C [a,b], a < r* <
x* < s* < b where r*,x*,s* are in M, and € > 0, then

(a) if a € M, there are left extensions f* and g* of f and g to [a,b], respec-
tively, and there are numbers r, s and x in M such thata <r <r*, r <
v<at, x<s<s"and [f*(2z)[g"(s") — g7 (r)] = f(@)[g(s) —g(r)]] <e
and

(b) if b € M, there are right extensions f* and g* of f and g to [a,b], respec-
tively, and there are numbers r, s and x in M such that r* < r < z,
¥ <z <s, 8" <s<band|f*(z7)][g"(s") =g (r")] = f(z)[g(s) —g(r)]] <
€.

Proor. For (a) suppose a < r* < z* < s* < b where r*,2%,s* are in
M. Suppose € > 0 and B is a positive common bound of |f| and |g|. Let
¢ = min{e/6B, \/¢/6}. Since a < r*, let z = inf(M N [a,r*]). If 2 € M, let
r = z. If not, z is a limit point of M. In the latter case, by Theorem 4.3,
there is a point with abscissa z which is a limit point of the graph of g|[a, 2].
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Thus, there is a member r of M such that a <r <r* and g(r) = g*(r*) + &
where |61| < €. Similarly, there is a member x € M such that r < z < z* and
f(z) = f*(«*) + 62 where |62| < €. In like manner, there is a member s € M
such that r <z < z* and g(s) = ¢*(s*) + d3 where [03] < /. Then

[f*(2)]g™(s7) = g"(r")] = f(@)lg(s) — g(r)]|

= [[f(z) + d2][g(s) + 5 — g(r) — 1] — f(2)[g(s) — g(r)]|
= [f(@)[g(s) — g(r)] + f(2)[03 — 01] + 02[g(s) — g(r)] + b2[d5 — d1]—
fla )[g( ) — g(f‘)]l < |f(@)[d5 — 01]| + d2[g(s) — g(r)]| + 62[05 — é1]]
2¢ e e e

Thus, |f*(x")[g"(s*) = g"(r")] = f(2)[g(s) —g(r)]| <e.
The proof of (b) is similar to (a). O

Theorem 4.5. If M C [a,b], f and g are functions with domain M such that
f is g-integrable over M, and there are left (right) extensions f* and g* of f
and g to [a,b], respectively, then f* is g*- integrable on [a,b] and

/a fdg = /M fdg

PROOF. Suppose M C [a,b] and f and g are functions with domain M such
that f is g-integrable on M. Let W = [,  fdg and f*, g* be left (right)
extensions of f and g, respectively. For the sake of argument we assume left
extensions of f and g. There is no loss of generality if a,b € M. Suppose
p > 0. Thus, there is a partition D of M such that

W =" f@)lgla) — 9P| < £ (9)

for any refinement D’ of D and for all [p,q]ps in D’ and any x € [p, q|am

Now, we construct D’ and §. Let P be a partition of [a,b] such that
E(P) = E(D) and let P’ be an arbitrary refinement of P. Now, we will
construct a refinement D’ of D such that

|Z(f7gvD/75) _Z(f*ag*’Pl75l)| < g

where 0’ is any choice function on P’ and § is a specific choice function on D’
yet to be described.
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Let N be the number of elements in P’. Denote P’ = {[u}_,,u}]}r_,. We
start by choosing € in the preceding theorem to be p/2N. Consider [ug, uj] of
P’ and z* = §'([ug, ui]). Then, by Theorem 4.4, we obtain numbers ug, u1,
and zp in M such that a <up <uf <z <z* <y <uj <band

AN K () - p
|/ (@0)lg" (ui) = 9" (ug)] = f(@o)lg(ur) — g(wo)]| < 5

Now, consider numbers u1,u5, and x7. There are numbers z; and wus such
’ » Y2 1
that u; <21 <27 <wug <uj and

* (K K (K K (o k P
[ (@D)lg™ (uz) — g7 (u)] = fla1)lg(uz) — g(w)]l < -

Then, we continue to apply the process for kK = 2 to k = N to generate the
following inequalities:

[ (@i—0)lg™ (up) — g (ug—1)] = f2)lg(ur) — g(ur—1)]| < %-

for k=1to N.
Adding the above N inequalities and with application of the triangle in-
equality, we obtain the following;:

> (F0. D) =D (g P < E (10)

where D' = {[ug_1,ux|}_, and §([ur—_1,ur]) = z% for k = 1 to N. Now, we
have D’ and 4.
Adding (9) and (10), we obtain

‘Wﬁ Z(f*’g*’Pl75/)| <p.

where P’ is any refinement of P and ¢’ is any choice function on P’.
Therefore f* is g*-integrable on [a, b] and fab f*dg* = [, fdg. O

Theorem 4.6. Suppose that F and G are functions with domain including
[a,b] such that

(a) F is G-integrable on |a, b,
(b) M = [a,b], a,be M,

(c) if z belongs to [a,b] — M and € is a positive number, then there is an
open interval s containing z such that |F(z) — F(2)||G(v) — G(u)| < €
where each of u, v, and x is in sN[a,b], u < z < v, andu < x < v.
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Then F is G-integrable on M and f: FdG = [ FdG.
M

PROOF. Suppose € > 0. Since F' is G-integrable on [a, b], there is a partition
D of [a,b] such that, if D’ is a refinement of D, then

‘/deG—Z(F,G,D’,d)‘ < %

for each choice function § on D’.

For the sake of argument let us take the case that an element of D has an
end point not belonging to M.

Suppose A = E(D)NM¢ which can be written as A = {z1, 22, 23,...,ZN}.
By parts (b) and (c) of the hypothesis, there is a collection G = {(r;, s;) : i =
1,2,..., N} of disjoint open subintervals of [a,b] with end points in M, each
of which contains exactly one element of A, contains no point of E(D) N M,
and, if z; belongs to A, then

|F(x) = F(2:)]|G(v) — G(u)| < % (11)
for each w,v and x in (r4,s;) N [a,b] where v < z; < v, u < z < v for
i=1,2,....N.

Let D’ denote the refinement of D where E(D') = FE(D) U
{r1,s1,72,82,...,7N,Sn}. Let P denote a partition of M such that E(P) =
E(D’) N M. Suppose that P’ is any refinement of P. For i = 1,2,..., N, let
[¢iy d;]ar denote the element of P’ such that ¢; < z; < d;.

From (11), since ¢;,d; and z; are in (r;, ;) N [a, b], we have

|F(2)[G(d;) — G(ci)] — F(2:)[G(z:) — G(ci)]

€

— F(2;)[G(d;) — G(z)]] < N (12)
where z is any number in [¢;, d;]ar, @ = 1,2,..., N. Since there are N elements
in A, from (12) we have

N
| F@)IGd:) — Gle)] = Y Fa)Glas) - Gles)]
i=1 i=1
N
- F@)G(d) -Gl < 5. (13)
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Let D" denote a refinement of D such that E(D"”) = E(P')U E(D). Let
Qp = {[ci, dilmr}iLy and Qpr = {[es, @i Yy U { [z, di] }Y -

Let p be any choice function on P’ and let ¢’ be the choice function on
D" defined as 0'([p,q]) = p([p, ¢]ar) for each [p,q]as in P — Qp, each [p,q]
in D" — Qpr and &' ([c;,x;]) = &' ([x4i,di]) = 24,4 = 1,2,...,N. Thus, (13)
becomes

(G Qprp) = D (F.G.Qpi,d)| < 5. (14)

We also have
> (F,G,D"=Qpn, &)= (F,G,P' = Qp:,p) (15)
and

> (F,G,D",8')=> (F,G,Qp,8')+> (F,G,D" —Qp», &)  (16)

and

Y (F.G,Pp)=> (F.G,Qp,p)+ Y (F,G,P'=Qpi,p).  (I7)
Substituting (15) into (16), we obtain

> (F,G,D",8)=> (F,G,Qp,8') + > (F,G,P' = Qp,p). (18)

Computing the difference between the left sides of (17) and (18) and sub-
stituting into (14) yields

‘Z(F, G.P.p) -3 (F.G,D".&)| < % (19)
Then, we have from (4)
b
/FdG N (F,G,D",8)| < % (20)

Combining (19) and (20), we have

b

/FdG > (F,.G,P.p)|<e

a

for each choice function p on P’.
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Therefore, by definition, F' is G-integrable on M and, by the uniqueness
b

of the integral, [ FdG = [ FdG. [
a M
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